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Abstract
This article studies particular sequences satisfying polynomial recurrences, among those Apéry’s sequence
< n)2 (n + k) 2
=3
2\ U
which is shown to be the Legendre transform of the sequence
k 3
k
Cp = Z ( ) .
= N
This results in the construction of simultaneous approximations of w2/8 and £ (3).

1991 Mathematics subject classification (Amer. Math. Soc.): 11B37, 11J13, 33C45.

1. Introduction

For a sequence (c;) we shall consider its Legendre transform (a,) defined by

o=3a(})("1")

It should be noticed that each sequence (a,) is the Legendre transform of a unique
sequence (c;) (cf. Section 2). We shall also consider the sequence of Legendre
polynomials belonging to (c,) defined by

u n\(n+k\ ,

a,(x) = ;ck(k)( P )x .
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[2] Legendre transforms and Apéry’s sequences 359

The classical Legendre polynomials orthogonal on [—1, 0] belongs in this way to the
sequence (c;) with ¢, = 1.

This article is motivated by the following conjecture (see [10]): For integral r,
r > 2, numerical evidence indicates that each of the sequences

n r +k r
=20 ()
; k k

is the Legendre transform of an integral sequence (c\”). Challenged by this problem
it was noticed by W. Deuber, W. Thumser and B. Voigt (University of Bielefeld) that
the corresponding sequence (¢, ) for r = 2 seemed to be

k k 3
M u=&=20»

j=0
This was then proved independently by Strehl (University of Erlangen-Niirnberg, see
[13]), and myself. Strehl obtained the more general formula

> () Gk = () St () £

k=0 k k k=0 k j=0 j

where o and 8 are parameters. The choice « = B = 0 gives the formula (1) for (c;)
for r = 2. In [13] Strehl also proved that ¢}’ is integral by establishing the formula

2-20) () ()

It is well known (see [1, 6]) that Apéry’s sequence

n 2 2
@ w=a?=3() (%)

k=0

satisfies the recurrence relation
3) n+1Ya, — (0 + 1) +n* +4@n + 1*)a, + n’a,.y =0  forn > 0.

The sequence (1) has also long been known to satisfy the recurrence relation (see
[1,2,3,5,6,12))

4) k + 1cir — (TK* + Tk + 2)cp — 8k%c,.y =0 fork > 0.

After presenting some simple properties of the Legendre transform in Section 2, we
consider in Section 3 a class of three term recurrent sequences (c¢;) such that the
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360 Asmus L. Schmidt [3]

corresponding sequence (a,) is also three term recurrent. Simple examples of this
kind are described in Section 4.

In Section 5 we consider the important recurrence (4) leading through Legendre
transforms to Apéry’s sequences related to ¢ (3). In addition to obtaining the formula

e 50 ¢ 50050

we also get simultaneous approximations of 72/8 and £ (3).
In Section 6 we consider the simpler sequence

® «= 2O

which is the Legendre transform of the sequence

50 -0)

This sequence is rather peculiar, namely

a, = 1%, a=5-1a=7, a3 =5-11%2, a, =917,
as =5-155%, ag=1345%, a; =5-2365%, ag=20995%, ay=>5-37555%,

This will be explained by means of some particular sequences of orthogonal polyno-
mials.

The final section contains a number of computer-aided results of recurrent se-
quences (c;) such that the corresponding sequence (a,) is also recurrent. We propose
to continue this investigation by extending the class of recurrent sequences (c;) for
which the corresponding sequence (a,) of Legendre transforms is known to be recur-
rent (see also [9]). Such insight might also prove the conjecture about a” for values
ofr > 3.

2. Simple properties of Legendre transforms

We shall mention the following simple results:
(i) If (a,) is the Legendre transform of (c¢;) then the following inversion formula
holds:

Z( i 2]+ (’;)

k+}+1("+f)
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(ii)
i(—l)" n\(n+ky |1 n=0,
= k+ 1\k k “lo n>0.

(iii) For m € N we have

Xn: (=Dt (n) (n + k) _
2%k —2m+1\k)\ k )

2n+1-2m—-1)---Cn-DC2n+1)2n+3)---2n+14+2(m—-1))

(=" (1-3.--Qm - 1))?

(iv) Form € N we let

(m) __ 1 k=m,
10 k # m.

Then obviously

2": m (n+k _(m=m+1)---(n—=Dnn+1---(n+m)
VAN 2 (m!)? '

()-CI6°)

the relation (i) is an immediate consequence of the well-known relations for so-called
Legendre pairs (cf. [8]):

k=0

Since

if and only if

(AR M)

Notice that (ii) follows from (i), when applied to the sequence (a,) withay = 1,a, =0
for n > 0. For another derivation of (ii) see [9]. Notice also that the formulas in
(iii) and (iv) together give the inverse Legendre transform of an arbitrary polynomial
sequence (a,).

3. Three term recurrences and Legendre transforms

We shall prove the following result:
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THEOREM 1. Let A, B, C, D, E € R, C # 0 be constants. We consider polynomi-

als
Py(k) = AK* + Bk +C,
Py(k) = DI,
0,(k) = k(Ak + (B — A)),
Pi(k)y = Dk(k+1)— Q,(k) + E,
and polynomials po(n) = (n+ 1)Py(n),

p2(n) = n(Po(n) — (B—A)2n + 1)),
q1(n) = 2P (n)+2Q(n) =2Dn(n + 1)+ 2E,
pi(n) = po(n) + pa(n) + 2n + 1)q,(n).

(i) Suppose the sequence (cy) satisfies the recurrence
(7N Py(k)ciyy — Pr(k)ey — Pa(k)coy =0 fork > 1

with initial values co = 1, c; = E/C. Then the Legendre transform (a,) of (c:)
satisfies the recurrence

(8) po(m)a,1 — pr(m)a, + p(n)a,_, =0 forn>1

with initial valuesay = 1,a, =1+ 2E/C.
(ii) Suppose the sequence (c,) satisfies the recurrence (7) with initial values c; = 0,
¢1 = 1. Then the Legendre transform (a,) of (c;) satisfies the recurrence

9 po(n)a,1 — pi(n)a, + po(n)a,_, =C@n+2)  forn>1

with initial values ay = 0, a; = 2.
(iii) Suppose the sequence (c,) satisfies the recurrence

)
(10) Pok)cist — Pr(K)cs — Po(k)cs_t = 2—:1— fork =1

with initial values co = 0, c; = 1/C. Then the Legendre transform (a,) of (c:)
satisfies the recurrence (8) with initial values ay = 0, a; = 2/C.

PROOE. For abbreviation we let

g = n\(n+k
n,k"_kk k )

where (c;) is any sequence. The Legendre transform (a,) of (c;) is then given by

n
a, = E ap k-
k=0
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We notice first that

(11) po(n)ansi1x — p1(M)ani + p2(M)@y_1x =

+k k—1

(2”°(")(ki1>(nk )_2”2(")(2)(”:—1 )
k

—@n+ 1)q1(n)(:) (" ’ )) .

Using the method of creative telescoping (cf. [5, 6]) we let

k
Ank = —(Z) (n : )(27! + 1)((‘11(”) - 2Q1(k))6‘k + 2Pz(k)Ck-1)

for 0 < k < n, and with the proviso that A,, = O fork < O or k > n. An easy
rearrangement shows that identically for0 < k <n + 1:

k k—1
=, ) 1) () )
k
—(2n + l)ql(n)(Z) (n : )) Ck
_2(k i 1) (n :f; 1)(2n +1) x

(Po(k — Dex — Pitk — Degoy — Potk — Dera).
In particular for k& = 1, and using (11), we also obtain

(13) An,] - An,O =
Po(M)ani1 1 — p1(n)an1 + pr(N)a,_1 1 — (4n + 2)(Cc;, — Ecy).

We also notice that
(14) Ano = —(2n + 1)q,(n)co.

Case 1. Assume first that (c;) satisfies (7) for k > 1. Then by (11) and (12)
(15.1) Apik — Ani—1 = po(M)ani1x — P1(M)@n i + p2(N)an_1 &

for1 < k < n+ 1. By (14) the relation (15.1) also holds for £ = 0. Using (7) we get
2n 2n
(16.1) —A,,= (n )(Zn + 1)(2P1(n)c,, + 2P2(n)c,,_1) =2( " )(2n + DPy(n)cpy

2n+2
= ( )('l + D) Py(n)cps1 = po(n)aniyntrs
n+1
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so that relation (15.1) also holds for k = n + 1. Consequently by (13) and (15.1)

po(n)a, — pi(n)a, + po(n)a,_,

n+1
= Z nk = Ang1) + (@n +2)(Cer — Eco)
= (4n +2)(Cc; — Ecyp),

which proves the two first claims of the theorem.
Case 2. Assume next that (c;) satisfies (10) for k > 1 with¢y = 0, ¢, = 1/C.
Then (15.1) is replaced by

(15.2) Ank — Ani—1 = po(M)@ni1x — Pr(n)an i + p2(n)an_x

n n+k—1\ (D!
_(4”+2)(k—1)( k-1 ) k

for 1 < k < n+ 1, and (16.1) is replaced by

(="
n+1°
By (14) and (16.2) it follows that the relation (15.2) also holds for k = n + 1 and also

for k = 0 when omitting the last term in (15.2). Since Cc; — Ecy = 1 it follows by
(13), (15.2) and Section 2(ii) that

2n
(162) - An,n = pO(n)an-H,n-H - (4n + 2)( n )

Po(M)any — p1(n)a, + pr(n)a,_,

n+1 k lk
—Z Ank — Ani- 1)+(4n+2)2( )(” )(+)1
-0 forn > 0.

This proves the last claim of the theorem.

REMARK 1. Assume that B = 2A, which implies that p,(n 4 1) = po(n). Assume
further that po(n) # 0 for n > 0, and that a, # O for n > 0. To distinguish the three
sequences (a,) in (i) — (iii) they will here be denoted (a,), (a,), (a,), respectively.
The following formulas are easily deduced:

d’ an a; | _ 2€
" Anyy 4, po(n)’
. an_1 a,,/_x an;l —-4C*2n +1)
n = a, an n = e — Do)’
. po(n — Dpo(n)
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a, a,
’
apy1 4

d =

n

0 ZQ" .
n+1

_hm———2CZ

n—0 pO(n)anan+1 '
= 11m £ =2C Z 2(2‘) + Da, ,

— po(n)anan+1 =
- L= 2C

o = Z(Zn + 1(a, 0" —a)) .

n=0

pO(v)avav+l '

The formulas concerning infinite series are purely formal, and convergence must
therefore be ascertained when applied.

4. Examples

ExAMPLE 1. (Classical and generalized Legendre polynomials.) For A = B =
D=0, C=1, E = x therecurrence

1 — X — 0 =0

has the solution ¢; = x*. The corresponding sequence
~(n\ (n+ k) '
a, = x

WG

n+ Da, — 2n + 1)1 + 2x)a, + na,_, =0.

then satisfies the recurrence

The polynomials a, = a,(x) (Legendre polynomials) are orthogonal with respect to
Lebesgue measure on [—1, 0].
ForA=B=0,C =1, D = x, E = x; we get the recurrence

et — (X0 + k(k + Dx)ex — k2xic- = 0.

The corresponding sequence of generalized Legendre polynomials a, then satisfies
the recurrence

(n+ Da,n — 2n + DA + 2(x + n(n + Dx1)a, +na,_, =0.

https://doi.org/10.1017/51446788700038350 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700038350

366 Asmus L. Schmidt 9]

Compare [9] for a wider class of generalized Legendre polynomials.

EXAMPLE 2. (Orthogonal polynomials related to Bernoulli numbers.) For A =
D =0, B =C =1, E = x the recurrence

Gk+Dag—x—kc,—0-¢,y =0

has the solution ¢, = (}). The corresponding sequence

2. /n\[(n+ k> (x)
a, =
2O
therefore satisfies the recurrence
(n + 1)2a, — 2n+ DA + 2x)a, — n*a,_, = 0.
When defining a linear functional s on R[x] by
x (—DF
s = —,
k k+1

it follows easily by Section 2 (ii) and the recurrence relation that the polynomials
a, = a,(x) are orthogonal with respect to the functional s, and that

="

s(a,(x)*) = PT

Since (compare [7])
n __ - x
X —;Ank(k)a
where
k (k k (k
e (o= ()
j=0 .I j=0 ‘]

it follows that

s, —s(x”)_zn:A (_l)k_i 1 i(—l)j(k) i" =B
"= T T &k i) =

ExXAMPLE 3. (Recurrent sequences related to Pell’s equation.) Let p be a prime
number and m € N. Suppose that (x, x;} € 7% is an arbitrary solution to Pell’s
equation

xt—pxi=¢, e==I.
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Let A=1,B =0,C = —p*! be fixed. We consider two cases of values for D and
E corresponding to a specific solution to Pell’s equation:

Case (i). For D = gpx}, E = —p™x1x, — ep*™x2, the recurrence (7) has the integral
solution ¢, = D*(x,k + ep™x,), k > 0.

Case (ii). For D = —&x?, E = —p™x,x, + ep*™'x?, the recurrence (7) has the
integral solution ¢, = D*(x,k — ep™~'x,), k > 0.

In particular for C = -2 (that is p = 2, m = 1) the fundamental solution
(x1,x2) = (1, 1) with ¢ = —1 gives in case (i) (D, E) = (-2, 2), and thus the
recurrence (k% — 2)ciyy + (3k* + k — 2)c, + 2k%ci—, = O has integral solution ¢; =
(—2)*(k — 2). The corresponding sequence

z k
an =Y (-2k -2 (Z) (” . )

k=0

therefore satisfies the recurrence
(n + D)(n* — a, + @n + DB+ 3n — 2)a, + n(n* +2n — Da,_, =0.
In case (i), (D, E) = (1, —4), and thus the recurrence
(k% ~ 2)cpr — @k — Ay — K’y =0
has integral solution ¢, = k + 1. The corresponding sequence

=St

k=0

therefore satisfies the recurrence
(n+ DH(n* = 2)a — 2n + 1)(3n* +3n — 10)a, + n(n* +2n — a,_, =0.

Analogously for C = —2 the solution (x;, x,) = (3, 2) with ¢ = 1 gives in case (i)
(D, E) = (8, —28), and thus the recurrence

(k2 - 2)Ck+1 - (7k2 + 9% — 28)Ck - 8k2Ck_1 =0

has integral solution ¢, = 8*(3k + 4). The corresponding sequence

a, = §8"(3k +4)(:) (” :k)

therefore satisfies the recurrence

(n + D(n* = 2)apy — @n + 1)(170% + 17n — 58)a, + n(n* + 2n — a,_, = 0.
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In case (ii), (D, E) = (-9, 6), and thus the recurrence
(k* — 2)cpy1 + (10k* 4 8k — 6)cx + 9k*c,1 =0

has integral solution ¢; = (—9)¥(2k — 3). The corresponding sequence

< k
an =Y (-9}@k ~3) (Z) (" )
k=0

therefore satisfies the recurrence
(n + D — Dapy + Qn + DATA2 + 17n — 10)a, + n(n® +2n — Da,_, =0.
EXAMPLE 4. For A = D =2, B =3, C = -2, E = —2x the recurrence is
(k +2)(2k — Degyy — k= 3x/2)cp — 2k = 0.
The corresponding sequence (a,) then satisfies the recurrence

(n+ 1D +2)2n = Da, — @n+ DA +n—1) + 2n — H(2n + 3)x)a,
+nn — 1Y2n + 3)a,_, =0.
The polynomials a, = a,(x) are orthogonal with respect to a measure p concentrated

in the single point x = —2/3.

5. Apéry’s sequences

By applying Theorem 1 for A =C =1, B=FE =2, D = 8§, that is for
Py = (k+1)%, P =Tk + Tk + 2, P, =8k,
we get

THEOREM 2. (i) The Legendre transform (a,) of the sequence (c,) in (1) (which
has cy = 1, ¢, = 2) satisfies the recurrence (3) with initial values ay = 1, a; = 5.

(i) The Legendre transform (a,) of the sequence (c;) satisfying the recurrence (4)
and having initial values co = 0, ¢, = 3 satisfies the following recurrence

a7 (n+1ap ~ ((n + 1D +nrP 4420+ 1)3)0,, +na,, =
3(4n +2) forn=>0

with initial values ap = 0, a; = 6.
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(iii) The Legendre transform (a,) of the sequence (c,) satisfying the recurrence

(=13
k+1

(18)  (k+ D’erpy — (TR + Tk + 2)cx — 8K cxy = fork >1

and having initial values co = 0, c; = 3 satisfies the recurrence (3) for n > 1 with
initial values ay = 0, a; = 6.

REMARK 2. . As in Remark 1 we denote the three sequences (a,) in (i)—(iii) by
(a,), (a,), (a,), respectively, and similarly for the sequences (c;).

Since B = 2A the formulas in Remark 1 applies with po(n) = (n + 1)*. In this
case it is well known (cf. [6]) that

lim ™ =7%/8, o :=lm= =¢(@3).
Cy a,

Therefore also

’ "

o =limZ = x%/8, limZ =zQ3).
a, Cy

The simultaneous approximation of 72/8 and ¢(3) is illustrated in the following
two tables:

k| c c} cy n?/8 — ¢, /ck (3 —¢)/ck
01 0 0 1.233700550 1.202056903
112 3 3 —0.266299450 | —0.297943097
2|10 12 93/8 0.033700550 0.039556903
3156 |208/3 | 1217/18 —0.004394688 | —0.005284367
4 | 346 | 1280/3 | 239429/576 | 0.000559895 0.000683067
n | a, a a’ n*/8 —a./a, | ¢(3) - d!/a,
01 0 0 1.233700550 | 1.202056903
115 6 6 0.033700550 | 0.002056903
2|73 90 351/4 0.000823838 | 0.000002109
311445 | 5348/3 62531/36 0.000021196 | 0.000000002
4 | 33001 | 122140/3 | 11424695/288 | 0.000000561 | 0.000000000
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6. A peculiar sequence

We consider now the sequence a, = Y_;_o (¥)(}) ("*). To explain the properties
mentioned in the introduction we consider the following sequences of polynomials

2k (n\ (n+k
o B0

; FATAN

n c_ 1
(20) P;(x)=Z(;f)(”+’. Z)xf,

j=0 J
n . 1
(21) Pn+(x) — Z <n) <n +j + z)xf.
= \J J
Then we claim that
(22) a,(x) = P (4x)?,
(23) Ani1(x) = (1 + 4x) P} (4x)*.

Since a, = a,(1) we get in particular
(24) ay = P7(4)%, Ay = SP(4)%,

which explains the peculiarities of the sequence a,.
The polynomials P (x) and P, (x) are expressible in terms of the Jacobi polyno-

mials ( y
P"(a.ﬂ)(X) _ @ +' “Fl-n,n+a+B+1a+1;(1—-x)/2]
n!
In fact
~1 1
Pr(x) =P P Q@x+1)=Fl-n,n+ S 1 -
3 3
Pn+(X) = P,,(0,+z)(2x —+ 1) = F[—n,n + —; 1’ —X].

2

Therefore formula (22) follows immediately from Clausen’s formula (cf. [11])
1 1
Fla,b;a+ b+ E;Z] =3F2[2a,2b,a+b;2a+2b,a+b+E;z]

witha =—n, b=n+ %,z = —4x.
The polynomial sequence u, = P, (x) satisfies the recurrence relation

1
n+1)2n+1)@4n — Du,yy — (dn + 1)(5(4n —1)(@4n +3)x +4n* +2n — l)u,,
(25) +n(2n - Y@n +3)u,_, =0 forn >0,
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and is thus (cf. [14]) a sequence of orthogonal polynomials with respect to a normal-
ized measure m~ on R. The measure is given by

v} at/2v1 4, t€]-1,0],

(26) dm™ (1) = { 0 otherwise,
the corresponding moments being

_ (=1)"4"
27N W, = —————, > 0.

@n + 1)

Also .
(28) 1Py () = —— n=0.

dn+1’
Analogously formula (22) follows from a more general formula of Orr (see [11,
Theorem III}), and contiguous relations.
Similarly the polynomial sequence u, = P} (x) satisfies the recurrence relation

1
(n + 1D(2n 4 3)(@4n + Dy — (4n + 3)(5(4;1 + 1)(@n + 5)x + 4n® + 6n + 1)u,
(29) +n2n+1D@n + Su,_, =0 forn >0,

and is a sequence of orthogonal polynomials with respect to a normalized measure
m* on R. The measure is given by

3V1+1dt, t€]-1,0]

() =
(30) dm™ () = 0 otherwise

the corresponding moments being

(—1y'3 - 4

1 - , 0
Gb b= i nan e " C
Also 3
(32) 1P (O = ——, n>0.

n+3
7. Some computer-aided results

We shall mention some further examples of recurrences for Legendre transforms.

EXAMPLE 5. For the sequence (cf. Section 6) ¢, = (% )x* and satisfying the recur-
rence
(k + I)CH_I —_ (4]( + 2)XCk = 0,
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the corresponding Legendre transform (a,) satisfies the four term recurrence
Qn+ D(n+2)a, — 2n+3)(3n% +6n+ 2 +42n + 1H2n + 3)x)au4
+@2n+ D@BR*+6n+2+4C2n + DQ2n +3)x)a, — 2n + 3)n’a,_, = 0.

This follows by a telescopic argument using

Any = —42n +1)2n + 3)(” : 1) (" :k) (4k + 2)xcy.

EXAMPLE 6. For the sequence (c;) of Fibonacci numbers with ¢; = ¢; = 1 and
satisfying the recurrence
Cey1 — €k — €4 =0,

the corresponding L.egendre transform (a,) satisfies the five term recurrence
2n — 1)(n + D)(n + 2)a,2 —42n — 1)2n + 3)(n + Day4y
—2@n+ D)(* +n — Da, —4@2n — 1)2n + 3na,_,
+2n +3)Y(n — Dna,_, =0.

This follows by a telescopic argument using

n n+k—1\1, , 5
An,k=An,0(k_1>< E—1 )'];((n +n—k(k — 1)c, + kcei)

with
Ao=—42n - DH2n + 1)(2n + 3).

EXAMPLE 7. For the sequence (c;) of Legendre polynomials satisfying the recur-
rence
(k+ Dexyr — @k + D@x + Do + ke =0,

the corresponding Legendre transform (a,) satisfies the five term recurrence
Qn — 1)(n +2)%ap12 — G +4x)2n — )21 + 3Ya,,,
+(@2n + 1)(38n* + 38n — 29 + 8(2n — 1)(2n + 3)x)a,
—(3+4x)(2n — 1’(2n + 3)a,_, + 2n +3)(n — D’a,_, = 0.

This follows by a telescopic argument using

k—1\ 1
Anx = A,,Vo(k f 1) (" :_ ) )k—2((n2+n—k(k—l)—k(2k+1)(2x+1))ck+k2ck_1)

with
Ano=4Cn — 1H)2n+ 1(2n +3).
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ExAaMPLE 8. For a sequence (c;) satisfying a recurrence
Py(k)crsr — Py(k)xc, — Py(k)x*cimy =0,
for k > 0, where
Pok) = (k+1)°, Pi(k) =k’ +ak+ B, Pyk)=yk,
the corresponding Legendre transform (a,) satisfies the five term recurrence

(2n — Dn(n + 2)%a.,
—2n — 1)(2n +3)(20° + 60> +4n — 1 4+ 2n P (n + Dx)an
—2n+ D)(4y(2n — D@2n + 3)n(n + Dx?
—~2(2n = 1)(2n + 3)(Pi(n) — 2P1(0))x — (6n* + 12n° — 2n” — 8n + 3))a,
-Q2n —1)@2n+3)(20° —2n + 1+ 2(n + D)Pi(n — 1)x)a,-,
+@2n+3)(n+ D(n — 1)%a,_, =0.

This follows by a telescopic argument using

Ani = —4Qn = DQn + 1@ + 3)(,, . 1) (n +/]§ — l)

x ((y(n* +n — k(k = )x* + Py(k)x)c, + Py(k)x*cia).

C = zkj (k,)sx"

=0 \J

satisfying the above recurrence with («, 8, y) = (7, 2, 8), and

=) ()

satisfying the above recurrence with (a, 8, y) = (11, 3, 1) (cf. [6]).

Important examples are

EXAMPLE 9. For the sequence

AN
CkZZ(.) xt,
=0

J
satisfying the three term recurrence (see [1, 2, 4, 5, 6, 12])

P()(k)Ck.H —_ Pl(k)XCk e Pz(k).x2(,‘k___1 = 0,
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where
Pok) = (k+1)3, Pik) =2Qk+ 1B +3k+1), Py(k) = (4k — 1)4k(4k+1),

the corresponding Legendre transform (a,) satisfies the seven term recurrence

(2n = 3)(2n — Dn(n + 3)*a,y3
—(@2n — 1)(2n —3)(2n +5)(3n* + 22n* + 52n* +33n — 16
+2nPy(n + 2)X)aus2
—(2n — 3)(2n + 3)((1024n° + 6144n* + 10944n° + 2944n> — 5040n)x"
—(192n° + 1104n* + 1728n> — 180n* — 13321 + 420)x
—(15n° + 85n* + 120n* — 60n” — 126n + 80))a,.
+2(2n — 3)(2n + 1)(2n + 5)(8(2n — 1)(2n + 3)(16n* + 16n — 15)x>
—(72n* + 144n* — 98n* — 170n + 126)x — (5n* + 10n*> — 10n* — 15n + 16))a,
—(2n — 1)(2n + 5)((1024n° — 1024n* — 3392n° + 3264n° + 2448n — 2160)x’
—(192n° — 144n* — 768n> + 660n> + 756n — 756)x
—(157° — 10n* — 70n° 4 60n” + 89n — 96))a,._,
—(@2n —3)2n +3)(2n + 5)(3n* — 10n° + 4n* + 17n — 16
+2(n+ D)Pi(n — 2)x)an—2
+(2n +3)2n +5)(n + 1)(n — 2)*a,_; = 0.

This follows by a telescopic argument using

-2\ 1
e Y

x (4(4k + 3)(8k + 5)(n* +n — (k — D) (k — 2))x*c,
+ k(P (k)xc, + Pz(k)xzck—l))

with
A, o= —4802n —3)(2n — 1D)2n + 1)(2n + 3)(2n + 5).

The computations were performed by means of the GP-PARI system using the
methods in [5].

Added in proof. It has been pointed out to me by Michael Stoll (University of
Bonn) that arguments taken from R. P. Stanley, ‘Differentiably finite power series’,
EuropeanJ. Combin. T (1980), 175-188, lead to the result (illustrated by the examples
above) that the set of polynomially recursive sequences is invariant under the Legendre
transform and the inverse Legendre transform.
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