
Abstract
Index of refraction, a fundamental optical constant that enters in the descriptions of

almost all optical phenomena, has long been considered an intrinsic property of a
material. However, the recent progress in negative-index material (NIM) research has
shown that the utilization of deep-subwavelength-scale features can provide a means to
engineer fundamental optical constants such as permittivity, permeability, impedance,
and index of refraction. Armed with new nanofabrication techniques, researchers
worldwide have developed and demonstrated a variety of NIMs. One implementation
uses a combination of electric and magnetic resonators that simultaneously produce
negative permittivity and permeability, and consequently negative refractive index.
Others involve chirality, anisotropy, or Bragg resonance in periodic structures. NIM
research is the beginning of new optical materials research in which the desired optical
properties and functionalities are artificially generated. Clearly, creating negative index
materials is not the only possibility, and the most recent developments explore new
realms of materials with near-zero indexes and inhomogeneous index profiles that can
produce novel phenomena such as invisibility. Furthermore, the concept of controlling
macroscopic material properties with a composite structure containing subwavelength-
scale features extends to the development of acoustic metamaterials. By providing a
review of recent progress in NIM research, we hope to share the excitement of the field
with the broader materials research community and also to spur new ideas and
research directions.
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Negative Index of Refraction
Index of refraction n is traditionally

defined as the ratio of the speed of light in
a vacuum c to that in the material ν:

n = c
ν (1)

Constructing the wave equation from
Maxwell’s equations, one can relate the
index of refraction to the relative permit-
tivity ε and relative permeability µ of the
material,

n2 = εµ, (2)

where the relative permittivity ε and rela-
tive permeability µ are defined by the con-
stitutive equations,

D = εε0E (3)

and

B = µµ0H. (4)

In Equations 3 and 4, D is the electric dis-
placement field, E is the electric field, B is
the magnetic field, and H is the magnetiz-
ing field.

Because most naturally occurring
materials have values of ε and µ that are
equal to or greater than 1, it is generally
assumed that the index of refraction is
found by taking the positive root of εµ;
that is,

(5)

An important exception to this general
rule is metals. Because of the large density
of free electrons, a metal exhibits negative
ε and positive µ in the visible and lower-
frequency ranges of the electromagnetic
spectrum when the frequency is below the
metal’s characteristic plasma frequency.
This results in an imaginary value of n,
leading to exponentially decaying waves
instead of propagating waves. An expo-
nentially decaying wave is called an
evanescent wave, and this explains why
most metals are highly reflecting, rather
than transparent.

In 1968, Veselago considered the
 possibility of a material with simultane-
ously negative values of ε and µ.2
Negative  permittivity requires electric
 resonance in the material, and negative
permeability requires strong magnetic res-
onance. When both ε and µ are  negative,
the index of refraction is real, so that the
material should support propagating
waves. Consider a plane wave in such a

Introduction
Index of refraction, or refractive index,

is a fundamental constant describing the
interaction between light and material.
Index of refraction quantifies, for example,
how fast light travels in a material and
how strongly a material reflects light on its
surface. Vacuum is the reference medium,
with unity index of refraction. In a mate-
rial, electrons and atoms interact with the
electromagnetic field of light, giving rise
to an index of refraction specific to the
material.

Although index of refraction is gener-
ally frequency-dependent, all naturally
occur ring materials are known to have
indexes of refraction that are greater than 1.
Is it possible to have a negative index of
refraction? This question was pondered
as early as 1904.1 No physical principle
prohibits negative index of refraction. In
1968, Veselago theorized that a material

with negative permittivity and perme-
ability should have a negative index of
refraction and that such a material should
exhibit a reverse Doppler effect, a reverse
Cherenkov effect, and reversed focusing
properties in lenses.2 Negative-index
materials (NIMs), however, remained in
the realm of purely theoretical imagina-
tion until Pendry’s seminal article3 in 2000
ignited major research activities world-
wide. In that work, Pendry predicted the
possibility of a superlens that could focus
light to a very small spot. Moreover,
recent advances in nanotechnology have
made it possible to design and fabricate
artificial structures that can exhibit a neg-
ative index of refraction. NIMs are thus
now an exciting reality with numerous
opportunities for the discovery of new
phenomena and the development of
novel devices.
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material. Maxwell’s curl equations can be
written as

k × E = ωµ0µH (6)

and

k × H = −ωε0εE. (7)

In a positive-index material with positive
ε and µ, the wave vector k and the electric
and magnetic field vectors E and H form a
right-handed set. However, in a negative-
index material where ε and µ are both
negative, the k, E, and H vectors form a
left-handed set. In that case, the wave
vector k, which represents the direction
of propagation of phase fronts and the
Poynting vector,

S = E × H, (8)

which represents the direction of energy
flow, are antiparallel. Thus, if we choose
the direction of energy flow as the refer-
ence propagation direction, the index of
refraction must be negative so that the
wave vector k is in the opposite direction
to the energy flow.

At this point, it is useful to make a dis-
tinction between the velocities of the
energy flow and the phase front. The rate
of energy flow is related to the group
velocity νg of the electromagnetic wave.
This is the velocity at which the envelope
propagates when a combination of plane
waves forms a wave packet. On the other
hand, the magnitude of wave vector k is
given by the phase velocity νp as

k = ωÔνp = nωÔc, (9)

where ω is the angular frequency. The
phase velocity, which is the velocity used
in Equation 1, represents the speed at
which phase fronts move. Thus, in a
 negative-index material, the phase veloc-
ity and group velocity have opposite
signs, and the phase fronts move back-
ward compared to the direction of energy
flow. Figure 1 illustrates the propagation
of a wave packet in a NIM, where the
packet envelope and phase fronts propa-
gate in opposite directions.

Superlenses
In 2000, Pendry reported that a slab of

NIM can focus light using both propa -
gating and evanescent waves, leading to
 spatial resolutions well below the wave-
length.3 In regular optics, an image is
 constructed by capturing only the propa-

gating waves. Because the evanescent
waves decay exponentially, any informa-
tion they carry is lost. A simple Fourier
analysis shows that the evanescent waves
carry information on a length scale smaller
than the light wavelength. Thus, in con-
ventional optics, the reconstructed image
is missing any details smaller than the
wavelength. This is called the diffraction
limit and is generally considered the fun-
damental limit on the achievable spatial
resolution in an optical imaging device.

Pendry noted that, in a slab of NIM, the
exponentially decaying evanescent wave
becomes an exponentially increasing

wave. The physical origin of enhanced
evanescent wave transmission is coupling
with the surface mode at the interface
between a NIM and a positive-index
material. As a result, a substantial ampli-
tude of evanescent waves exists at the
image position, contributing to the recon-
struction of the image and providing sub-
wavelength-scale information (Figure 2).
This enables the NIM lens to achieve
super-resolution, for which reason it is
often called a “superlens.”

In the extreme near-field limit, also
referred to as the quasistatic limit, where
all length scales involved in the imaging
system are much smaller than the wave-
length, the equations for reflection and
transmission become independent of per-
mittivity for s-(or transverse electric)
polarization and of permeability for p-(or
transverse magnetic) polarization. It
therefore follows that, for p-polarized
light, a slab of material with negative per-
mittivity and positive permeability will
act as a superlens because of the permit-
tivity. On the basis of this principle, super-
resolution was demonstrated using a thin
silver film for ultraviolet light4,5 and a sili-
con carbide film for infrared light.6

Although the prospect of achieving
super-resolution without a scanning
mechanism is exciting, the operation of a
superlens is generally limited to the near-
field region: both the object and image
must be in close proximity to the lens itself.
Near-field operation can still enable novel
applications such as contact litho graphy.
However, achieving far-field operation
would greatly expand the utility of the
superlens. The near-field restriction is fun-
damentally related to the nature of evanes-
cent waves, which decay exponentially
outside the superlens and thus  cannot
carry high-resolution information much
farther than the wavelength. Therefore,
far-field operation requires some mecha-
nisms that convert the evanescent waves
to propagating waves without losing the
high-resolution  information.

One mechanism that can accomplish
this is to use a grating coupler.7 A properly
designed grating can translate a range of
evanescent waves into the propagating
regime, enabling them to propagate into
the far-field region. Once detected in the
far-field region, the grating-translated
evanescent waves can be Fourier trans-
formed back to the original Fourier com-
ponents so that the image can be properly
reconstructed.

t = t0

t = t1 > t0

t = t2 > t1

Figure 1. Propagation of a Gaussian
wave packet in a negative-index
material as time proceeds from t0
through t1 to t2. The envelope of the
packet propagates to the right, whereas
the phase fronts move to the left. To
guide the readers’ eyes, a constant
phase point in each snapshot is marked
by a red dot.
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Alternatively, one can use a multilayer
of superlenses in a cylindrical geometry.8
In this case, the evanescent waves at the
inner surface of the cylindrical lens are
converted into propagating waves by the
time they reach the outer surface. Such a
lens also provides magnification accord-
ing to the ratio of inner and outer radii.
This type of lens is called a “hyperlens”
because the effective medium description
of the multilayer structure exhibits a
hyperbolic dispersion surface. A hyper-
lens composed of a multilayer of silver
and Al2O3 was recently demonstrated.9

Negative-Index Materials
According to Veselago’s prescription, a

negative index requires the permittivity
and permeability to simultaneously be
negative. Negative permittivity is relatively
easy to find in natural materials such as
metals at frequencies below their plasma
frequencies and materials with strong
phonon resonance near their phonon fre-
quencies. Negative permeability, which
requires a strong magnetic resonance in the
material, is much more difficult, especially
at frequencies greater than the gigahertz
range, and thus requires artificial structures
that produce a magnetic response at high
frequencies. Pendry et al. proposed split-
ring and swiss-roll structures whose inter-
nal capacitance and inductance produced a
significant magnetic response.10 Split rings,
combined with a metal wire array that pro-
vides negative permittivity, were used in
the first experimental demonstration of
negative refraction in the microwave fre-
quency region11 and quickly became the
most widely used structure for magnetic
resonance.

The most common design of a split-ring
resonator consists of two concentric metal
rings, typically copper, for example. Each
ring has a split, and the splits are placed
on opposite sides. The separation between
the inner and outer rings is much smaller
than their radii. The magnetic field of inci-
dent light induces current around the
rings. However, because of the split,
 current cannot flow around a single ring
but is capacitively coupled to the other
ring. Consequently, this system exhibits a
characteristic resonant frequency deter-
mined by its inductance and capacitance,
leading to a resonant behavior in effective
permeability.

A variety of split-ring designs have been
investigated, and analytical and numerical
models have been developed. It should be
noted that the split-ring medium generally
exhibits large mag netoelectric coupling.12

Consequently, the split-ring structures
support electric (magnetic) resonances
excited by a magnetic (electric) field, and
this leads to complex cross-polarization
effects. To avoid such effects, a modified
split-ring resonator consisting of two iden-
tical split rings that have splits on opposite
sides and are separated by a thin dielectric
layer was proposed.13

The resonance frequency of a split-ring
resonator is inversely proportional to the
linear dimension of the split rings.
Therefore, reducing the size of the split
rings is a straightforward way to increase
the resonance frequency. Using this
approach, the magnetic activity induced
by split-ring structures has been demon-
strated for terahertz,14 mid-infrared,15

and near-infrared frequency ranges.16

However, the linear scaling fails in the vis-
ible frequency range, and most metals
exhibit increased loss in the visible range,
further weakening the magnetic reso-
nance. New designs are therefore needed
for operation at visible frequencies.

The most successful design has been a
pair of metal nanorods that can support an
antiparallel plasmon resonance and thus
produce a magnetic moment.17 A refractive
index of −0.3 was soon demonstrated in an
array of gold nanorod pairs fabricated by
electron beam lithography.18 The combina-
tion of nanorod pairs with long metal
wires has also been proposed to produce a
negative-index material.19 In this scheme, a
magnetic response is produced by the
nanorods pairs, and an electrical response
is produced by the metal wires. This struc-
ture can also be viewed as a pair of voids
in a metal background. The optical proper-
ties are expected to be similar to those of
nanorods pairs by the Babibet principle,
which states that an aperture and a disk
produce an identical diffraction pattern.
Using this structure, a negative index was
observed in the near-infrared range18,20

and at 780 nm.21 Recent progress in this
area is reviewed by Chettiar et al. in this
issue.

The approaches described thus far
involve two types of resonators, electric
and magnetic, to simultaneously produce
negative permittivity and permeability.
This makes the fabrication very difficult,
and manufacturability remains one of
the most significant challenges in NIM
research. Alternatively, it is possible to
construct NIMs with only one type of res-
onator. For example, negative refraction
can occur when electric resonators are

Figure 2. (a) Ray diagram (red
arrows) showing the propagating
waves being brought to a focus
because of negative refraction at the
interfaces. Ray paths for a positive-
index slab are shown by blue arrows
for comparison. (b) Amplitude of
evanescent wave (red solid line)
illustrating enhanced transmission of
evanescent waves. The case for a
positive-index slab is shown by the
blue dashed line for comparison. 
(c) Full wave simulation of point-source
imaging by a negative-index lens.
The wavefronts clearly show the
internal and external focus formed by
the negative refraction experienced
by the propagating waves. The fact
that the image size is much smaller
than the wavelength indicates
enhanced evanescent wave
transmission.
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embedded in a chiral medium, where two
orthogonal circular polarizations experi-
ence different values of refractive index.
When electric resonators are embedded in
a chiral material, the chirality shifts the
dispersion curves and produces a fre-
quency region in which the sign of the
group velocity is opposite to that of the
phase velocity, which is a characteristic of
negative refraction.22

It is also possible to incorporate strongly
anisotropic material to induce negative
refraction. In an anisotropic material, the
permittivity is different for different prop-
agation directions. This results in nonpar-
allel E and D vectors, which subsequently
causes the Poynting vector S (Equation 8)
to deviate from the wave vector k. When
the vector difference between S and k is
large enough, it is possible for S to point in
the opposite direction to k, which is the
signature of negative refraction. Recently, a
semiconductor multilayer stack was
designed to exhibit negative permittivity
along the optical axis and positive permit-
tivity perpendicular to the optical axis,
thus providing an experimental demon-
stration of negative refraction.23

Yet another mechanism to achieve
 negative refraction is to use the Bragg res-
onance in a photonic crystal, which refers
to a material with a periodic refractive
index profile. The multiple reflections due
to the periodicity strongly modulate the
light propagation and can produce many
novel optical properties such as photonic
bandgaps, superprisms, self-collimation,
and negative refraction.

Photonic crystals can exhibit negative
refraction through two distinct mecha-
nisms. In the first case, the photonic crys-
tal has a positive effective refractive index
but exhibits negative refraction because of
the negative curvature of the dispersion
surface.24 In this case, S and k exhibit a
large vector difference from each other,
and the photonic crystal behaves the same
way as in the strongly anisotropic material
described previously.

The second possibility is that the pho-
tonic crystal actually exhibits an isotropic
dispersion surface with a negative gra -
dient.25 Superlensing is possible in both
cases. Negative-index imaging by a
 negative-index photonic crystal was
demonstrated first in the microwave
region26 and then more recently in the
near-infrared region.27 Furthermore, the
reversal of phase fronts due to the negative
curvature of the dispersion surface was

directly measured by interferometric  
near-field scanning optical microscopy.28

Silicon-based photonic crystal structures
that can be fabricated and integrated with
other silicon-based optical and electronic
devices are a promising route for negative-
index materials. The recent progress in
this area is reviewed by Baba et al. in this
issue.

The greatest challenge in NIM research,
particularly for optical applications, is in
fabrication. In most implementations,
NIMs require deep-subwavelength-scale
features, which are in the nanometer
range for optical-frequency operation.
So far, all experimental demonstrations of
optical-frequency NIMs have involved
elaborate nanoscale fabrication by
 electron beam lithography, which is diffi-
cult to envision being scaled up for large-
scale manufacturing. It also limits the
achievable structures to planar two-
dimensional structures and is not suitable
for three-dimensional bulk NIMs. There
have been exciting new developments
involving nanoimprinting and stamping
that greatly enhance the manufactur -
ability of NIMs. The recent progress in this
area is reviewed in this issue by
Chaturvedi et al.

A New Frontier in Materials
Science

Materials science is important to
research in NIMs for many reasons.
Fabrication of a NIM requires precise syn-
thesis, patterning, and/or directed assem-
bly of nanoscale materials, each of which
critically relies on progress in materials
research. Studies on bottom-up fabrica-
tion approaches for NIMs are scarce, and
we believe that fabrication based on self-
assembly, for example, would be highly
beneficial. More importantly, NIMs repre-
sent a new class of composite materials in
which the macroscopic properties are
engineered by the constituent materials
and structures. In fact, the latest trend in
NIM research goes beyond achieving neg-
ative indexes of refraction to producing
high indexes,29 near-zero indexes,30 and
inhomogeneous index profiles in order to
achieve invisibility,31 opening an entirely
new field called transformation optics.

The new concept of by-design compos-
ite materials, often referred to as metama-
terials, provides an unprecedented array
of opportunities in the design and devel-
opment of new functional materials and
devices. It blurs the traditional distinction
between materials and devices: Materials
are no longer mere ingredients used to

make devices; rather, materials them-
selves are now sophisticated enough to
deliver desired functionalities and inter-
face with other materials. Although cur-
rent research activities on metamaterials
are heavily focused in optics and photon-
ics, the concept can be extended to other
functional materials. An excellent exam-
ple is an acoustic metamaterial con-
structed of mechanical resonators.32 This
structure exhibits a negative bulk modu-
lus by driving mechanical oscillators at
frequencies slightly above the resonance
frequency. By combining this negative
bulk modulus with a negative effective
mass density, negative refraction for
acoustic waves can be achieved. Fok et al.
review this important emerging area in
this issue.

We thus see NIM research as an impor-
tant new frontier in materials research. In
this issue of MRS Bulletin, we describe the
latest developments in NIM research in
hopes that they will inspire materials sci-
entists in many areas of specialization and
spur new research activities in broader
fields of materials science.
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