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C-COMMUTATIVITY
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Abstract

An associative ring R with identity is said to be (--commutative for < e R if a. heR and ah = c implies

ha = c. Taft has shown that if R is c-commutative where c is a central, nonzero divisor of R then R [ [ v ] ] is

c-commutative. We give examples to show that neither condition on t i t hat is. central or nonzero divisor I

can be omitted. We show that if R\_x] is /i(.\)-commutative for any /i(.x)t R[x] then so is R with any finite

number of (commuting) indeterminates adjoined. Examples are given to show that K[ [ x ] ] need not be c-

commutat ive even if R[x~\ is. Finally, examples are given to answer Taf t \ question for the special case of a

zero-commutative ring.

1980 Mathematics subject classification (Amer. Math. Soc): primary Hi A 70; secondary 16 A 05.

An associative ring R with identity is said to be (-commutative for c e R if a, b e R and
ab = c implies ba = c. Taft has shown (see the foot-note in Hemr( 1970)) that if R is c-
commutative where c is a central, nonzero divisor of R then K[[x]] is c-
commutative. He raises the question of whether either condition on c (that is, central
or nonzero divisor) can be omitted. We give examples to show that neither condition
can be omitted. However, the following question remains open: If c is a noncentral,
nonzero divisor and R is c-commutative is K[x] c-commutative? We show that if
R[x] is /i(x)-commutative for any /i(x)e R[x] then so is R with any finite number of
(commuting) indeterminates adjoined. Examples are given to show that #[[x]] need
not be c-commutative even if R[x] is. Of course by Taft's result c is either a
noncentral element in R or is a zero-divisor in R. Finally, examples are given to
answer Taft's question for the special case of zero-commutative ring.

EXAMPLE 1. A ring R with a central zero divisor c such that R is c-commutative but
R[x] is not. Let Z2 denote the ring of integers modulo two. Let R be the ring
Z2{a0,al,b0,b1} (noncommuting indeterminates) subject to the relations:

(1) a0b0 = boao.
(2) aobo+a^o =0.
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(3) aibl = 0.
(4) boal+blao+bla{ = 0.
(5) All monomials of order greater than two are zero.

Then c = aobo gives the desired example.
We include the proof for this example as a sample of the techniques. If/ is an

element of R then we can write/ = / 0 4-/! +f2 where/- is a form of degree i and in fact
foeZ2. Let/ = f0 +fi +f2 and g = g0 + g, + g2 be two elements of R such that/g = c.
If cy is a unit, g = 1 + </, + </2 so clearly eg = c and hence/= c. Thus, gf=c. If/is a
unit we argue similarly. If neither/nor g is a unit then/and g can be taken of degree
one, /= OL0U0 + a : at and </ = Pobo + Pi b1 (where <xt,PieZ1) or vice versa. In either
case by using the relations one can show gf= c. Therefore, R is c-commutative. To
see that R[x] is not c-commutative note that c = {ao + a1x)(bo + blx) by the
relations but c ^ (bo + b^iao + UiX).

EXAMPLE 2. A ring T with a noncentral element c such that T is c-commutative but
T[x] is not. Begin with R = Z2{a0, aj,b0, bud0,a\,b'Q,b\} subject to the relations (1)
to (5) of Example 1 and relations (1)' to (4)'(for the elements with primes) analogous
to (1) to (4) above. Let c = aobo and c' = a'ob'o.

It can be shown, using a proof similar to the proof of Example 1, that R is c-
commutative. However, c is in the centre of R. We shall extend R to a ring T which is
c-commutative and in which c is not central. Let o(d) = d and o(d') = d for
de{ao,al,bo,bi}. a is an automorphism of R. Form the twisted polynomial ring
T= R[f, <T] over R. That is, the additive group of T is the additive group of R[f], and
multiplication in Tis defined by the rule t / = c( / ) t for/eR, and its consequences.
Since tc = c't / ct, c is not in the centre of T. Furthermore, the polynomial ring T[x]
in one (commuting) indeterminate is not c-commutative. To see this note that by the
relations on R: c = (ao-i-u^ x)(bo + bl x) but c # (bo + bi x)(ao + al x).

It remains to show that T is c-commutative. Let /(f) = Z™=o./if' a n d
0(0 = Zj = o0jtJ' b e t w o elements of T such that /(0fif(0 = C- W e show that
0(0/(0 = c by considering various cases resulting from the equation/, g0 = cin R.
We illustrate with one such case:/0 = c and g0 = 1 +0oi +002 where c/Ol is a form of
degree i in R for i = 1 and 2. First we argue that each coefficient/ of/has a zero
constant term. Let Ek denote the equation resulting from equating the coefficient of
tk in /(0</(0 and the coefficient of tk in c. Equation E1 is: 0 =
cHi +/i(l +<T(0oi) + f%o2))- ^ follows that / , has zero constant term. By using
equation £, and induction on the subscript i we easily show that each / has a zero
constant term. Using this fact and the equations, another induction will show that
for 0 :$ / ^ m, / = yc where y e Z2. If fm / 0 for m > 0 we can show, by considering
equations Em,Em+ l,...,Em + n in reverse order, that each g} has a zero constant term.
In particular g0 has a zero constant term. But since g0 = l+gOi+(Jo2 this would be
a contradiction. Thus f(t) = c, ceR. Then for 1 ^ k ^ n equation Ek becomes

https://doi.org/10.1017/S1446788700016542 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016542


254 T. Cheatham and E. Enochs [3]

cgk = 0. It follows that for 1 ^ k ^ n,gk has a zero constant term and gk a\c) = 0,
/ = 1,2, ...,m. So g((f)/(O = c. This completes the proof for the first case. The other
cases are similar.

Next we note that if R is 0-commutative and if/(x) and g(x) are linear polynomials
in -R[x] then f(x)g(x) = 0 if and only if g(x)f(x) = 0. However, the following is an
example of a 0-commutative ring R such that K[x] is not 0-commutative. This
answers a question raised by Chowdhury (1971).

EXAMPLE 3. A 0-commutative ring R such that R[x] is not 0-commutative. Let
R = Z2{a0,al,b0,bl,b2} subject to the relations:

(1) aobo = 0 and boao =0 .
(2) ciibo+aobi =0 .
(3) albl+aob2 = 0.
(4) alb2 =0 and b2ax = 0.
(5) (bo + b1+b2)(ao + al) = 0.
(6) All monomials of order greater than two are zero.

The proof is similar to the proof of Example 1 and is omitted. We note in passing
that Zn{a,b} [x] is 0-commutative for all integers n ^ 1. We have one affirmative
result. But first we state an easy lemma which is essentially contained in the well-
known Noether normalization lemma.

LEMMA. Ifp(x, y) and q(x, y) are elements ofR[x, y] then p(x, y) = q{x, y) if and only if
p(x,xk) = q(x,xk)for sufficiently large k.

THEOREM. / / R [ X ] IS h(x)-commutativefor li(x)eR[x] then so is R{x,y].

PROOF. If /(x,y)• g(x, y) = h(x) then for all k ^ 0, f(x,xk)g(x,xk) = h(x). So
g{x,xk)f(x,xk) = h(x) for all k ^ 0 so g(x,y)f(x,y) = h(x) by the lemma.

COROLLARY. If R\_X^\ is h(x^commutative then so is ^[x!,x2,...,xn] for all
integers n ^ 1.

We now give examples to show that /?f[xj] may not be c-commutative even if
R\_\\ \s>. F vcsA. ftole \ta&\. \{ c Vs. a. wowcrattaV element o? R then, m g,eneta\, nothmg, can

be said about the ocommutativity of R[x]. However, we can say that K[[x]] is not
c-commutative. To see this choose beR, b / 0 such that be / cb. Then

c = (1 + bx)(c-bcx + b2 ex2 -b3 ex3 +...)

but
c / (c - bcx + b2 ex2 - b 3 ex3 + ...)(! +bx).
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Note also that if R is c-commutative then c commutes with all units and all elements
of the Jacobson radical of R (so with all nilpotents in R). Thus if R is local and c-
commutative then c is in the centre of R.

EXAMPLE 4. A ring R with a noncentral element a such that R[x] is a-commutative
but R[x] is not. Let R = Z2{a,b}. No relations this time!

EXAMPLE 5. A ring R and a central zero divisor c in R such that K[x] is c-
commutative but K[[x]] is not. Let R = ZA{a0,aub0,bub2,...} subject to the
relations:

(0) a0 b0 = 2 and b0 a0 = 2,

(n) aobn + ay bB_! = 0 for n = 1, 2, 3, ..., and
(oc) all monomials of order greater than two are zero.
K[x] is 2-commutative but K[[x]] is not since the relations imply

but 2 / (bo + blx + b2x
2+...)(ao + alx).

EXAMPLE 6. A ring R such that K[x] is 0-commutative but #[ [x] ] is not. Let R =
Z2{a0, au b0, bu b2,...} subject to the relations:

(0) a0 b0 = 0 and b0 a0 = 0,

(n) aobn + albn-l = 0 for all n 5= 1, and
(oo) All monomials of order greater than two are zero.
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