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Abstract

The d-dimensional �-Fleming–Viot generator acting on functions g(x), with x being
a vector of d allele frequencies, can be written as a Wright–Fisher generator acting on
functionsgwith a modified random linear argument ofx induced by partitioning occurring
in the �-Fleming–Viot process. The eigenvalues and right polynomial eigenvectors are
easy to see from this representation. The two-dimensional process, which has a one-
dimensional generator, is considered in detail. A nonlinear equation is found for the
Green’s function. In a model with genic selection a proof is given that there is a critical
selection value such that if the selection coefficient is greater than or equal to the critical
value then fixation, when the boundary 1 is hit, has probability 1 beginning from any
nonzero frequency. This is an analytic proof different from the proofs of Der, Epstein
and Plotkin (2011) and Foucart (2013). An application in the infinitely-many-alleles
�-Fleming–Viot process is finding an interesting identity for the frequency spectrum
of alleles that is based on size biasing. The moment dual process in the Fleming–Viot
process is the usual �-coalescent tree back in time. The Wright–Fisher representation
using a different set of polynomials gn(x) as test functions produces a dual death process
which has a similarity to the Kingman coalescent and decreases by units of one. The
eigenvalues of the process are analogous to the Jacobi polynomials when expressed in
terms of gn(x), playing the role of xn. Under the stationary distribution when there is
mutation, E[gn(X)] is analogous to the nth moment in a beta distribution. There is a
d-dimensional version gn(X), and even an intriguing Ewens’ sampling formula analogy
when d → ∞.
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1. Introduction

The d-dimensional�-Fleming–Viot process {Xt }t≥0 representing frequencies of d types of
individuals in a population has state space� = {x ∈ [0, 1]d : ∑

i∈[d] xi ≤ 1} with generator L
acting on functions in C2(�) described by

Lg(x) =
∫ 1

0

d∑
i=1

xi(g(x(1 − y)+ yei )− g(x))
�(dy)

y2 . (1)

In general,� is a nonnegative finite measure on [0, 1]. We take a time scale so that� ≡ F is a
probability measure on [0, 1]. Informally, the population is partitioned at events of change by
choosing type i ∈ {1, 2, . . . , d} to reproduce with probability xi , then rescaling the population
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with additional offspring y of type i so that the frequencies are x(1−y)+yei , at rate y−2F(dy).
If F has a single atom at 0 then {Xt }t≥0 is the d-dimensional Wright–Fisher diffusion process
in � with generator

L = 1

2

d∑
i,j=1

xi(δij − xj )
∂2

∂xi∂xj
(2)

acting on functions in C2(�). The general process {Xt }t≥0 with generator (1) has a Wright–
Fisher diffusive component if F(0) > 0, and discontinuous sample paths from jumps where the
frequencies are changed by adding mass y from the points of F in (0, 1] to the frequency of a
type and rescaling the frequencies. Eventually, the process becomes absorbed into one state in
{ei}di=1. Eldon and Wakeley (2006) introduced a model where F has a single point of increase
in (0, 1] with a possible atom at 0 as well. A natural class that arises from discrete models
are beta coalescents, particularly when F has a Beta(2 − α, α) density coming from a discrete
model where the offspring distribution tails are asymptotic to a power law of index α. This
beta-coalescent model is studied in Schweinsberg (2003) and Birkner et al. (2005). Birkner
and Blath (2009) describe the �-Fleming–Viot process and discrete models whose limit gives
rise to the process. Möhle and Sagitov (2001) also consider limits from a discrete population
with an exchangeable reproduction structure.

The�-coalescent is a random tree back in time which has multiple merger rates for a specific
2 ≤ k ≤ n edges merging from n edges in the tree of

λnk =
∫ 1

0
xk(1 − x)n−k �(dx)

x2 , k ≥ 2. (3)

After coalescence there are n− k+ 1 edges in the tree. The process is often regarded as having
a state space on the set of partitions �∞ of the positive integers. The leaves of an infinite leaf
�-coalescent tree at time t = 0 are labelled with singleton sets {1}, {2}, . . . and edges at time
t are labelled by sets in �∞(t). The number of blocks at time t is the number of sets in the
partition �∞(t), denoted by |�∞(t)|, which is the same as the number of edges in the tree
at time t . If there are n edges at time t , and k merge at t+0, then a new partition is formed
by taking the union of the k partition blocks in the merger for the parent block at t+0. This
occurs at rate λnk . The �-coalescent is said to come down from infinity if, for all t > 0,
P(|�∞(t)| < ∞) = 1, which is equivalent to an infinite-leaf�-coalescent tree at t = 0 having
a finite number of edges at any time t > 0 back with probability 1.

The�-coalescent process was introduced in Donnelly and Kurtz (1999), Pitman (1999), and
Sagitov (1999), and has been extensively studied (see Pitman (2006) and Berestycki (2009)).
The coalescent process is a moment dual to the �-Fleming–Viot process. See, for example,
Etheridge (2011). There is a distinction between an untyped coalescent process and a typed
process; see Etheridge et al. (2010).

There is a connection between continuous-state branching processes and the �-coalescent.
For example, see Bertoin and Le Gall (2003), (2006), Birkner et al. (2005), and Berestycki
et al. (2014a), (2014b). The connection is through the Laplace exponent

ψ(q) =
∫ 1

0
(e−qy − 1 + qy)y−2�(dy).

Bertoin and Le Gall (2006) showed that the �-coalescent comes down from infinity under
the same condition that the continuous-state branching process becomes extinct in finite time,

https://doi.org/10.1239/aap/1418396241 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1418396241


The �-Fleming–Viot process 1011

that is, when ∫ ∞

1

dq

ψ(q)
< ∞. (4)

Schweinsberg (2000) proved earlier that coming down from infinity was equivalent to

∞∑
n=2

[ n∑
k=2

(k − 1)

(
n

k

)
λnk

]−1

< ∞.

In this paper we express the �-Fleming–Viot generator acting on functions as a Wright–
Fisher diffusion generator where the argument of the function is replaced by a random linear
transformation. For example, if d = 2, the generator acting on functions of x1 = x in C2([0, 1])
is specified by

Lg(x) =
∫ 1

0
[x(g(x(1 − y)+ y)− g(x))+ (1 − x)(g(x(1 − y))− g(x))]F(dy)

y2 , (5)

where � = F , a probability measure. A Wright–Fisher generator equation, identical to (5), is

Lg(x) = 1
2x(1 − x)E[g′′(x(1 −W)+ VW)], (6)

where W = UY , Y has distribution F , U has a density 2u, u ∈ (0, 1), V is uniform on (0, 1),
and U,V , and Y are independent. If W = 0, the usual Wright–Fisher generator is obtained.
Equation (6) is very suggestive of a strong representation between the �-Fleming–Viot and
Wright–Fisher processes.

The d-dimensional generator has polynomial eigenvectors and eigenvalues which are ana-
logues of those in the Wright–Fisher generator. The eigenvalues are

1
2n(n− 1)E[(1 −W)n−2], n = 2, 3, . . . ,

which are equal to the�-coalescent total merger rates from n blocks. If d = 2, the polynomial
eigenvectors are analogues of the Jacobi polynomials.

The two-dimensional process is considered in detail in this paper. An integral equation is
found for the stationary distribution when there is mutation. This leads to an interesting equation
for the frequency spectrum in the infinitely-many-alleles �-Fleming–Viot model when the �-
coalescent comes down from infinity. If frequencies of the alleles are denoted by x(1) ≥ x(2) ≥
· · · and E denotes the expectation in the stationary distribution, then the (one-dimensional)
frequency spectrum β(x) is defined by

E

[ ∞∑
k=1

f (x(k))

]
=

∫ 1

0
f (x)β(x) dx, (7)

where f ∈ C([0, 1]) and f (x)/x is bounded as x → 0. The one-dimensional frequency
spectrum is the same as the first factorial moment measure for the allele frequencies {x(i)}
regarded as a point process. Equation (7) follows from general point processes theory (see
Daley and Vere-Jones (2003)). From definition (7), it follows that zβ(z), 0 < z < 1, is a
probability density. Let Z be a random variable with this density, let Z∗ be a random variable
size biased with respect to Z, let Z∗ be a random variable size biased with respect to 1 − Z,
and let V be a uniform random variable on [0, 1]. Then

VZ∗
d= (1 −W)Z∗ + VW, (8)
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where the random variables are independent of each other. The left-hand side is the limit
distribution of excess life in a renewal process with increments distributed as Z (see Cox
(1970)), so the equation suggests a renewal process. We do not have a probabilistic solution of
(8) which would possibly lead to knowing β(z).

In a two-dimensional process with no mutation and genic selection a proof is given that
there is a critical selection value such that if the selection coefficient is greater than or equal to
the critical value then fixation, when the boundary 1 is hit, has probability 1 beginning from
any nonzero frequency. This is an analytic proof different from the proofs of Der et al. (2011)
and Foucart (2013) which uses our particular representation of the generator. A computational
solution for the probability of fixation, when fixation is not certain, is found which is analogous
to that in the Wright–Fisher model. Bah and Pardoux (2013) constructed a lookdown process
(see Donnelly and Kurtz (1996)) in this model.

The moment dual process in the Fleming–Viot process is the usual �-coalescent back in
time. In a model with two types, generator (5), and X(t) the frequency of the first type at time
t we have the dual equation

EX(0)=x[X(t)n] = EL(0)=n[xL(t)].
In this equation {L(t)}t≥0 is a�-coalescent process back in time with transition rates λnk . The
expectation on the left is with respect to X(t), and on the right with respect to L(t).

In the Wright–Fisher representation using a different set of polynomials gn(x)which mimic
xn in the usual Wright–Fisher diffusion as test functions produces a dual death process which
has a similarity to the Kingman coalescent and decreases by units of one. The d-dimensional
version gn(x) analogous to xn has an expectation in the stationary distribution of a model with
parent-independent mutation that is similar to the Dirichlet moment

E[gn(x)] =
∏d
i=1[

∏ni
j=1((j − 1)E[(1 −W)j−2] + θi)]∏n

j=1((j − 1)E[(1 −W)j−2] + θ)
.

Bold face notation will be used for d-dimension vectors in the paper, and the shorthand notation
xn ≡ ∏d

i=1 x
ni
i . There is even an analogue of Ewens’sampling formula in the Poisson Dirichlet

process of

n! θk
n1 · · · nk ·

∏k
i=1[

∏ni
j=2 E[(1 −W)j−2]]∏n

j=1((j − 1)E[(1 −W)j−2] + θ)
.

There are many intriguing analogues between the�-Fleming–Viot process and the Wright–
Fisher diffusion process which come from the generator representation.

Exact calculations are always likely to be difficult because of the jump process nature of
the �-Fleming–Viot process. A first step in this direction, for certain classes of Fleming–Viot
processes where stationary distributions are characterized, can be found in Handa (2014).

2. A Wright–Fisher generator connection

The�-Fleming–Viot generator has an interesting connection with a Wright–Fisher diffusion
generator that we now develop.

Theorem 1. Let L be the �-Fleming–Viot generator (1), let V be a uniform random variable
on [0, 1], let U be a random variable on [0, 1] with density 2u, 0 < u < 1, and let W = YU ,
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where Y has distribution F and V,U , and Y are independent. Denote the first and second
derivatives of a function g(x) in C2(�) by

gi(x) = ∂

∂xi
g(x), gij (x) = ∂2

∂xi∂xj
g(x).

Then

Lg(x) = 1

2

d∑
i,j=1

xi(δij − xj )E[gij (x(1 −W)+WV ei )], (9)

where the expectation E is taken over V and W .

Proof. Taking the expectation with respect to V , the right-hand side of (9) is equal to

1

2

d∑
i,j=1

xi(δij − xj )E

[
gj (x(1 −W)+Wei )− gj (x(1 −W))

W

]

=
∫ 1

0

[ d∑
i,j=1

xi(δij − xj )

∫ 1

0
gj (x(1 − uy)+ uyei ) du

]
F(dy)

y

−
∫ 1

0

[ d∑
i,j=1

xi(δij − xj )

∫ 1

0
gj (x(1 − uy)) du

]
F(dy)

y
. (10)

To simplify (10), note that

∂

∂u
g(x(1 − uy)) = −y

d∑
j=1

xjgj (x(1 − uy)),

∂

∂u
g(x(1 − uy)+ uyei ) = y

d∑
j=1

(δij − xj )gj (x(1 − uy)+ uyei ).

Therefore, (10) is equal to

∫ 1

0

[ d∑
i=1

xi

∫ 1

0

∂

∂u
g(x(1 − uy)+ uyei ) du

]
F(dy)

y2 (11)

−
∫ 1

0

[∫ 1

0

(
1 −

d∑
i=1

xi

)
∂

∂u
g(x(1 − uy)) du

]
F(dy)

y2 (12)

=
∫ 1

0

[ d∑
i=1

xi(g(x(1 − y)+ yei )− g(x))

]
F(dy)

y2 . (13)

In the calculation the term (11) is equal to (13), and the term (12) vanishes.

The Wright–Fisher generator (2) is included in (9) when W ≡ 0.

Corollary 1. {X1(t)}t≥0 is a Markov process with generator acting on functions in C2([0, 1])
specified by

Lg(x) = 1
2x(1 − x)E[g′′(x(1 −W)+WV )]. (14)
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Proof. Let g(x) in (9) be a function of the first coordinate only. Then (14) follows easily,
with x ≡ x1.

The random variableW possibly has an atom at 0, P(W = 0) = P(Y = 0), and is continuous
for W > 0 with a density

fW(w) = 2wF+(w), (15)

where

F+(w) =
∫ 1

w

y−2F(dy).

There is a correspondence between F and the distribution of W . Given a random variable
W with a possible atom at 0 and a density fW(w), 0 < w ≤ 1, there exists independent
random variables U and Y , where U has density 2u, 0 < u < 1, such that W = YU if and
only if fW(1) = 0 and fW(w)/w is decreasing in (0, 1]. Possible densities for the continuous
component ofW are proportional to the Beta(a, b) densities with a ≤ 2 and b ≥ 1. In particular,
if Y has a Beta(2 − α, α) distribution then W has a Beta(2 − α, 1 + α) distribution.

The next theorem gives a connection between W , the �-coalescent rates, and the Laplace
exponent.

Theorem 2. The total coalescent rate away from n can be expressed as

n∑
k=2

(
n

k

)
λnk =

∫ 1

0
[1 − (1 − y)n − ny(1 − y)n−1]F(dy)

y2

= 1
2n(n− 1)E[(1 −W)n−2] for n ≥ 2.

The individual rates (3) can be expressed for 2 ≤ k ≤ n as(
n

k

)
λnk =

(
n

k

) ∫ 1

0
yk(1 − y)n−k F (dy)

y2 = n

2
E[Pk−1(n,W)− Pk(n,W)], (16)

where

Pk(n,w) =
(
n− 1

k

)
(1 − w)n−k−1wk−1.

The Laplace exponent

ψ(q) = q

2
E

[
1 − e−qW

W

]
. (17)

Proof. We have

1

2
n(n− 1)E[(1 −W)n−2] = 1

2
n(n− 1)

∫ 1

0

∫ 1

0
(1 − uy)n−22u duF(dy)

=
∫ 1

0

∫ 1

0
u
∂2

∂u2 (1 − uy)n du
F(dy)

y2

=
∫ 1

0
[1 − (1 − y)n − ny(1 − y)n−1]F(dy)

y2

=
n∑
k=2

(
n

k

)
λnk.
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For the individual rates, showing (16) is an exercise in integration by parts which follows from

n

2
E[Pk(n,W)] = n

2

(
n− 1

k

) ∫ 1

0

∫ 1

0
(1 − uy)n−k−1(uy)k−12u duF(dy)

= −n
(
n− 1

k

)
(n− k)−1

∫ 1

0
yk−2

∫ 1

0
uk
∂(1 − uy)n−k

∂u
duF(dy)

= −
(
n

k

)
λnk + n

2
E[Pk−1(n,W)].

Note that Pn(n,w) ≡ 0, so λnn = (n/2)E[Pn−1(n,W)]. To show (17),

ψ(q) =
∫ 1

0
(e−qy − 1 + qy)

F (dy)

y2

=
∫ 1

0

∞∑
k=2

(−1)k
qkyk−2

k! F(dy)

= 1

2

∫ 1

0

∞∑
k=2

(−1)k
qk

(k − 1)!
∫ 1

0
(uy)k−22u duF(dy)

= q

2
E

[
1 − e−qW

W

]
.

The random variables Y,W , and V from Theorem 1 are used frequently in the paper, so their
definition will be assumed.

2.1. Mutation and selection

Mutation can be added to the model by assuming that mutations occur at rate θ/2 and changes
of type i to type j are made according to a transition matrix P . This is equivalent to mutations
occurring at rate θ/2 on the dual �-coalescent tree. The generator (1) then has an additional
term added of

θ

2

d∑
i=1

( d∑
j=1

pjixj − xi

)
∂

∂xi
. (18)

If mutation is parent independent, θpji = θi , not depending on j , and the additional term
simplifies to

1

2

d∑
i=1

(θi − θxi)
∂

∂xi
.

If d = 2 and x1 = x, x2 = 1 − x, then the generator acting on functions g(x) in C2([0, 1]) is
specified by

Lg(x) =
∫ 1

0
[x(g(x(1 − y)+ y)− g(x))+ (1 − x)(g(x(1 − y))− g(x))]F(dy)

y2

+ 1

2
(θ1 − θx)g′(x). (19)
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Handa (2014) finds the stationary distribution in a process with generator specified by

LHg(x) =
∫ 1

0
[x(g(x(1 − y)+ y)− g(x))+ (1 − x)(g(x(1 − y))− g(x))]B1−α,1+α(dy)

y2

+
∫ 1

0
[θ1g(x(1 − y)+ y)+ θ2g(x(1 − y))− θg(x)]B1−α,α(dy)

(α + 1)y
, (20)

where 0 < α < 1 andBa,b(dy) denotes a Beta(a, b) density. In his model there is simultaneous
mutation, where, at rate θ1B1−α,α(dy)/((α+ 1)y), a proportion y of the population is replaced
by type-1 individuals, and similarly, at rate θ2B1−α,α(dy)/((α + 1)y), a proportion y of the
population is replaced by type-2 individuals. This is an unusual mutation mechanism and the
generators (19) and (20) are different even when F = B1−α,1+α .

Etheridge et al. (2010) studied a �-Fleming–Viot process with viability selection whose
generator acting on functions in C2(�) takes the form

Lg(x) =
∫ 1

0

d∑
i=1

xi(g(x(1 − y)+ yei )− g(x))
F (dy)

y2

−
∫ 1

0

d∑
i=1

xi(g(x(1 − y)+ yei )− g(x))
Ki(dy)

y

+ θ

2

d∑
i=1

( d∑
j=1

pjixj − xi

)
∂

∂xi
g(x). (21)

To describe the measures in (21), let Gi, i ∈ [d], be the �-measures for the individual types,
which are positive measures on [0, 1], and let F be a reference measure such that

Ki(dy) = F(dy)−Gi(dy)

y

are bounded signed measures on [0, 1]. A selection model analogous to the Wright–Fisher
model with genic selection (see, for example, Ewens (2004)) is obtained by taking

Ki(·) = σiδε(·),

and letting ε → 0+. Selection is very weak in this limit in the sense that a limit is taken where
all the measures approach F , whereas there is a much larger effect when the measures Gi are
different. The corresponding sequence of generators converges to

Lσg(x) =
∫ 1

0

d∑
i=1

xi(g(x(1 − y)+ yei )− g(x))
F (dy)

y2 −
d∑
i=1

xi

(
σi −

d∑
k=1

σkxk

)
∂

∂xi
g(x)

+ θ

2

d∑
i=1

( d∑
j=1

pjixj − xi

)
∂

∂xi
g(x). (22)

Etheridge et al. (2010) found the dual lambda coalescent corresponding to (21) and (22).
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2.1.1. Fixation probability with selection when there are d = 2 types. If there are d = 2 types,
no mutation,X = X1, σ1 ≤ 0, and σ2 = 0, then, with the notation β = −σ1 ≥ 0, the generator
equation (22) reduces to

Lβg(x) = 1
2x(1 − x)E[g′′(x(1 −W)+WV )] + βx(1 − x)g′(x).

Let P(x) be the probability that the first type fixes, starting from an initial frequency of x. Then
P(0) = 0, P(1) = 1, and P(x) is the solution of

LβP (x) = 0.

That is,

E[P ′′(x(1 −W)+WV )] + 2βP ′(x) = 0, (23)

and taking the expectation with respect to V ,

E

[
P ′(x(1 −W)+W)− P ′(x(1 −W))

W

]
+ 2βP ′(x) = 0. (24)

Integrating and taking care of a possible discontinuity P(0+) at x = 0,

E

[
P(x(1 −W)+W)− P(x(1 −W))− P(W)+ P(0+)

W(1 −W)

]
+ 2β[P(x)− P(0+)]

= 0. (25)

Alison Etheridge and Jay Taylor have obtained equivalent formulae to (24) and (25) for the
beta coalescent using integration by parts (private communication (2008)). Der et al. (2011),
(2012) studied fixation probabilities in the �-coalescent. An interesting feature is that, for
some �-measures and β, it can happen that P(x) = 1 or P(x) = 0 for all x ∈ (0, 1). They
showed that fixation is certain (that is, P(x) = 1, x ∈ (0, 1]) if and only if

β ≥ β∗ = −
∫ 1

0

log(1 − y)

y2 F(dy) (26)

under the assumption that β∗ < ∞. If β∗ = ∞ then fixation is not certain. Their proof is for
the Eldon–Wakeley coalescent where F has a single point of increase in (0, 1]. The general
formula (26) is mentioned in the paper and has an analogous proof to the Eldon–Wakeley case
(private communication (2013)). They used a clever comparison of P(x) with subharmonic
and superharmonic functions. If u(x) is such that u(0) = 0 and u(1) = 1, then, if Lβu(x) ≤ 0
for all x ∈ (0, 1), they showed that P(x) ≤ u(x) for all x ∈ (0, 1). Similarly, if Lβu(x) ≥ 0
for all x ∈ (0, 1), P(x) ≥ u(x) for all x ∈ (0, 1). Comparison functions used are u(x) = xp,
and u(x) = Cxp + (1 − C)x, 0 < p < 1 and C > 1. Foucart (2013) gave an elegant
martingale proof based on a dual process showing that (26) is necessary and sufficient for
P(x) = 1, x ∈ (0, 1], but did not include the critical case when β = β∗ in his proof. Another
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way to express (26) is

2β ≥ 2β∗ = E

[
1

W(1 −W)

]
,

1

2
E[ 1

W(1 −W)
] = 1

2

∫ 1

0

∫ 1

0

1

uy(1 − uy)
2u duF(dy)

=
∫ 1

0

∫ 1

0

du

1 − uy

F(dy)

y

=
∫ 1

0

− log(1 − y)

y2 F(dy).

For interest, we show how our representation can be used to give a proof when β∗ < ∞.

Theorem 3. (Der et al. (2011), (2012) and Foucart (2013).) Let β∗ < ∞. Then P(x) = 1 for
all x ∈ (0, 1] if and only β ≥ β∗.

Proof. If. Let β = β∗. For x ∈ (0, 1], from (25),

0 = E

[
P(x(1 −W)+W)− P(x(1 −W))− P(W)+ P(x)

W(1 −W)

]
, (27)

where P(x) is a nondecreasing function of x, and since the right-hand side of (27) must be 0,
with probability 1,

P(x(1 −W)+W)− P(W) = 0 and P(x)− P(x(1 −W)) = 0.

This can only be true if P(x) = 1 for all x ∈ (0, 1], since P(1) = 1. Now take β ≥ β∗. For
fixed x, Pβ(x) ≡ P(x) is a nondecreasing function of β because a higher selective parameter
produces a higher probability of fixation. Thus, Pβ(x) ≥ Pβ∗(x) = 1 for all x ∈ (0, 1] and it
must be that Pβ(x) = 1.

Only if. Let β < β∗ < ∞, and suppose that P(x) = 1 for x ∈ (0, 1]. We show that this
assumption is contradictory. Consider the test function

v(x) = log(x)+K(1 − x),

where K > 0 is a constant. A generator equation is

Ex[v(X(t))] − v(x) =
∫ t

0
Ex[Lβv(X(u))] du. (28)

Equation (28) evaluates to

Ex[v(X(t))] − v(x) = 1

2

∫ t

0
Ex[(1 −X(u))A(u)] du, (29)

where

A(u) = E

[
X(u)

(X(u)(1 −W)+W)−1 − (X(u)(1 −W))−1

W

+X(u)2βX(u)−1 − 2KβX(u)

]

= E

[
− 1

(X(u)(1 −W)+W)(1 −W)
− 2KβX(u)

]
+ 2β.
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Choose K large enough so that the minimum value over x ∈ [0, 1] of

E

[
1

(x(1 −W)+W)(1 −W)
+ 2Kβx

]

is attained when x = 0. ThenA(u) ≤ −2β∗ +2β < 0. Let t → ∞ in (29). With probability 1,
X(t) → 1 so, Ex[log(X(t))+K(1 −X(t))] → 0 and the limit equation is

− log x −K(1 − x) = 1

2

∫ ∞

0
Ex[(1 −X(u))A(u)] du

≤ (β − β∗)
∫ ∞

0
Ex[(1 −X(u))] du

< 0. (30)

Choose x small enough so that the left-hand side of (30) is positive. Then the signs of both
sides of (30) are contradictory. Therefore, the assumption that P(x) = 1 for all x ∈ (0, 1]
is contradictory. Let x0 be the maximal point where P(x) < 1 for 0 < x < 1. It cannot
happen that P(x) = 1 for x0 ≤ x < 1. Suppose that this does occur. Let X(0) = x0, and
consider the local exit behaviour of X in (x0 − ε, x0 + ε) for small ε > 0. For small enough
ε, there is positive probability that there is a path where X first exits the interval at less than or
equal to x0 − ε. The strong Markov property of X then implies that P(x0 − ε) = 1, which is
contradictory. Therefore, P(x) < 1 for all x ∈ [0, 1).

In the Kingman coalescent (23) becomes

P ′′(x)+ 2βP ′(x) = 0,

with a solution

P(x) = 1 − e−2βx

1 − e−2β . (31)

We provide a computational solution for P(x) in the�-Fleming–Viot model that imitates (31)
when fixation or loss is not certain from x ∈ (0, 1). A sequence of polynomials {hn(x)}∞n=0
that is used in the proof is defined as the solutions of

E

[
hn(x(1 −W)+W)− hn(x(1 −W))

W

]
= nhn−1(x), (32)

where the leading coefficient in hn(x) is

1∏n−1
j=1 E[(1 −W)j ] . (33)

This choice makes the coefficients of xn−1 in (32) agree. The argument in the expectation
in (32) is interpreted as h′

n(x) at W = 0. There is a family of polynomial solutions to (32)
depending on an arbitrary recursive choice of constant coefficients. The constant coefficients
in the polynomials are chosen carefully to obtain a solution for the fixation probability. The
polynomials hn(x) imitate xn and are equal if W ≡ 0. Let h0(x) = 1 and

hn(x) =
n∑
r=0

anrx
r .
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Then, from (32) for j = n− 2, . . . , 0,

n−1∑
j=0

n∑
r=j+1

(
r

j

)
E[(1 −W)jWr−j−1]anrxj = n

n−1∑
j=0

an−1j x
j ;

so equating coefficients of xj on both sides,

n∑
r=j+1

(
r

j

)
E[(1 −W)jWr−j−1]anr = nan−1j . (34)

Given the coefficients {an−1j }n−1
j=0 of hn−1(x), the coefficients of hn(x) and {anj }nj=1 are

recursively determined by choosing ann from (33), then taking j = n − 1, . . . , 0 in (34).
There is an arbitrary choice of an0 that needs to be made at this stage to progress with the
recursion.

Theorem 4. Let 0 < β < β∗. The fixation probability

P(x) = (1 − e−2β)−1
∞∑
n=1

(−1)n−1 (2β)
n

n! Hn(x),

where {Hn(x)} are polynomials derived from

Hn(x) =
∫ x

0
nhn−1(ξ) dξ

with the constants {hn(0)} chosen so that∫ 1

0
nhn−1(ξ) dξ = 1. (35)

Proof. Try the series solution

P ′(x) = B(β)

∞∑
n=1

(−1)n−1(2β)ncnhn−1(x), (36)

where {hn(x)} satisfies (32), B(β) is a constant, and {cn} are constants not depending on β.
Then, substituting into (24),

∞∑
n=2

(−1)n−1(2β)ncn(n− 1)hn−2(x)+ 2β
∞∑
n=1

(−1)n−1(2β)ncnhn−1(x) = 0.

This identity is satisfied if c1 = −1, without loss of generality, and

cn = − 1

(n− 1)! , n = 2, 3, . . . .

Integrating (36),

P(x) = B(β)

∞∑
n=1

(−1)n−1 (2β)
n

n!
∫ x

0
nhn−1(ξ) dξ.

Choosing (35) to hold and knowing P(1) = 1 shows that

B(β) = (1 − e−2β)−1.
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Corollary 2. A computational solution for P(x) is found from evaluating the polynomials

Hn(x) =
n∑
r=1

bnrx
r ,

where H1(x) = x and the coefficients {bnr} are defined recursively from

n∑
r=j

(
r

j − 1

)
E[(1 −W)j−1Wr−j ](r + 1)bn+1r+1 = (n+ 1)jbnj (37)

with

bn+11 = 1 −
n+1∑
j=2

bn+1j

for n = 1, 2, . . . and j = n− 1, . . . , 1. Equation (37) is equivalent to

2
n+1∑
r=j+1

[ r∑
k=r−j+1

(
r

k

)
λrk

]
bn+1r = (n+ 1)jbnj . (38)

Proof. Relating the coefficients of Hn(x) to those of hn−1(x), we obtain

bnj = n

j
an−1j−1, j = 2, . . . , n, and bn1 = 1 −

n∑
j=2

bnj .

Substituting into (34) and shifting the index j → j + 1 completes the proof of (37). The
alternative form (38) is found by noting that

r + 1

2
E[Pr−j+1(r + 1,W)] = r + 1

2

(
r

j − 1

)
E[(1 −W)j−1Wr−j ]

=
r+1∑

k=r−j+2

(
r + 1

k

)
λr+1k

from (16), substituting, then shifting the index of summation r → r + 1.

2.2. Eigenstructure of the �-Fleming–Viot process

The generator of the �-Fleming–Viot process (9) with mutation term (18),

Lg(x) = 1

2

d∑
i,j=1

xi(δij − xj )E[gij (x(1 −W)+WV ei )]

+ θ

2

d∑
i=1

( d∑
j=1

pjixj − xi

)
gi(x), (39)

acting on functions in C2(�) maps d-dimensional polynomials into polynomials of the same
degree, so the right eigenvectors {Pn(x)} with eigenvalues −λn are polynomials of the same
degree that satisfy

LPn(x) = −λnPn(x). (40)
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The index n is d − 1 dimensional because of the constraint that
∑d

1 xj = 1. The eigenvalues
λn, given in (41) below, have a linear form in the d − 1 nonunit eigenvalues of I − P with
coefficients n1, . . . , nd−1, which define n.

Theorem 5. Let {λn} and {Pn(x)} be the eigenvalues and right eigenvectors of L, (39),
satisfying (40). Denote the d− 1 eigenvalues of P which have modulus less than 1 by {φk}d−1

k=1 ,
which correspond to eigenvectors that are rows of a d − 1 × d matrix R satisfying

d∑
i=1

rkipji = φkrkj , k = 1, . . . , d − 1.

Define a (d − 1)-dimensional vector ξ = Rx. Then the polynomials Pn(x) are polynomials in
ξ whose only leading term of degree n is ξn and

λn = 1

2
n(n− 1)E[(1 −W)n−2] + θ

2

d−1∑
k=1

(1 − φk)nk. (41)

Proof. The second-order derivative term in L acting on xm is

−1

2

d∑
i,j=1

xixjE[(1 −W)m−2]mi(mj − δij )x
m−ei−ej + lower-order terms

= −1

2
m(m− 1)E[(1 −W)m−2]xm + lower-order terms.

Therefore, the same term acting on ξn with m = n is

− 1
2n(n− 1)E[(1 −W)n−2]ξn + lower-order terms in ξ . (42)

The linear differential term acting on ξn is

θ

2

d∑
i=1

( d∑
j=1

pjixj − xi

)
∂

∂xi
ξn = θ

2

d−1∑
k=1

d∑
i=1

( d∑
j=1

pjixj − xi

)
nkrkiξ

n−ek

= −θ
2

d−1∑
k=1

(1 − φk)nkξ
n. (43)

Equations (42) and (43) are enough to complete the proof of (41). Suppose that we have
constructed {Pm(x)}m<n. Then take

Pn(x) = ξn −
∑

{m : m<n}
anmPn(x),

where the coefficients are to be determined. We have

LPn(x) = −λnPn(x)+
∑

{m : m<n}
bnmPm(x)−

∑
{m : m<n}

anmλmPm(x)

for determined constants bnm. Choosing anmλm = bnm completes the construction.
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Corollary 3. The generator (14) with no mutation term has eigenvalues

λn = λn = 1
2n(n− 1)E[(1 −W)n−2]

repeated
(
n+d−2
n

)
times and eigenfunctions {Pn(x)}n≥2.

Corollary 4. In the parent-independent model of mutation the generator has eigenvalues

λn = λn = 1
2n{(n− 1)E[(1 −W)n−2] + θ} (44)

repeated
(
n+d−2
n

)
times and eigenfunctions {Pn(x)}n≥1.

Proof. The transition matrix P has rows (θ1/θ, . . . , θd/θ). The right eigenvectors of P
comprise one vector of units with eigenvalue 1, and d−1 other vectors such that

∑d
i=1 rkiθi/θ =

0. Thus, φk = 0, k = 1, . . . , d − 1, and λn is equal to (44).

In two dimensions the generator is specified by

Lg(x) = 1
2x(1 − x)E[g′′(x(1 −W)+WV )] + 1

2 (θ1 − θx)g′(x). (45)

The eigenvalues are
λn = 1

2n{(n− 1)E[(1 −W)n−2] + θ}
and the eigenvectors are polynomials satisfying

LPn(x) = −λnPn(x), n ≥ 1.

The eigenvalues and polynomials do not depend on W and V for n = 1, 2. Writing the
eigenvalue equation as

x(1 − x)E[P ′′
n (x(1 −W)+ VW)] + (θ1 − θx)P ′

n(x)

+ n{(n− 1)E[(1 −W)n−2] + θ}Pn(x)
= 0,

there is a similarity to the hypergeometric equation for the Jacobi polynomials which are the
eigenvectors when W ≡ 0 (see Kimura (1964)). Writing the nth Jacobi polynomial with
index parameters (θ1, θ2), orthogonal on the beta distribution with the same parameters, as
P̃
(θ1,θ2)
n (x) ≡ z for ease of notation, the hypergeometric equation is

x(1 − x)z′′ + (θ1 − θx)z′ + n((n− 1)+ θ)z = 0;

see, for example, Ismail (2005). Usually, the Jacobi polynomials P (α1,α2)
n (x) are defined as

orthogonal on the weight function

(1 − x)α1(1 + x)α2 , −1 < x < 1,

so the translation to orthogonal polynomials on the Beta(θ1, θ2) distribution is given by

P̃ (θ1,θ2)
n (x) = P (θ2−1,θ1−1)

n (2x − 1).
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2.3. Stationary distributions

If the mutation matrix P is recurrent then there is a stationary distribution for the process
with generator (39). The first- and second-order moments do not depend on W because they
can be found from the generator equations

E[LXi] = 0, E[LXiXj ] = 0,

which do not depend on W as the second derivatives of Xi and XiXj are constant.
In particular, for the parent-independent model of mutation, comparing moments with those

of the Dirichlet(θ) distribution, which is the stationary distribution for the Wright–Fisher
diffusion, we have, for i, j = 0, 1, . . . , d and any F ,

E[Xi] = θi

θ
and E[XiXj ] = θi(θj + δij )

θ(θ + 1)
,

with expectation in the stationary distribution (see, for example, Ewens (1972)). Now consider
the simplest case, the stationary distribution in two dimensions when the generator is (45). An
interesting recurrence for the moments of X, the frequency of the first allele, is found in terms
of size-biased versions of X.

Theorem 6. Let Z be a random variable with the size-biased distribution of X, let Z∗ be
a size-biased Z random variable; let Z∗ be a size-biased random variable with respect to
1 − Z; let W = UY , where Y has distribution F and U has a density 2u, u ∈ (0, 1); let V
be a uniform random variable on (0, 1); and let B be a Bernoulli random variable such that
P(B = 1) = θ2/(θ(θ1 + 1)) with U,V, Y, Z∗, Z∗, and B independent. Then

VZ∗
D= (1 − B)VZ + B(Z∗(1 −W)+WV ). (46)

Proof. Let g(x) = xn+2. Then, since E[Lg(X)] = 0 with expectation in the stationary
distribution,

(n+ 2)(n+ 1)

2
E[(X(1 −W)+WV )nX(1 −X)] + n+ 2

2
E[XnX(θ1 − θX)] = 0

or
θ

n+ 1
E[XnX2] = θ1

n+ 1
E[XnX] + E[(X(1 −W)+WV )nX(1 −X)]. (47)

Let Z be a random variable with the size-biased distribution of X, let Z∗ be a size-biased Z
random variable, and let Z∗ be a size-biased random variable with respect to 1 − Z. The
distribution of Z is reweighted by Z and divided by E[Z] to obtain the distribution of Z∗, and
similarly the distribution is weighted by 1−Z and divided by E[1−Z] to obtain the distribution
of Z∗. Then, knowing that

E[X] = θ1

θ
, E[X2] = θ1(θ1 + 1)

θ(θ + 1)
, E[X(1 −X)] = θ1(θ − θ1)

θ(θ + 1)
,

(47) can be written as

E[(V Z∗)n] = θ1(θ + 1)

θ(θ1 + 1)
E[(V Z)n] + θ − θ1

θ(θ1 + 1)
E[(Z∗(1 −W)+WV )n]. (48)

Recall that

P(B = 1) = θ2

θ(θ1 + 1)
.

Then (48) implies the distributional identity (46).
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This equation may be related to a renewal process, because the distribution of excess life γt
in a renewal process with increments distributed as Z satisfies

lim
t→∞ P(γt > η) = P(V Z∗ > η) =

∫ 1

η

P(Z > z)

E[Z] dz,

where E[Z] = θ1/θ (see Cox (1970)).
Identity (46) implies an integral equation for the stationary distribution in the two-dimen-

sional model.

Theorem 7. Let fX(u), 0 < u < 1, be the stationary density in the diffusion process with
generator (14), and let fW(w) be the density of W . Suppose that F has no atom at 0. Then
fX(u) satisfies the integral equations

(θ1 − θu)fX(u) = −
∫ u

0

1

u− z
fW

(
1 − 1 − u

1 − z

)
z(1 − z)fX(z) dz

+
∫ 1

u

1

z− u
fW

(
1 − u

z

)
z(1 − z)fX(z) dz (49)

and

(θ2 − θ(1 − u))fX(u) =
∫ u

0

1

u− z
fW

(
1 − 1 − u

1 − z

)
z(1 − z)fX(z) dz

−
∫ 1

u

1

z− u
fW

(
1 − u

z

)
z(1 − z)fX(z) dz. (50)

These equations are equivalent to

(θ1 − θu)fX(u) = −
∫ u

0
2F+

(
1 − 1 − u

1 − z

)
zfX(z) dz

+
∫ 1

u

2F+
(

1 − u

z

)
(1 − z)fX(z) dz (51)

and

(θ2 − θ(1 − u))fX(u) =
∫ u

0
2F+

(
1 − 1 − u

1 − z

)
zfX(z) dz

−
∫ 1

u

2F+
(

1 − u

z

)
(1 − z)fX(z) dz. (52)

Proof. Let the random line L = Z∗(1 −W)+WV as a function ofW . The line segment L
varies from min(Z∗, V ) to max(Z∗, V ) as W varies. The density of the line L conditional on
(Z∗, V ) = (z, v) is, for min(z, v) < u < max(z, v),

fL | (z,v)(u) = 1

|z− v|fW
(
z− u

z− v

)

and there is a possible atom

P(L = z | (z, v)) = P(W = 0).
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Splitting the region into v < z and v > z, the unconditional density of L is

fL(u) = P(W = 0)fZ∗(u)+
∫

0<v<u<z<1

1

z− v
fW

(
z− u

z− v

)
fZ∗(z) dz dv

+
∫

0<z<u<v<1

1

v − z
fW

(
u− z

v − z

)
fZ∗(z) dz dv.

Changing variables in the integral we obtain

fL(u) = P(W = 0)fZ∗(u)+
∫ u

0

∫ 1

1−(1−u)/(1−z)
1

ξ
fW (ξ) dξfZ∗(z) dz

+
∫ 1

u

∫ 1

1−u/z
1

ξ
fW (ξ) dξfZ∗(z) dz. (53)

The density identity equivalent to identity (46) is therefore

fVZ∗(u) = P(B = 0)fVZ(u)+ P(B = 1)fL(u). (54)

Note that if ζ is a random variable on (0, 1) with density fζ (y) then the density of V ζ , where
V is independent of ζ and uniform on (0, 1), is

fV ζ (u) =
∫ 1

u

y−1fζ (y) dy.

Therefore, (54) is equivalent to∫ 1
u
yfX(y) dy

E[X2] = P(B = 0)

∫ 1
u
fX(y) dy

E[X] + P(B = 1)fL(u). (55)

Differentiating (55), the density fX(u) satisfies the integral equation

ufX(u) = θ1

θ
fX(u)− 1

θ
f ′
L(u), (56)

where
f
L(u) = E[X(1 −X)]fL(u).

The density f
L(u) is similar to (53) with fZ∗(z) replaced by z(1 − z)fX(z). When W has no
atom at 0, a straightforward calculation gives

f ′
L(u) = −
∫ u

0

1

u− z
fW

(
1 − 1 − u

1 − z

)
z(1 − z)fX(z) dz

+
∫ 1

u

1

z− u
fW

(
1 − u

z

)
z(1 − z)fX(z) dz. (57)

Recalling (15), another form is

f ′
L(u) = −
∫ u

0
2F+

(
1 − 1 − u

1 − z

)
zfX(z) dz

+
∫ 1

u

2F+
(

1 − u

z

)
(1 − z)fX(z) dz. (58)
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Considering 1 −X, a second integral equation is

(1 − u)fX(u) = θ2

θ
fX(u)+ 1

θ
f ′
L(u). (59)

Substituting the expression for f ′
L(u) given in (57) into (56) and (59) gives (49) and (50). The
alternative form (58) gives (51) and (52).

Another approach that imitates the usual way of finding the stationary distribution in a
diffusion process is to consider the equation∫ 1

0
[Lg(x)]fX(x) dx = 0, (60)

where g(x) is a test function in C2([0, 1]). Define σ 2(x) = x(1 − x) and μ(x) = θ1 − θx −
σx(1 − x), and let

k(x) = E[(1 −W)−2g(x(1 −W)+ VW)].
Equation (60) is equivalent to∫ 1

0

[
1

2
σ 2(x)

d2

dx2 k(x)+ μ(x)
d

dx
g(x)

]
fX(x) dx = 0. (61)

Integrating by parts in (61) and taking care with boundary conditions gives

0 =
∫ 1

0

[
k(x)

1

2

d2

dx2 [σ 2(x)fX(x)] − g(x)
d

dx
[μ(x)fX(x)]

]
dx

+
[[

d

dx
k(x)

][
1

2
σ 2(x)fX(x)

]
− k(x)

d

dx

[
1

2
σ 2(x)fX(x)

]
+ g(x)μ(x)fX(x)

]1

0
.

If W ≡ 0 then k(x) = g(x) and we can conclude that fX(x) satisfies the forward equation

1

2

d2

dx2 [σ 2(x)fX(x)] − d

dx
[μ(x)fX(x)] = 0.

An equivalent approach seems difficult when k(x) �= g(x).

2.4. Green’s function

Green’s function G(x, ξ), whether or not there is mutation and selection, is obtained via a
standard approach of solving, for γ (x), the differential equation

Lγ (x) = −g(x), γ (0) = γ (1) = 0. (62)

Then

γ (x) =
∫ 1

0
G(x, ξ)g(ξ) dξ.

Consider the model with no selection. Equation (62) is nonlinear and equivalent to

1
2x(1 − x)E[γ ′′(x(1 −W)+ VW)] + 1

2 (θ1 − θx)γ ′(x) = −g(x)
or

1
2x(1 − x)k′′(x)+ 1

2 (θ1 − θx)γ ′(x) = −g(x), (63)
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where
k(x) = E[(1 −W)−2γ (x(1 −W)+ VW)].

In the simplest case when θ = 0, (63) becomes

k′′(x) = −2
g(x)

x(1 − x)
.

Taking a standard Green’s function approach, with care that k(0) and k(1) are not 0,

k(x) = k(0)(1 − x)+ k(1)x + (1 − x)

∫ x

0

2g(η)

1 − η
dη + x

∫ 1

x

2g(η)

η
dη.

If g(x) = 1, x ∈ (0, 1), then γ (x) is the mean time to absorption at 0 or 1 when X(0) = x.
There is a nonlinear equation to solve for γ (x) from k(x), knowing that

k(x) = k(0)(1 − x)+ k(1)x − 2(1 − x) log(1 − x)− 2x log x.

It is possible that γ (x) = ∞ if the �-coalescent does not come down from infinity.

2.5. The frequency spectrum in the infinitely-many-alleles model

We consider the infinitely-many-alleles model as a limit from a d-allele model with θi =
θ/d, i = 1, . . . , d. The limit is thought of as a limit from d points Xd1 , . . . , X

d
d to points of a

point process {Xi}∞i=1. The one-dimensional frequency spectrum μ is a nonnegative measure
such that, for functions f in C([0, 1]) such that f (x)/x is bounded as x → 0, with expectation
in the stationary distribution,

E

[ ∞∑
i=1

f (Xi)

]
=

∫ 1

0
f (x)μ(dx). (64)

There is an assumption that the point process does not have multiple points at any single position
for (64) to hold. Symmetry in the d-allele model shows that∫ 1

0
f (x)μ(dx) = lim

d→∞ dE[f (X1)].

If the �-coalescent does not come down from infinity then there may be an accumulation
of points at 0 as d → ∞ and

∫ 1
0 xμ(x) dx < 1. We do not consider this case in the next

theorem. The classical Wright–Fisher diffusion gives rise to the Poisson–Dirichlet process
with a frequency spectrum of

μ(dx) = θx−1(1 − x)θ−1 dx, 0 < x < 1.

Theorem 8. Let μ(dz) be the frequency spectrum measure in an infinitely-many-alleles �-
Fleming–Viot process which comes down from infinity, and let Z be a random variable with
probability measure zμ(dz). Let Z∗ be a random variable with a size-biased distribution of Z,
and let Z∗ be a random variable with a size-biased distribution of Z with respect to 1−Z. The
random variable Z∗ has a measure (θ + 1)z2μ(dz) and Z∗ has a measure θ−1(θ + 1)z(1 −
z)μ(dz), 0 < z < 1. Then

VZ∗
D= Z∗(1 −W)+WV, (65)
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where V,Z∗, Z∗, and W are independent. Let μ(dz) = β(z) dz. Suppose that Y has no atom
at 0. Then an integral equation for β(x) is

θuβ(u) =
∫ u

0

1

u− z
fW

(
1 − 1 − u

1 − z

)
z(1 − z)β(z) dz

−
∫ 1

u

1

z− u
fW

(
1 − u

z

)
z(1 − z)β(z) dz,

which is equivalent to

θuβ(u) =
∫ u

0
2F+

(
1 − 1 − u

1 − z

)
zβ(z) dz−

∫ 1

u

2F+
(

1 − u

z

)
(1 − z)β(z) dz.

Proof. To obtain a limit in the �-Fleming–Viot process, let θ1 = θ/d in generator (45). In
identity (46) the density of Z is d zfX1(z), 0 < z < 1, by symmetry. Let d → ∞ in identity
(46). Then the identity becomes (65). The integral equations for the stationary distribution
when there are two types imply an integral equation for β(x). In view of (56),

xβ(x) = −1

θ
f ′•L(u),

where f ′•L(u) is similar to f ′
L(u) with fX(z) replaced by β(z).

In the Wright–Fisher diffusion W ≡ 0 and identity (65) is

VZ∗
D= Z∗. (66)

It is straightforward to verify that if Z has density θ(1 − z)θ−1 then (65) is satisfied. A direct
solution can be found in the following way. From (66),

θ

∫ 1

z

yβ(y) dy = z(1 − z)β(z), (67)

where θ is defined by

θ =
∫ 1

0 z
2β(z) dz∫ 1

0 z(1 − z)β(z) dz
.

Write (67) as
d

dz
log

∫ 1

z

yβ(y) dy = −θ(1 − z)−1.

Solving this differential equation,

log
∫ 1

z

yβ(y) dy = θ log(1 − z)+ A

for a constant A. Therefore, ∫ 1

z

yβ(y) dy = (1 − z)θ

because
∫ 1

0 yh(y) dy = 1, and, since (67) holds,

β(z) = θz−1(1 − z)θ−1, 0 < z < 1.
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2.6. A different dual process

The typed�-coalescent tree process is a moment dual in the Fleming–Viot process; see, for
example, Etheridge et al. (2010). We work through a different type of dual process which is a
death process decreasing in steps of 1. Let d = 2 for simplicity. The generator L is specified
by (45). Let {gn(x)} be a sequence of monic polynomials that are defined below and satisfy
the generator equation

Lgn = 1
2x(1 − x)Eg′′

n(x(1 −W)+ VW)+ 1
2 (θ1 − θx)g′

n(x)

=
(
n

2

)
E(1 −W)n−2[gn−1(x)− gn(x)] + n 1

2 [θ1gn−1(x)− θgn(x)] (68)

with g0(x) = 1. Equation (68) is an analogue of the Wright–Fisher diffusion when we look
at gn(x) = xn, with the second line chosen to mimic the Wright–Fisher case. Rearrange the
equation to define gn(x) in terms of gn−1(x) as

1
2x(1 − x)Eg′′

n(x(1 −W)+ VW)+ 1
2 (θ1 − θx)g′

n(x)+ λngn(x)

= n

2
[(n− 1)E(1 −W)n−2 + θ1]gn−1(x). (69)

The polynomials {gn(x)} are well defined by (69) by recursively calculating the coefficients of
xr in gn(x) from r = n− 1, n− 2, . . . , 0.

Theorem 9. Let {gn(x)}∞n=0 be defined by (69). If X has a stationary distribution then

E[gn(X)] =
∏n
j=1((j − 1)E(1 −W)j−2 + θ1)∏n
j=1((j − 1)E(1 −W)j−2 + θ)

. (70)

Let hn(x) = gn(x)/E[gn(X)]. There is a dual process {N(t)}t≥0 to {X(t)}t≥0 based on the
test functions {hn(x)}∞n=0 which is a death process with rates for n → n− 1, n ≥ 1, of

λn = n

2
[(n− 1)E(1 −W)n−2 + θ ].

The dual equation is
EX(0)=x[hn(X(t))] = EN(0)=n[hN(t)(x)]. (71)

The transition functions for the dual process are

P(N(t) = j | N(0) = i)

=
i∑

k=j
e−λkt r(k)i l

(k)
j

=
i∑

k=j
e−λkt (−1)k−j

λj+1 · · · λi
(λj − λk) · · · (λk−1 − λk)(λk+1 − λk) · · · (λi − λk)

. (72)

The process {N(t)}t≥0 comes down from infinity if and only if∫ ∞

1

dq

q2E[(1 −W)q ] < ∞, (73)

https://doi.org/10.1239/aap/1418396241 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1418396241


The �-Fleming–Viot process 1031

which implies that the �-coalescent comes down from infinity. The distribution of N(t) given
an entrance boundary at infinity,

P(N(t) = j | N(0) = ∞) =
∞∑
k=j

e−λkt r(k)∞ l
(k)
j , (74)

where

r(k)∞ =
∞∏
l=k

(
1 − λk

λl

)−1

,

is well defined assuming that condition (73) holds when the coalescent comes down from infinity.

Proof. Equation (70) follows directly from E[gn(X)] in (68). Note that

Lhn = λn[hn−1 − hn],
which is correctly set up as a dual generator equation of the death process {N(t)}t≥0. The dual
equation is then (71).

The process {N(t), t ≥ 0} comes down from infinity if and only if

∞∑
2

λ−1
n < ∞, (75)

which implies that the �-coalescent comes down from infinity because

λn =
n∑
k=2

(
n

k

)
λnk + nθ;

so (75) is equivalent to
∞∑
n=2

[ n∑
k=2

(
n

k

)
λnk

]−1

< ∞, (76)

and ∞∑
n=2

[ n∑
k=2

(k − 1)

(
n

k

)
λnk

]−1

<

∞∑
n=2

[ n∑
k=2

(
n

k

)
λnk

]−1

< ∞. (77)

Recalling that
n∑
k=2

(
n

k

)
λnk = 1

2
n(n− 1)E[(1 −W)n−2],

by the integral comparison test, (76) is equivalent to (73).

For example, if W has a Beta(α, β) distribution for α, β > 0 then E[(1 −W)n] ∼ Cn−α,
where C is a constant, so if α < 1 then

∑∞
n=2 λ

−1
n < ∞, because the nth term is asymptotic to

(C/2)n2−α . Coming down from infinity does not necessarily imply that (75) or (76) holds. In
general, the tail of the series (77) satisfies

∞∑
n=N

[ n∑
k=2

(
n

k

)
λnk

]−1

≈ 1

2

∫ ∞

N

1

q2

dq

E[(1 −W)q ] = 1

2

∫ N−1

0

dz

E[(1 −W)z
−1 ] .
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Convergence of the integral depends on E[(1 − W)z
−1 ] being large enough as z → 0. It is

very likely that there are connections with the speed of coming down from infinity studied in
Berestycki et al. (2014b), but the exact connections are not clear.

The transition functions for the process {N(t), t ≥ 0} are easily found from an eigenfunc-
tion analysis of the Q matrix, where qjj = −λj and qjj−1 = λj . The approach used to
find the eigenfunction expansion for the transition distribution in the Kingman coalescent is
that given in Tavaré (1984) (see also Griffiths (1980)). The left and right eigenvectors l(k)j
and r(k)i are triangular in form with l(k)j = 0, j > k, and r(k)i = 0, i < k. Explicit formulae are
l
(k)
k = r

(k)
k = 1 and

l
(k)
j = (−1)k−j λj+1 · · · λk

(λj − λk) · · · (λk−1 − λk)
, j < k,

r
(k)
i = λi · · · λk+1

(λi − λk) · · · (λk+1 − λk)
, i > k.

The transition functions are then given by (72).
The distribution of N(t) given an entrance boundary at ∞ is the distribution as i → ∞,

which is (74), and is well defined assuming that condition (75) holds when the coalescent comes
down from infinity.

The condition of Bertoin and Le Gall (2006), (4), for coming down from infinity is equiva-
lent to ∫ ∞

1

dq

qE[(1 − e−qW )/W ] < ∞. (78)

There can be a gap where the �-coalescent comes down from infinity but {N(t)}t≥0 does not
come down from infinity because (73) and (78) are not equivalent.

2.6.1. Eigenfunctions Pn(x) and polynomials gn(x). It is extremely interesting that the poly-
nomials {Pn(x)} are analogous to the monic Jacobi polynomials distribution with {gn(x)}
analogous to {xn}.

Express

gn(x) = Pn(x)+
n−1∑
r=0

bnrPr(x),

where Pn(x) are the eigenfunctions of L. Define

λ◦
n = n

2
[(n− 1)E(1 −W)n−2 + θ1].

From (69) and noting that

LPn = −λnPn, Lgn = −λngn + λ◦
ngn−1, (79)

it follows that
n−1∑
r=0

bnr [−λr + λn]Pr(x) = λ◦
n

n−1∑
r=0

bn−1rPr(x). (80)

Note that gl(x) being a monic polynomial means that bll = 1, l = 0, 1, . . . . Calculating
coefficients from (80) we obtain

bnr = λ◦
n

λn − λr
bn−1r = λ◦

nλ
◦
n−1 · · · λ◦

r+1

(λn − λr)(λn−1 − λr) · · · (λr+1 − λr)
.
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The eigenfunctions {Pn(x)} also have an expansion in terms of the polynomials {gr(x)}. Let

Pn(x) = gn(x)+
n−1∑
r=0

cnrgr(x). (81)

From (79),

−λnPn(x) = −λngn(x)+ λ◦
ngn−1(x)+

n−1∑
r=0

[−λrcnr + λ◦
r+1cnr+1]gr(x).

Expressing the left-hand side by the expansion (81) and equating coefficients of gr(x)we obtain

−λncnr = −λrcnr + λ◦
r+1cnr+1.

The coefficients are therefore

cnr = λ◦
r+1 · · · λ◦

n

(λr − λn) · · · (λn−1 − λn)
. (82)

Scale (68) by taking

gn(x) = λ◦
n · · · λ◦

1

λn · · · λ1
hn(x) =

∏n
j=1((j − 1)E(1 −W)j−2 + θ1)∏n
j=1((j − 1)E(1 −W)j−2 + θ)

hn(x).

Defining ωn as a beta moment analog,

ωn =
∏n
j=1((j − 1)E(1 −W)j−2 + θ1)∏n
j=1((j − 1)E(1 −W)j−2 + θ)

,

we obtain
gn(x) = ωnhn(x).

Note that if X has a stationary distribution then

E[gn(X)] = ωn.

The polynomials {Pn(x)} are analogous to the monic Jacobi polynomials orthogonal on the
Beta(θ1, θ2) distribution with {gn(x)} analogous to {xn}. If W ≡ 0 then they are identical in
the analogy. In the Jacobi polynomial case (82) simplifies to

cnr = (−1)n−r (n− r − 1)!
r!

θ1(n)

θ1(r)

(n+ θ)(r)

(n+ θ)(n−1)
.

The process is not reversible, so the polynomials are not orthogonal on any measure unless they
are the Jacobi polynomials.

2.6.2. Higher dimensions. Let L be the d-dimensional �-Fleming–Viot generator with muta-
tion, and define polynomials {gn(x)} with g0(x) = 1 by

Lgn(x) = −λngn(x)+ 1

2

d∑
i=1

ni

n
n((ni − 1)E[(1 −W)ni−2] + θi)gn−ei (x).
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This is an analogy with the Wright–Fisher generator acting on xn. The polynomials are well
defined by recursion on their coefficients. In a similar calculation to the two-dimensional case
there is a Dirichlet moment analogue:

E[gn(X)] =
∏d
i=1[

∏ni
j=1((j − 1)E[(1 −W)j−2] + θi)]∏n

j=1((j − 1)E[(1 −W)j−2] + θ)
.

The dual process constructed from test functions gn(X)/E[gn(X)] has transitions

n → n − ei at rate
ni

n
((n− 1)E[(1 −W)n−2] + θ).

The dual equation is similar to (71). Let

hn(x) = gn(x)

E[gn(X)] .

Then
EX(0)=x[hn(X(t)] = EN(0)=n[hN(t)(x)].

The multitype death process has transition probabilities which are easy to describe from the
sum of the entries |N(t)| and (72):

P(N(t) = m | N(0) = n) =
∏d
j=1

(
nj
mj

)
(
n
m

) P(|N(t)| = m | |N(0)| = n).

An equation analogous to the k-dimensional Ewens sampling formula in the Poisson Dirichlet
process is to let θi = θ/d, i = 1, . . . , d, then the (labelled) sampling formula is

lim
d→∞ d[k]

(
n

n

)
E[gn(X)],

where n = (n1, . . . , nk, 0, . . . , 0). The sampling formula limit is

n! θk
n1 · · · nk

∏k
i=1[

∏ni
j=2 E[(1 −W)j−2]]∏n

j=1((j − 1)E[(1 −W)j−2] + θ)
.

Möhle (2006) and Lessard (2010) studied recursive equations leading to the �-coalescent
sampling formula. The familiar Ewens sampling formula is obtained by taking W = 0.
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