FINITE LINEAR GROUPS OF PRIME DEGREE

DAVID B. WALES

1. Introduction and notation. If G is a finite group which has a faithful complex representation of degree n it is said to be a linear group of degree n. It is convenient to consider only unimodular irreducible representations. For $n \leqq 4$ these groups have been known for a long time. An account may be found in Blichfeldt's book (1). For $n=5$ they were determined by Brauer in (4). In (4), many properties of linear groups of prime degree p were determined for p a prime greater than or equal to 5 .

In a forthcoming series of papers these results will be extended and the linear groups of degree 7 determined. In the first paper, some general results on linear groups of degree $p, p \geqq 7$, will be given. These results will later be applied to the prime $p=7$.

We only consider linear groups which are primitive. This means that for a prime degree p the representation cannot be written in monomial form. Equivalently, the group has no normal abelian subgroups not contained in the centre. If G is an imprimitive linear group of degree p, there is a normal abelian subgroup K such that G / K is isomorphic to a subgroup of S_{p}, the symmetric group on p elements.

In § 2 a bound is obtained for the order of a p-Sylow group of a primitive linear group of degree p. In § 3 a certain configuration described in (4) is shown to exist only in a trivial case. In § 4, it is shown that the character of the representation is rational or at least real when restricted to certain p-regular elements. This is used to restrict the power of certain primes other than p in the group order. Finally, in § 5 we prove a short theorem which states that for primes $p / 2<q<p$ and $q \geqq 7$ the q-Sylow group is abelian. This is also true if $q=5$ but the proof is more involved. As it is only needed for $p=7$, it is treated later when linear groups of degree 7 are considered explicitly.

Notation. Let G be a finite group with a faithful irreducible representation X of degree p over the complex numbers. We denote by χ the character associated to X. Here X will be assumed primitive and unimodular; p is a prime greater than 5 . If S is a subset of G, we let $|S|$ be the cardinality of $S, N(S)$ the normalizer of S, and $C(S)$ the centralizer of S. If H is a subgroup, the centre of H, $C(H) \cap H$, is denoted by $Z(H)$. The centre of $G, Z(G)$, is denoted by Z. Let $|G|=g=p^{a} \cdot g_{0},\left(p, g_{0}\right)=1$. It was shown in (4, §4) that if $a=1$,

[^0]then $Z=e$; if $a>1$, then Z is cyclic of order p. If q is a prime, then a q-Sylow group is denoted by P_{q}. If $q=p$ we drop the subscript and write P.

Let A be an abelian group and Γ a faithful representation of it. Suppose that $\Gamma=\sum_{i=1}^{m} a_{i} \xi_{i}$, with a_{i} integers and ξ_{i} distinct linear characters of A. The number m is called the variety of A.

We denote by K the splitting field of G given by Q with the g th roots of unity adjoined. As is standard, we let $O_{p}(G)\left(O_{p^{\prime}}(G)\right)$ be the maximal normal p-group (p^{\prime}-group), of G and $O^{p}(G)\left(O^{p^{\prime}}(G)\right)$ the minimal normal group whose quotient is a p-group (p^{\prime}-group).

Acknowledgement. I wish to thank Professor R. Brauer for his help and encouragement.
2. A bound for the value a. Our goal in this section is to show that $a \leqq \frac{1}{2}(p+1)$. This is done by showing that there is an element ξ in a p-Sylow group P of G such that $X(\xi)$ has $\frac{1}{2}(p-1)$ eigenvalues $\epsilon=e^{2 \pi i / p}$, $\frac{1}{2}(p-1)$ eigenvalues $\bar{\epsilon}$, and one eigenvalue 1 . For $p \geqq 7$ this contradicts Blichfeldt's theorem (1, p. 96). Blichfeltd's theorem states that if G is primitive, the eigenvalues of $X(\xi)$ for any ξ in $G-Z$ cannot all lie within 60° of any particular eigenvalue of $X(\xi)$.

We need notation for some standard concepts. If t is an integer not congruent to $0(\bmod p)$ let σ_{i} be the permutation of the set $\{1,2, \ldots, p\}$ mapping j onto $\sigma_{t}(j)$, where $\sigma_{t}(j) \equiv t j(\bmod p)$. Here $j=1,2, \ldots, p$. Let D be the set of diagonal $p \times p$ matrices with diagonal entries complex numbers. If $(d) \in D$, let $(d)_{i i}$ be the number in the i th row and i th column of (d). Let R_{i} be the map of D to itself defined by

$$
\left(R_{t}(d)\right)_{i, i}=(d)_{\sigma_{t}(i), \sigma_{t}(i)}
$$

It is clear that R_{ι} permutes the diagonal entries of d. One sees easily that if d_{1} and d_{2} are in D and $u \neq 0(\bmod p)$, then

$$
R_{t}\left(d_{1} d_{2}\right)=R_{t}\left(d_{1}\right) R_{t}\left(d_{2}\right), \quad R_{t u}\left(d_{1}\right)=R_{t}\left\{R_{u}\left(d_{1}\right)\right\}
$$

We assume now in this section that $a \geqq 4$. The structure of a p-Sylow group P of G has been determined in $(4, \S 4)$. These results show that P contains normal abelian subgroups $A_{i}, i=1,2, \ldots, a-1$, with $\left|A_{i}\right|=p^{a-i}$. There are independent elements $\xi_{1}, \xi_{2}, \ldots, \xi_{a-1}$ of order p such that A_{i} is generated by $\xi_{a-i}, \xi_{a-i+1}, \ldots, \xi_{a-1}$ for each $i=1,2, \ldots, a-1$. We denote A_{1} by A. A basis for the representation space can be chosen so that

$$
\left(X\left(\xi_{a-k}\right)\right)_{i j}=\delta_{i j} \epsilon^{\binom{j-1}{k-1}}
$$

Here

$$
\begin{gathered}
\epsilon=e^{2 \pi i / p}, \quad\binom{r}{s}=\frac{r(r-1) \ldots(r-s+1)}{s!}, \quad\binom{r}{0}=1, \\
k=1,2, \ldots, a-1, \quad \text { and } i, j=1,2, \ldots, p .
\end{gathered}
$$

Also, $(X(\xi))_{i j}$ denotes the element in the i th row and j th column of the matrix $X(\xi)$ with respect to this basis.

Let D_{1} be the subset of D consisting of matrices $X(\xi)$ for $\xi \in A$. The map R_{t} is a group homomorphism of D_{1} onto a set $R_{t}\left(D_{1}\right)$. We will show that, in fact, $R_{t}\left(D_{1}\right)$ is D_{1} itself and hence R_{t} is a group homomorphism of D_{1} to D_{1}. In fact, we show the stronger statement that $R_{t}\left\{X\left(A_{j}\right)\right\}=\left\{X\left(A_{j}\right)\right\}$ for $j=1,2, \ldots, a-1$.

Theorem 2.1. For each $j, j=1,2, \ldots, a-1$, there are integers $S_{j 1}, S_{j 2}, \ldots, S_{j j}$
 Furthermore, $S_{j 1}, \ldots, S_{j j}$ are unique $(\bmod p)$ with $S_{j j} \equiv t^{j-1}(\bmod p)$.

Proof. We recall that

$$
\left(X\left(\xi_{a-j}\right)\right)_{i i}=\epsilon^{\binom{i-1}{j-1}}
$$

If we replace σ_{t} by σ, we have:

$$
\left(R_{t}\left(X\left(\xi_{a-j}\right)\right)\right)_{i i}=\epsilon^{(\sigma(i)-1}\left(\begin{array}{c}
(i-1
\end{array}\right), \quad i=1,2, \ldots, p
$$

We must find integers $S_{j 1}, \ldots, S_{j j}$ such that

$$
\begin{equation*}
\epsilon^{\binom{\sigma(i)-1}{j-1}}=\epsilon^{\binom{i-1}{0} S_{j 1}} \epsilon^{\binom{i-1}{1} S_{j 2}} \ldots \epsilon^{\binom{i-1}{j-1} S_{j j}} \tag{2.1}
\end{equation*}
$$

for $i=1, \ldots, p ; j=1, \ldots, a-1$. This is equivalent to

$$
\begin{align*}
& \binom{\sigma(i)-1}{j-1} \equiv\binom{i-1}{0} S_{j 1}+\binom{i-1}{1} S_{j 2} \tag{2.1}\\
& \\
& \quad+\ldots+\binom{i-1}{j-1} S_{j j}(\bmod p)
\end{align*}
$$

Let x be an indeterminant over the integers. Consider the polynomial equation

$$
\begin{align*}
(j-1)!\binom{x t-1}{j-1}=(j-1)!\left\{\binom{x-1}{0} S_{j 1}\right. & +\binom{x-1}{1} S_{j 2} \tag{2.2}\\
& \left.+\ldots+\binom{x-1}{j-1} S_{j j}\right\}
\end{align*}
$$

The coefficients are all integers as each side is multiplied by $(j-1)$!. Here, $j=1,2, \ldots, a-1$. Since $a \leqq p-1,(j-1)!\not \equiv 0(\bmod p)$. Suppose that (2.2) is satisfied for integers $S_{j 1}, \ldots, S_{j j}$. By letting $x=i=1,2, \ldots, p$ and reducing $(\bmod p)$, we see that $(2.1)^{*}$ is satisfied as $\sigma(i) \equiv i t(\bmod p)$. It is only then necessary to show that (2.2) can be satisfied.

We now show that $S_{j r}$ can be defined inductively to satisfy (2.2) in terms of $S_{j k}, k<r$. For $r=1$, set $x=1$. Equation (2.2) is then

$$
(j-1)!\binom{t-1}{j-1}=(j-1)!S_{j 1}
$$

This shows that $S_{j 1}=\binom{t-1}{j-1}$. In general, setting $x=r$, (2.2) becomes

$$
(j-1)!\binom{r t-1}{j-1}=(j-1)!\left\{\binom{r-1}{0} S_{j 1}+\binom{r-1}{1} S_{j 2}+\ldots+S_{j r}\right\}
$$

This shows that $S_{j r}$ can be defined inductively. The values $S_{j r}$ obtained for $r=1,2, \ldots, j$ satisfy (2.2) for $x=1,2, \ldots, j$. Furthermore, (2.2) is a polynomial equation in x of degree $j-1$. As both sides agree for j values of x, both sides agree for all values of x. We note that the coefficient of x^{j} on the left of (2.2) is t^{j-1}. On the right it is $S_{j j}$. This shows that $S_{j j}=t^{j-1}$. The values $S_{j 1}, \ldots, S_{j j}$ can be seen to be unique $(\bmod p)$ by noticing, as for (2.2), that $S_{j r}$ can be defined inductively in terms of $S_{j k}, k=1,2, \ldots, r-1$. The proof of the theorem is complete.

We can now define a homomorphism S_{t} of A to A in the following way. If $\xi \in A$, then $S_{t}(\xi)=\xi^{\prime}$, where $R_{t}(X(\xi))=X\left(\xi^{\prime}\right)$. This is well-defined as X is faithful. Furthermore, R_{t} has kernel I, where I is the identity $p \times p$ matrix. This means that S_{t} has kernel e, the identity of G. We see that S_{t} is an automorphism of A. Since $R_{t} R_{u}=R_{t u}$, we have $S_{t} S_{u}=S_{t u}$, where $t, u \neq 0(\bmod p)$.

The automorphism S_{t} can be considered as a linear transformation of the vector space A. Here A is a vector space of dimension $a-1$ over the integers $(\bmod p)$. As usual for linear transformations we can describe S_{t} by a matrix $\left(S_{t}\right)$. We use the basis $\left(\xi_{a-1}, \ldots, \xi_{1}\right)$. The j th row of $\left(S_{t}\right)$ is $\left(S_{j 1}, \ldots, S_{j j}, 0, \ldots, 0\right)$. Let y_{1}, \ldots, y_{a-1} be integers $(\bmod p)$. If the element

$$
\left(\xi_{a-1}\right)^{y_{1}}\left(\xi_{a-2}\right)^{y_{2}} \ldots\left(\xi_{1}\right)^{y_{a-1}}
$$

is denoted by $\left(y_{1}, \ldots, y_{a-1}\right), S_{t}$ maps $\left(y_{1}, \ldots, y_{a-1}\right)$ onto $\left(y_{1}, \ldots, y_{a-1}\right)\left(S_{t}\right)$. We now come to the main theorem of this section.

Theorem 2.2 (cf. 4, 4C). If $|G|=p^{a} g_{0}, p \geqq 7$, then $a \leqq \frac{1}{2}(p+1)$.
Proof. Suppose that $a \geqq \frac{1}{2}(p+3)$. Let t be a primitive root $(\bmod p)$. The matrix $\left(S_{t}\right)$ has eigenvalues $1, t, t^{2}, \ldots, t^{a-2}$. The matrix $\left(S_{t}\right)^{2}$ has eigenvalues $1, t^{2}, t^{4}, \ldots, t^{(a-2) 2}$. Since $a \geqq \frac{1}{2}(p+3)$, there are at least $\frac{1}{2}(p+1)$ rows in $\left(S_{t}\right)^{2}$. The eigenvalue in the $\frac{1}{2}(p+1)$ st row is $t^{\frac{1}{2}(p-1)^{2}}=1$. This means that $\left(S_{t}\right)^{2}$ has two eigenvalues 1 . As the eigenvalues of S_{t} are distinct, S_{t} can be diagonalized. This means that $\left(S_{t}\right)^{2}$ can be diagonalized, and hence there are two independent eigenvalues with eigenvalue 1 . This also follows since $\left(S_{t}\right)$ has order prime to p. One of the eigenvectors is $(1,0, \ldots, 0)$. Let an independent eigenvector be ($\tau_{1}, \ldots, \tau_{a-1}$). The element ξ in A corresponding to this vector satisfies $S_{t^{2}}(\xi)=\xi$, or $R_{t}(X(\xi))=X(\xi)$. The permutation $\sigma_{t^{2}}$ is the permutation $\left(1, t^{2}, \ldots, t^{\frac{1}{2}(p-3)}\right)\left(t, t^{3}, \ldots, t \cdot t^{\frac{1}{2}(p-3)}\right)$. This means that the coefficients of $X(\xi)$ in rows $1, t^{2}, t^{4}, \ldots, t^{\frac{1}{2}(p-3)}$ are equal. The same is true for the rows $t, t^{3}, \ldots, t \cdot t^{\frac{1}{2}(p-3)}$. An appropriate element $\xi^{r}\left(\xi_{a-1}\right)^{s}$ has one eigenvalue $1, \frac{1}{2}(p-1)$ eigenvalues ϵ, and $\frac{1}{2}(p-1)$ eigenvalues $\bar{\epsilon}$. Here, $\epsilon=e^{2 \pi i / p}$. This contradicts Blichfeldt's theorem (2, p. 96) and shows that $a \leqq \frac{1}{2}(p+1)$.
3. Non-abelian Sylow intersection groups. We now turn to a discussion of the case described in (4) for which non-abelian p-Sylow intersection groups occur. In this situation there are two p-Sylow groups P and $P^{\mu}, \mu \in G$, such that $P \cap P^{\mu}=D$. Here D is non-abelian of order p^{3} and $N(D) / D \cong \operatorname{SL}(2, p)$. The following theorem shows that this case arises only in the special case that $N(D)=G$.

The idea for the proof of the following theorem was suggested by D. Gorenstein of Northeastern University.

Theorem 3.1. If G contains a non-abelian Sylow intersection group D, then $a=4, D \triangleleft G$, and $G / D \cong \operatorname{SL}(2, p)$.

The following proof holds for $p=5$ as well. The theorem for $p=5$ can also be found in (4, 9A).

Proof. The proof is in several parts. The idea is to consider $C(\eta)$, where η is an involution in $N(D)$. We will show that the only involution in $C(\eta)$ is η itself. This shows that a 2-Sylow group of G contains only one involution. Results of (6) can be applied to yield $a=4$ and $D \triangleleft G$.
(1) Set $M=N(D)$. We will show in this part that M contains a subgroup M_{0} isomorphic to $\operatorname{SL}(2, p)$. By $(4,5 \mathrm{C})$ we have $M / D \cong \operatorname{SL}(2, p)$. Let η be an involution in M. Clearly, η is not in D as $|D|=p^{3}$. As M / D has exactly one involution, it must be $\bar{\eta}$, where $\bar{\eta}$ is the image of η under the canonical homomorphism of M into M / D. Any involution in M must therefore be of the form ηd, where $d \in D$.

Let D^{*} be the group $\langle D, \eta\rangle$ of order $2 p^{3}$. Clearly, $\langle\eta\rangle$ is a 2 -Sylow group, and hence all involutions in D^{*} are conjugate to η by an element of D. The number of such conjugates must be $|D| /\left|C_{D}(\eta)\right|$. Here $C_{D}(\eta)=C(\eta) \cap D$. The isomorphism $M / D \cong \mathrm{SL}(2, p)$ is obtained by noting the way in which any element of M transforms D / Z under conjugation. The involution η inverts elements in G / Z. Its matrix is

$$
\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

The only elements in D centralized by η are the elements of Z. The number of conjugates of η in D^{*} is therefore $p^{3} / p=p^{2}$. This means that there are p^{2} conjugates of η in M.

Let $M_{1}=C_{M}(\eta)=C(\eta) \cap M$. As there are p^{2} conjugates of η in M, we see that $\left|M: M_{1}\right|=p^{2}$. Since $D \cap M_{1}=Z$, this yields $M_{1} D=M$. By the isomorphism theorem, $\mathrm{SL}(2, p) \cong M / D \cong M_{1} D / D \cong M_{1} /\left(M_{1} \cap D\right) \cong M_{1} / Z$. We can use Grün's theorem (14, p. 173) on M_{1} to obtain a subgroup $M_{0}=M_{1}{ }^{\prime}$ such that $M_{0} \cong \mathrm{SL}(2, p)$. Grün's theorem on M_{1} yields a normal subgroup M_{0} of index p as $Z \in Z\left(M_{1}\right)$. This subgroup could not contain Z, otherwise $M_{1}{ }^{\prime}$ would be a p^{\prime}-group and thus M_{1} would be p-solvable. Clearly, $M_{1} \cong M_{0} \times Z$, and therefore $M_{0}=M_{1}{ }^{\prime}$ and $M_{0} \cong M_{1} / Z \cong \operatorname{SL}(2, p)$. Clearly $\eta \in M_{0}$.
(2) Again consider the group $D^{*}=\langle D, \eta\rangle$. Since $X \mid D$ is irreducible, $X \mid D^{*}$ is irreducible. Since $\left|D^{*}\right|=2 p^{3}, X$ is of 2 defect 1 and thus has $\langle\eta\rangle$ as a cyclic defect group. This implies that $\chi(\eta)= \pm 1$. A more elementary way to see this is to note that the centralizer in D^{*} of η has order $2 p$. If $\chi(\eta) \neq \pm 1$, the sum $(\chi(\eta))^{2}$ over the $p-1$ conjugates of χ is greater than $2 p$.

The sign of $\chi(\eta)$ can be determined by the unimodularity of $X(\eta)$. We see that $X(\eta)$ must have $\frac{1}{2}(p+\delta)$ eigenvalues 1 and $\frac{1}{2}(p-\delta)$ eigenvalues -1 . Here, $\delta=1$ if $p \equiv 1(\bmod 4)$ and $\delta=-1$ if $p \equiv 3(\bmod 4)$. This implies that $\chi(\eta)=\delta$.
(3) Let ξ be an element of order p in M_{0}. We can assume that ξ is in P. The notation of (4) will be used. Here $D=\left\langle\tau, \xi_{a-2}, \xi_{a-1}\right\rangle$. Furthermore, $A=\left\langle\xi_{a-1}, \xi_{a-2}, \ldots, \xi_{1}\right\rangle$ and $Z=\left\langle\xi_{a-1}\right\rangle$. We have the relations $(\tau)^{\xi_{a-t}}=$ $\tau\left(\xi_{a-t+1}\right)^{-1}$ for $t=2,3, \ldots, a-1$. Since $\xi \in C(\eta)$, we have $\chi(\xi) \neq 0$ for if $\chi(\xi)=0$, the constituents of $X(\xi)$ are all distinct and so by (4, 3F), $2 \nmid|C(\xi)|$. This implies that $\xi \in A$, as for elements $\xi \in P-A, \chi(\xi)=0$. Let $x_{1}, x_{2}, \ldots, x_{a-1}$ be integers, $0 \leqq x_{i} \leqq p-1$, such that

$$
\xi=\left(\xi_{a-1}\right)^{x_{1}}\left(\xi_{a-2}\right)^{x_{2}} \ldots\left(\xi_{1}\right)^{x_{a-1}}
$$

We know that ξ normalizes D as $\xi \in M$. Our relations yield

$$
\tau^{\xi}=\tau\left(\xi_{a-1}\right)^{-x_{2}}\left(\xi_{a-2}\right)^{-x_{3}} \ldots\left(\xi_{2}\right)^{-x_{a-1}}
$$

Since $D=\left\langle\tau, \xi_{a-1}, \xi_{a-2}\right\rangle$ and $\tau^{\xi} \in D$, we must have $x_{4}=x_{5}=\ldots=x_{a-1}=0$. This means that $\xi \in A_{a-3}=\left\langle\xi_{a-1}, \xi_{a-2}, \xi_{a-3}\right\rangle$. By (4, 4E), the characteristic roots of $X(\xi)$ have multiplicity at most 2 .
(4) Let $W_{1}=C(\eta)$. Clearly $M_{0} \subseteq M_{1} \subseteq W_{1}$. Since $\eta \in Z\left(W_{1}\right)$ and $X(\eta)$ has $\frac{1}{2}(p+\delta)$ eigenvalues $1, \frac{1}{2}(p-\delta)$ eigenvalues $-1, X \mid W_{1}$ must split into components Y_{1} and Y_{2} of degrees $\frac{1}{2}(p+1)$ and $\frac{1}{2}(p-1)$, respectively. $Y_{1}(\eta)$ has eigenvalues $\delta ; Y_{2}(\eta)$ has eigenvalues $-\delta$.
Since $M_{0} \subseteq W_{1}$, we can consider $Y_{i} \mid M_{0}, i=1,2$. These are representations of $M_{0} \cong \mathrm{SL}(2, p)$. There are five irreducible characters of $\operatorname{SL}(2, p)$ whose degrees are smaller than $p-1$. These are in two p-blocks, $B_{0}(p)$ and $B_{1}(p)$. In $B_{0}(p)$ there is the principal character and two p-conjugate characters of degree $\frac{1}{2}(p+\delta)$. The kernel of these p-conjugate characters is $\langle\eta\rangle$. In $B_{1}(p)$ there are two p-conjugate characters of degree $\frac{1}{2}(p-\delta)$. These characters are faithful.

Let t be a primitive root $\bmod p$ and

$$
\omega_{1}=\sum_{s=0}^{\frac{1}{2}(p-3)} \epsilon^{(t)^{2 s}}, \quad \omega_{2}=\sum_{s=0}^{\frac{1}{2}(p-3)} \epsilon^{(t)^{2 s+1}}
$$

The exceptional characters have value ω_{1} or ω_{2} on a p-element if the degree is $\frac{1}{2}(p-1)$ and $\omega_{1}+1$ or $\omega_{2}+1$ if the degree is $\frac{1}{2}(p+1)$. In each case, the corresponding eigenvalues are all distinct.

The representations $Y_{i} \mid M_{0}, i=1,2$, must have characters corresponding to sums of these characters. Let y_{i} be the character of Y_{i}. The eigenvalues of
$X(\xi)$ have multiplicity at most two and are not all distinct. If any of the $Y_{i} \mid M_{0}$ are the identity, the multiplicity is greater than 2 except in the case $p=5$. In the case $p=5$, if $Y_{2} \mid M_{0}$ is the identity, η is in the kernel of X. The value of $\chi(\xi)$ must be $y_{1}(\xi)+y_{2}(\xi)$ which can only be $1+\omega_{1}+\omega_{1}$ or $1+\omega_{2}+\omega_{2}$. By replacing X by a conjugate or ξ by a power, we can assume that $\chi(\xi)=1+2 \omega_{1}$. Clearly $y_{1}(\xi)=1+\omega_{1}, y_{2}(\xi)=\omega_{1}$. We know that $Y_{1}(\eta)=\delta I, Y_{2}(\eta)=-\delta I$. The representation $Y_{i} \mid M_{0}$ such that $Y_{i}(\eta)=-I$ must be irreducible and in $B_{1}(p)$. The other component $Y_{j} \mid M$ must then correspond to an exceptional character and, by comparing degrees, be irreducible. It is in $B_{0}(p)$.

Let L and $K(C)$ be the $\frac{1}{2}(p-1) \times \frac{1}{2}(p-1)$ matrices

$$
\begin{aligned}
& L=\left[\begin{array}{ccccccccc}
\epsilon & 0 & \cdot & \cdot & & & \cdot & \cdot & 0 \\
0 & \epsilon^{\epsilon^{2}} & 0 & \cdot & \cdot & & \cdot & \cdot & 0 \\
\cdot & 0 & & & & & & & \cdot \\
\cdot & \cdot & & & & & & \cdot \\
& & & & & & & & \\
& & & & & & & & \\
& & & & & & & & \cdot \\
\cdot & & & & & & & & \cdot \\
\cdot & & & & & & & \cdot & 0 \\
0 & 0 & \cdot & \cdot & & \cdot & \cdot & 0 & \epsilon^{\epsilon^{(p p-3)}}
\end{array}\right] ; \\
& K(C)=\left[\begin{array}{cccccccccc}
0 & 1 & 0 & . & . & & . & . & 0 & 0 \\
0 & 0 & 1 & 0 & \cdot & . & & & & 0 \\
. & & & & & & & & & . \\
. & & & & & & & & & \cdot \\
& & & & & & & & & \\
& & & & & & & & & \cdot \\
. & & & & & & & & 0 & 0 \\
. & & & & & & 0 & 1 & 0 \\
0 & . & . & & & & . & . & 0 & 1 \\
C & 0 & \cdot & . & & & . & \cdot & 0 & 0
\end{array}\right] .
\end{aligned}
$$

There is an element ϕ in M_{0} such that $\xi^{\phi}=\xi^{p-3}$. If ξ has the representation in $\operatorname{SL}(2, p)$ as $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ we can let ϕ be $\left(\begin{array}{cc}t & b_{p-2} \\ 0 & p^{2}\end{array}\right)$. The basis for the representation spaces can be chosen so that

$$
\begin{array}{lll}
Y_{2}(\xi)=L, & Y_{1}(\xi)=L \oplus 1 ; & \\
Y_{2}(\phi)=K(-1), & Y_{1}(\phi)=K(1) \oplus-1 & \text { if } p \equiv 1(\bmod 4) ; \\
Y_{2}(\phi)=K(1), & Y_{1}(\phi)=K(-1) \oplus-1 & \text { if } p \equiv 3(\bmod 4) .
\end{array}
$$

Each $Y_{i} \mid M_{0}$ is irreducible, and hence each Y_{i} is irreducible on W_{1}.
(5) Let P_{0} be a p-Sylow group of W_{1} containing ξ and Z. If ξ_{0} is in P_{0}, then
ξ_{0} commutes with η and thus $\chi\left(\xi_{0}\right) \neq 0(4,3 F)$. Let Q be a p-Sylow group of G containing P_{0}, say $Q=P^{\mu_{1}}$ with $\mu_{1} \in G$. If ρ is in Q and not in $A^{\mu_{1}}$, $\chi(\rho)=0$. This shows that $P_{0} \subseteq A^{\mu_{1}}$. We see that P_{0} must be abelian since $A^{\mu_{1}}$ is abelian. Elements in P_{0} therefore commute with ξ. This means that $Y_{i}(\xi)$ commutes with $Y_{i}\left(\xi_{0}\right)$ and since the eigenvalues of $Y_{i}(\xi)$ are all distinct, the matrix $Y_{i}\left(\xi_{0}\right)$ must be diagonal. Let

$$
Y_{2} \left\lvert\, P_{0}=\oplus \sum_{i=1}^{\frac{1}{2}(p-1)} \lambda_{i}\right.
$$

with the λ_{i} linear characters of P_{0}.
As η centralizes $P_{0}, X \mid P_{0}$ must have a multiple constituent (4, 3F). We know that $Y_{i}(\xi)$ has distinct constituents and so $Y_{i} \mid P_{0}$ must have distinct constituents. This means that $Y_{1} \mid P_{0}$ and $Y_{2} \mid P_{0}$ must have a constituent in common. In the basis chosen, we can apply the matrix $Y_{i}(\phi), \frac{1}{2}(p-1)$ times, to obtain:

$$
\begin{equation*}
Y_{1}\left|P_{0}=\oplus \sum_{i=1}^{\frac{1}{2}(p-1)}\left(\lambda_{i} \oplus \lambda_{p}\right), \quad Y_{2}\right| P_{0}=\oplus \sum_{i=1}^{\frac{1}{2}(p-1)} \lambda_{i} . \tag{3.1}
\end{equation*}
$$

Here λ_{p} is a linear character of P_{0}.
(6) Let L_{i} be the kernel of $Y_{i}, i=1,2$. Suppose that $\xi_{0} \in P_{0} \cap L_{2}$. We have $Y_{2}\left(\xi_{0}\right)=I$, and hence $\lambda_{j}\left(\xi_{0}\right)=1, j=1,2, \ldots, \frac{1}{2}(p-1)$. This implies that $\lambda_{p}\left(\xi_{0}\right)=1$, and thus $\xi_{0}=e$. If $\xi_{0} \in P_{0} \cap L_{1}$, we have $\lambda_{j}\left(\xi_{0}\right)=1$, $j=1,2, \ldots, \frac{1}{2}(p-1), p$, and again $\xi_{0}=e$. This shows that $P_{0} \cap L_{i}=e$, $i=1,2$. Consequently, $p \nmid\left|L_{i}\right|$. Furthermore, we know that $L_{1} \cap L_{2}=e$ since $Y_{1} \oplus Y_{2}=X \mid W_{1}$ is faithful.
(7) In this section we show that $\left|P_{0}\right|=p^{2}$. Suppose then that $\left|P_{0}\right|=p^{b}$, $b>2 . Y_{1}$ and Y_{2} are representations of W_{1} of degree less than $p-1$ and thus Feit's theorem (8) can be applied. Here Y_{i} is a faithful representation of W_{1} / L_{i}. We set $\left|W_{1} / L_{i}\right|=p^{b} \omega_{i}$, where $\left(p, \omega_{i}\right)=1$. Feit's theorem gives two normal subgroups R_{i} such that $L_{i} \triangleleft R_{i} \triangleleft W_{i},\left|R_{i} / L_{i}\right|=p^{b}$ or p^{b-1}. If $\left|R_{i} / L_{i}\right|=p^{b}$, there would be a normal series $e \triangleleft L_{i} \triangleleft R_{i} \triangleleft W_{1}$ and W_{1} would be p-solvable. This is impossible since $M_{0} \subseteq W_{1}$, and $M_{0} \cong \operatorname{SL}(2, p)$ is a p-unsolvable group. This means that $\left|R_{i} / L_{i}\right|=p^{b-1}$.

Clearly, $\left|R_{1} R_{2}\right|$ is divisible by p^{b-1} as $\left|R_{1}\right|$ is divisible by p^{b-1}. Suppose that $p^{b}| | R_{1} R_{2} \mid$. This would imply that a full p-Sylow group of W_{1} would be contained in $R_{1} R_{2}$ and so M_{0} would be in $R_{1} R_{2}$. This would imply that $R_{1} R_{2}$ was p-unsolvable. However, we have

Clearly, $R_{1} R_{2}$ is p-solvable. This shows that

$$
\left|R_{1} R_{2}\right|=p^{b-1} r, \quad(r, p)=1
$$

Since R_{1} and R_{2} are normal in $R_{1} R_{2}, R_{1}$ and R_{2} must have the same p-Sylow groups. For if not, let r be a p-element in R_{1} not in R_{2}. This element permutes the p-Sylow groups of R_{2}. As the number of p-Sylow groups is congruent to $1(\bmod p)$, there must be a fixed 1 . This implies that $p^{b}| | R_{1} R_{2} \mid$, a contradiction. Therefore any p-element in R_{1} is in R_{2}. Similarly, p-elements of R_{2} are contained in R_{1}.

Let T be the subgroup of $R_{1} R_{2}$ generated by these p-Sylow groups. Clearly $|T|=p^{b-1} t,(p, t)=1$. We will show that $T=Z$ which will be a contradiction as we are assuming that $b>2$.

Since T is characteristic in R_{i} and $R_{i} \triangleleft W_{1}$, we have $T \triangleleft W_{1}$. We have $\left|R_{i} / L_{i}\right|=p^{b-1}, \quad p^{b-1}| | T \mid, \quad T \subseteq R_{i}$ and thus $T L_{i}=R_{i}$. Furthermore, $T /\left(T \cap L_{i}\right) \cong T L_{i} / L_{i}=R_{i} / L_{i}$. This implies that $T \cap L_{i}=O_{p^{\prime}}(T)$. We see that $T \cap L_{1}=T \cap L_{2}$. Since $L_{1} \cap L_{2}=e, T \cap L_{1}=T \cap L_{2}=e$. This shows that $R_{i} / L_{i} \cong T$ and so $|T|=p^{b-1}$. We know that T is abelian and $T \triangleleft W_{1}$.

We can apply Clifford's Theorem to $Y_{i} \mid T$. By (3.1), we have

$$
\begin{aligned}
& Y_{1}\left|T=\left\{\lambda_{1} \oplus \ldots \oplus \lambda_{(p-1) / 2} \oplus \lambda_{p}\right\}\right| T, \\
& Y_{2}\left|T=\left\{\lambda_{1} \oplus \ldots \oplus \lambda_{(p-1) / 2}\right\}\right| T .
\end{aligned}
$$

The characters $\lambda_{1}, \ldots, \lambda_{(p-1) / 2}, \lambda_{p}$ restricted to T must all be conjugate in W_{1}. The number of distinct conjugates divides $\frac{1}{2}(p+1)$ and $\frac{1}{2}(p-1)$. This number can only be one. We have $X \mid T=(\epsilon)^{r} I$ and thus $T \subseteq Z$. Clearly, $T=Z$ and we have a contradiction. We now assume that $b=2$.
(8) Grün's theorem can be used to obtain a subgroup $W_{0} \subseteq W_{1}$ such that $W_{1}=W_{0} \times Z,\left|W_{0}\right|=p \omega$ with $(p, \omega)=1$. We know that $M_{0} \subseteq W_{1}$. Either $M_{0} W_{0}=W_{1}$ or W_{0}. Suppose that $M_{0} W_{0}=W_{1}$. Then

$$
Z \cong W_{1} / W_{0} \cong M_{0} W_{0} / W_{0} \cong M_{0} /\left(M_{0} \cap W\right)
$$

This is impossible since $M_{0} \cong \operatorname{SL}(2, p)$. We must have $M_{0} W_{0}=W_{0}$ and thus $M_{0} \subseteq W_{0}$.
(9) We now consider the group W_{0}. Here $Y_{i} \mid W_{0}$ is irreducible since $Y_{i} \mid M_{0}$ is irreducible. Furthermore, $Y_{i}\left(M_{0}\right)$ has no normal p-Sylow group and thus $Y_{i}\left(W_{0}\right)$ has no normal p-Sylow group. We can apply the results of (13) to the linear groups $Y_{i}\left(W_{0}\right)$. This shows that for $p \neq 7$ there are normal subgroups B_{i} such that $W_{0} / B_{i} \cong \operatorname{LF}(2, p)$. For $p=7$ there are normal subgroups B_{i} such that $W_{0} / B_{1} \cong \operatorname{LF}(2,7)$ or $A_{7}, \quad W_{0} / B_{2} \cong \operatorname{LF}(2,7)$. The case $W_{0} / B_{1} \cong A_{7}$ is impossible here since a composition series would have factors A_{7} and $\mathrm{LF}(2,7)$, and thus 7^{2} would divide $\left|W_{0}\right|$. The $Y_{i}\left(B_{i}\right)$ are scalar matrices.

Clearly $p \nmid\left|B_{i}\right|$ as $p||\mathrm{LF}(2, p)|$. Therefore $p \nmid| B_{1} B_{2} \mid ; B_{1} \subseteq B_{1} B_{2} \subseteq W_{0}$. Since W_{0} / B_{1} is simple, $B_{1} B_{2}=B_{1}$. Similarly, $B_{2}=B_{1} B_{2}$. Set $B=B_{1}=B_{2}$.

Since $B \cap M_{0} \subseteq M_{0}$ we have:

$$
M_{0} /\left(B \cap M_{0}\right) \cong\left\{\begin{array}{l}
\operatorname{SL}(2, p) \\
\operatorname{LF}(2, p) \\
e
\end{array}\right.
$$

Here e is impossible as it would imply that $M_{0} \subseteq B$ and so $p||B|$. Furthermore, $\quad M_{0} /\left(B \cap M_{0}\right) \cong M_{0} B / B \subseteq W_{0} / B \cong \mathrm{LF}(2, p)$. This shows that $M_{0} /\left(B \cap M_{0}\right) \cong \mathrm{LF}(2, p)$, which implies that $M_{0} B / B \cong \mathrm{LF}(2, p)$ and so $M_{0} B=W_{0}$.
(10) Again we fix i such that Y_{i} maps M_{0} isomorphically, j such that Y_{j} maps $M_{0} /\langle\eta\rangle$ isomorphically. We will now show that η is the only involution in W_{1}. Suppose then that σ is an involution in $W_{1}, \sigma \neq \eta$. Certainly σ is in W_{0}, as elements in W_{1} not in W_{0} have order divisible by p.

Suppose first that $\sigma \in B$. This means that $Y_{i}(\sigma)= \pm I, Y_{j}(\sigma)= \pm I$, since the $Y_{i}(B), Y_{j}(B)$ are scalar matrices. In either case, $\operatorname{det} Y_{i}(\sigma)$ is 1 as Y_{i} has even degree. Since Y_{j} has odd degree, $Y_{j}(\sigma)=I$. This means that $Y_{i}(\sigma)=-I$. We see that $\sigma=\eta$ and so have a contradiction. We can assume that $\sigma \notin B$.
(11) Since $M_{0} B=W_{0}$, we have $\sigma=\tau_{1} b$ with $b \in B, \tau_{1} \in M_{0}, \tau_{1} \neq e$ and since σ is an involution, $\left(\tau_{1} b\right)^{2}=\left(\tau_{1}\right)^{2}(b)^{2}=\sigma^{2}=e$. This follows since τ_{i} and b commute. We see that $Y_{i}\left(\tau_{1}{ }^{2}\right) Y_{i}\left(b^{2}\right)=I, Y_{j}\left(\tau_{1}{ }^{2}\right) Y_{j}\left(b^{2}\right)=I$. Since $Y_{i}\left(b^{2}\right)$ and $Y_{j}\left(b^{2}\right)$ are scalar matrices, $Y_{i}\left(\tau_{1}{ }^{2}\right)$ and $Y_{j}\left(\tau_{1}{ }^{2}\right)$ are scalar matrices also.

The only scalar matrix in $Y_{j} \mid M_{0}$ is I and thus $Y_{j}\left(b^{2}\right)=I$. This shows that $Y_{j}(b)= \pm I$. The only scalar matrices in $Y_{i} \mid M_{0}$ are I and $-I$. If $Y_{i}\left(\tau^{2}\right)=I$, then $Y_{i}\left(b^{2}\right)=I, Y_{i}(b)= \pm I$. In this case, $b=\eta$ or $b=e$. This means that $\sigma \in M_{0}$ and implies that $\sigma=\eta$. We see that $Y_{i}\left(\tau_{1}{ }^{2}\right)=-I$. In turn, $Y_{i}\left(b^{2}\right)=-I$ and thus $Y_{i}(b)= \pm i I$.

This element b has order 2^{2} and $X \mid\langle b\rangle$ has variety 2 (see introduction). By (4,3D), $\langle b\rangle \cap Z$ is not e and we have a contradiction. This shows that the only involution in $C(\eta)=W_{1}$ is η itself.
(12) This result implies that η is the only involution in a 2-Sylow group S_{2} of G. For if not, there is a 2 -element r not in W_{1} which normalizes some 2-Sylow group of W_{1}. Since η is the only involution in W_{1}, r centralizes η and hence is in W_{1}. This is a contradiction.

The theorem of Brauer-Suzuki (6) can now be applied to G. Let $K=O_{2^{\prime}}(G)$. This theorem states that $\bar{\eta}$ is in the centre of G / K. Here $\bar{\eta}$ is the image of η in G / K.

Clearly $Z \subseteq K$. If $Z=K, \bar{\eta}$ would be in $Z(G / K)$. However, $\tau^{\eta} \equiv \tau^{-1}(\bmod Z)$ and therefore $\bar{\eta} \notin Z(G / K)$. Therefore $K>Z$. Suppose that $Z=O_{p}(K)$. Since K is of odd order it is solvable (9) and thus $O_{p p^{\prime}}(K)>Z$. This implies that $O_{p p^{\prime}}(K)=Z \times O_{p^{\prime}}(K)$ and hence $O_{p^{\prime}}(K)>e$. This is impossible by the primitivity of X. We see then that $O_{p}(K)>Z$ and $O_{p}(G)>Z$. Set $P_{1}=O_{p}(G)$. Clearly P_{1} is in all p-Sylow groups of G. Since $P \cap P^{\mu}=D$, we have $P_{1} \subseteq D$. If $P_{1}=D$, we have $G=N(D)$ and thus by (4), $a=4$, $G / D \cong \mathrm{SL}(2, p)$. If $P_{1} \neq D,\left|P_{1}\right|=p^{2}$. All such groups in D are of the form $\left\langle(\boldsymbol{\tau})^{r}\left(\xi_{a-2}\right)^{s}, Z\right\rangle$. The only such group normal in P is $\left\langle\xi_{a-2}, Z\right\rangle=A_{a-2}$. However, $N\left(A_{a-2}\right)=N(P)(4,5 \mathrm{C})$. This shows that $P \triangleleft G$, a contradiction since $P^{\mu} \neq P$. The proof is complete.

Remark. This theorem in conjunction with ($4,5 \mathrm{~A}, 5 \mathrm{C}, 6 \mathrm{~A}, 6 \mathrm{~B}$) shows that the only p-Sylow intersection groups of P are P, Z, and A. It is mentioned in ($4, \S 7$) that for $p \geqq 13, A$ cannot be a p-Sylow intersection group. If A is not a p-Sylow intersection group, the p-Sylow groups of \bar{G} form a $T-I$ set.
4. Some results on the rationality of χ. In this section we show that in many cases χ is rational or at least real when restricted to p-regular elements. We only consider the case $a \geqq 3$. It is assumed that the case of $\S 3$ does not occur, that is, G has no non-abelian p-Sylow intersection groups. The only p-Sylow intersection groups contained in P are therefore P, Z, and A. We know from results of (4) that the only p-defect groups in P are then P, Z, or A. Clearly A cannot be one as $C(A)=A$ and hence there is no p-regular element R such that A is a p-Sylow group of $C(R)(\mathbf{2} ; \mathbf{1 0})$. Since $C(P)=Z$, there is only one block of full p-defect $B_{0}(p)$. All other blocks have p-defect 1 . This proves part of the following lemma. Here $\bar{G}=G / Z$.

Lemma 4.1. If $a \geqq 4, B_{0}(p)$ is the only block of full p-defect. All other blocks are of defect 1 with defect group Z. Each p-block of G corresponds to a unique block \bar{B} of \bar{G} with defect one less (2). If y^{*} is an irreducible character of \bar{G} in $\overline{B_{0}(p)}, y^{*}\left(\bar{\xi}_{a-2}\right)$ is not 0 .

Proof. If G is not the group described in § 3, all statements are clear except the last. If G is the group described in $\S 3, D$ cannot be a p-defect group as there is no p-regular element centralizing D except e. The last statement follows since $\bar{\xi}_{a-2}$ is the centre of a p-Sylow group and thus

$$
y^{*}\left(\bar{\xi}_{a-2}\right) / \operatorname{deg} y^{*} \not \equiv 0(\bmod p) .
$$

Theorem 4.2. Suppose that $a \geqq 4$ and G is not the group described in Theorem 3.1. Let $H=O^{p^{\prime}}(G)$. The representation $X \mid H$ is primitive. Either χ is rational on q-elements or there is an element of order $p q$ in $\bar{H}=H / Z$. Here q is an odd prime other than p.

Corollary 4.3. If there are no elements of order pq in \bar{H} and $g=p^{a} q^{b} g_{1}$ with $\left(g_{1}, q\right)=1$, then $b \leqq[p /(q-1)]+[p / q(q-1)]+\ldots$.

Proof. As χ is rational on q-elements, this follows by a theorem of Schur (12).
Corollary 4.4. If A is not a p-Sylow intersection group and there is an element of order $p q^{c}$ in \bar{H}, then $q^{c} \mid p-1$.

Proof. Since there are no p-Sylow intersection groups contained in P except P and Z, an element \bar{R} which centralizes an element in \bar{P} must normalize \bar{P}. Therefore $R \in N(P)$. Since A is characteristic in $P, N(A) \supseteq N(P)$ and since A is abelian, $X \mid N(P)$ is monomial. The diagonal matrices come from A and thus $N(P) / A$ is a subgroup of S_{p} with a normal p-Sylow group. It follows that q^{c}, the order of R in $N(P) / A$, divides $p-1$ since the order of the normalizer of a p-Sylow group of S_{p} is $p(p-1)$.

Proof of Theorem 4.2. The proof consists of several parts.
(1) Let $H=O^{p^{\prime}}(G)$. Since $P \subseteq H, X \mid H$ is irreducible. If $X \mid H$ is not primitive, there is a normal abelian subgroup K of H such that H / K is isomorphic to a subgroup of S_{p}. Let P_{0} be a p-Sylow group of K. Since K is abelian, P_{0} is characteristic in K and hence normal in H. It is therefore in all p-Sylow groups of H. This means that it is in all p-Sylow groups of G. Its order must be p^{a-1} or p^{a}. Since K is abelian, P_{0} is abelian and thus $\left|P_{0}\right|=p^{a-1}, P_{0}=A$. This shows that $A \triangleleft G$, contradicting the primitivity of X. This shows that $X \mid H$ is primitive. From now on we replace G by H in our considerations and thus we can assume that $O^{p^{\prime}}(G)=G$.
(2) We again assume that a basis is chosen for the representation space as in (4). Let $\psi=\chi \mid P$. Suppose that

$$
\begin{equation*}
\psi \bar{\psi}=1+\sum_{i=2}^{e} a_{i} \eta_{i} . \tag{4.1}
\end{equation*}
$$

The η_{i} s are irreducible characters of P, the a_{i} integers. Since $Z \in$ ker $\psi \bar{\psi}$, we have $Z \in \operatorname{ker} \eta_{i}$. Let $\eta_{i}{ }^{*}$ be the corresponding character of \bar{P}. We see that $\psi \bar{\psi}$ represents \bar{P} faithfully since an element ξ in the kernel of $\psi \bar{\psi}$ satisfies $|\psi(\xi)|=p$ and thus $\xi \in Z$. The η_{i} have degree 1 or p since \bar{P} is a p-group and $p^{2}>p^{2}-1$. It also follows from Ito's Theorem (11) that all irreducible characters of P have degree 1 or p. We know that $\chi\left(\xi_{a-2}\right)=0$, and therefore $\psi \bar{\psi}(\xi)=0$. In particular, the eigenvalues of $X \otimes \bar{X}\left(\xi_{a-2}\right)$ are the p th roots of 1 all taken with multiplicity p.

Suppose that ξ_{a-2} is in the kernel of some η_{i} of degree p. This means that $X \otimes \bar{X}(\xi)$ has at least $p+1$ eigenvalues 1 , giving a contradiction. Therefore ξ_{a-2} is not in the kernel of any η_{i} of degree p. On the other hand, since $P^{\prime}=A_{2} \supset\left\langle\xi_{a-2}\right\rangle, \xi_{a-2}$ is in the kernel of each linear character η_{i}.

The group \bar{P} is non-abelian since $a \geqq 4$. In fact, the centre of \bar{P} is generated by $\bar{\xi}_{a-2}$. There must be some non-linear character η_{i} occurring in (4.1). For this $\eta_{i}, \eta_{i}\left(\xi_{a-2}\right)=p \epsilon^{t}$ for some $t, 1 \leqq t \leqq p-1$. Since

$$
1+\sum_{j=2}^{e} a_{j} \eta_{j}\left(\xi_{a-2}\right)=0
$$

there must be $p-1$ characters η_{j} of degree p each conjugate to η_{i} on ξ_{a-2}. We label these $\eta_{1}, \ldots, \eta_{p-1}$. The remaining characters in (4.1) are all linear. We label them $\xi_{1}, \ldots, \xi_{p-1}$. Equation (4.1) becomes

$$
\begin{equation*}
\psi \bar{\psi}=1+\sum_{i=1}^{p-1} \eta_{i}+\sum_{i=1}^{p-1} \xi_{i} . \tag{4.2}
\end{equation*}
$$

(3) We now assume that q is a prime for which there are no elements of order $p q$ in \bar{G} and for which there is a q-element R such that $\chi(R)$ is not rational. Let $g=p^{a} q^{b} g_{1}$, where $\left(g_{1}, q\right)=1$. The splitting field K is Q with the g th root of unity attached. Let K_{1} be Q with the $p^{a} g_{1}$ th roots of unity attached. Suppose that there is an element σ of $G\left(K / K_{1}\right)$, the Galois group of K over K_{1}, for which $\chi^{\sigma} \bar{\chi}(R)$ is not rational.

Clearly, $\chi^{\sigma} \bar{\chi}|P=\chi \bar{\chi}| P=\psi \bar{\psi}$ since σ keeps the p th roots of unity fixed. Suppose that $\chi^{\sigma} \bar{\chi}=\sum_{i=1}^{k} a_{i} y_{i}$, the y_{i} are irreducible characters of G. Again, since $Z \in \operatorname{ker} \chi^{\sigma} \bar{\chi}$, the y_{i} can be considered as linear characters $y_{i}{ }^{*}$ of \bar{G}. We consider the possibilities for this decomposition.
(4) Let $z=\sum_{i=1}^{k} b_{i} y_{i}, b_{i} \leqq a_{i}$, and assume that $z \mid P$ contains only linear characters. Let $K=\operatorname{ker} z$. Clearly $\xi_{a-2} \in K$. Clearly $K \triangleleft G$ and $\chi^{\sigma} \bar{\chi} \mid K=$ $z \mid K+\ldots=(\operatorname{deg} z) \cdot 1_{K}+\ldots$, where 1_{K} is the trivial character on K. If $\operatorname{deg} z>1$, this implies that $\chi \mid K$ is reducible by the primitivity and thus $K \subseteq Z$. This is not true since $\xi_{a-2} \in K$. This shows that $\operatorname{deg} z=1$. We see that there is at most one y_{i} such that $y_{i} \mid P$ contains only linear characters and this y_{i} is linear itself.
(5) Suppose that $y_{j} \mid P$ is rational. If y_{j} is not linear, $y_{j} \mid P$ cannot contain only linear constituents and thus must contain at least one non-linear constituent $\eta_{r}, \quad r=1,2, \ldots, p-1$. Since $y_{j}\left(\xi_{a-2}\right)$ is rational, all $\eta_{r}, r=1,2, \ldots, p-1$, must occur in $y_{j} \mid P$. This implies that $\chi^{\sigma} \bar{\chi}-y_{j} \mid P$ has only linear constituents and therefore is linear. This means that $\chi^{\sigma} \bar{\chi}=y_{i}+y_{j}$, where y_{i} is linear, or $\chi^{\sigma} \bar{\chi}=y_{j}$. In the latter case, $y_{j}{ }^{*}$ is in $B_{0}(p)$ as its degree is p^{2}. However, $y_{j}{ }^{*}\left(\bar{\xi}_{a-2}\right)=0$, a contradiction to Lemma 4.1. This means that if $y_{j} \mid P$ is rational, it is either linear or $\chi^{\sigma} \bar{\chi}=y_{i}+y_{j}$ with y_{i} linear.
(6) Suppose that ξ_{a-2} is not in the kernel of some $y_{i}, i=1,2, \ldots, k$. If $K=\operatorname{ker} y_{i}, K \cap P$ is a normal subgroup of P not containing ξ_{a-2}. The only such subgroup is $Z(4,4 \mathrm{D})$. However, this implies that $K=K_{0} \times Z$, where $K_{0}=O_{p^{\prime}}(K)$. This implies that $K_{0}=e$ since χ is primitive. We know that $Z \subseteq K$ and thus y_{i} acts faithfully on \bar{G}.
(7) Assume now that there are no linear characters among the $y_{i}, i=1,2, \ldots, k$. We have seen in (5) that this implies that $y_{i} \mid P$ is irrational. We know that $\xi_{a-2} \notin \operatorname{ker} y_{i}$ by (4), since $\xi_{a-2} \in \operatorname{ker} y_{i}$ implies $y_{i} \mid P$ has only linear constituents. Furthermore, since $\chi^{\sigma} \bar{\chi}(R)$ is irrational, some $y_{j}(R)$ is irrational. This shows that there is a y_{j} which is irrational on R and P. Since $\xi_{a-2} \notin \operatorname{ker} y_{j}, y_{j}$ is faithful on \bar{G}. Since there are no elements of order $p q$ in \bar{G}, this is a contradiction by $(3 ; 7)$. This shows that some y_{i} is linear.

Let y_{1} be a linear character. We have

$$
\chi^{\sigma} \bar{\chi}=y_{1}+\sum_{i=2}^{k} a_{i} y_{i} .
$$

Let $K=\operatorname{ker} y_{1}$. Since $O^{p^{\prime}}(G)=G$, we have G / K a p-group. Clearly $Z \nsupseteq K$ since $\xi_{a-2} \in K$. This means that $\chi \mid K$ is irreducible by primitivity. Furthermore, $\chi^{\sigma} \bar{\chi} \mid K$ has a constituent 1_{K} and hence $\chi^{\sigma}|K=\chi| K$. Since R is a q-element, $R \in K$. We see that $\chi \bar{\chi}(R)=\chi^{\sigma} \bar{\chi}(R)$. In particular, $\chi \bar{\chi}(R)$ is irrational.

Let $\chi \bar{\chi}=y_{1}{ }^{\prime}+\sum_{i=2}^{k^{\prime}} a_{i}{ }^{\prime} y_{i}{ }^{\prime}$, where the $y_{i}{ }^{\prime}$ are irreducible characters of G, $y_{1}{ }^{\prime}$ is 1 . We have seen in (4) that none of the $y_{i}{ }^{\prime}$ with $i \geqq 2$ are linear. Suppose that $k^{\prime}>2$. None of the $y_{i}{ }^{\prime} \mid P, i \geqq 2$, can be rational. For, if one were, by (4), it would contain all of the η_{i} and the others would contain only linear characters ξ_{i}. This is also impossible by (5). For at least one $i, y_{i}{ }^{\prime}(R)$ is not rational
since $\chi \bar{\chi}(R)$ is not rational. Furthermore, ξ_{a-2} is not in the kernel of $y_{i}{ }^{\prime}$ since $y_{i}{ }^{\prime} \mid P$ does not have linear constituents. This shows, by (6), that $y_{i}{ }^{\prime}$ is faithful on \bar{G}. Again, as there are no elements in \bar{G} of order $p q$, we have a contradiction to $(3 ; 7)$. This shows that $i=2, \chi \bar{\chi}=y_{1}{ }^{\prime}+y_{2}{ }^{\prime}$.

Since $\chi \bar{\chi}(R)$ is not rational and $y_{1}{ }^{\prime}(R)=1$, we see that $y_{2}{ }^{\prime}(R)$ is not rational. Let σ_{1} be in $G\left(K / K_{1}\right)$ such that $y_{2}{ }^{\prime}(R)^{\sigma_{1}} \neq y_{2}{ }^{\prime}(R)$. Since

$$
\chi^{\sigma_{1}} \bar{\chi} \overline{\chi^{\sigma_{1}} \bar{\chi}}=\chi \bar{\chi} \chi^{\sigma_{1}} \overline{\chi^{\sigma_{1}}}=\left(1+y_{1}{ }^{\prime}\right)\left(1+y_{1}{ }^{\sigma_{1}}\right)=1+\ldots
$$

with no further constituents 1 , we see that $\chi^{\sigma_{1}} \bar{\chi}$ is irreducible. The character $\chi^{\sigma_{1}} \bar{\chi}$ can be considered as a character of \bar{G}. It is in $\bar{B}_{0}(p)$ and $\chi^{\sigma_{1}} \bar{\chi}\left(\bar{\xi}_{a-2}\right)=0$, contradicting Lemma 4.1.

We have shown that $\chi^{\sigma} \bar{\chi}(R)$ irrational leads to a contradiction and thus $\chi^{\sigma} \bar{\chi}(R)$ is always rational.
(8) Let $\chi(R)=\mu$. We know that μ is not rational but $\mu^{\sigma} \bar{\mu}$ is always rational. Let σ_{2} be an element of $G\left(K / K_{1}\right)$ such that $\mu^{\sigma}=\bar{\mu}$. This is possible since μ is a sum of $(q)^{b}$ th roots of unity. We know that $\bar{\mu} \bar{\mu}$ is rational and thus μ^{2} is rational. The minimal equation of μ is $x^{2}-r=0$, where $\mu^{2}=r$. This shows that μ has exactly one conjugate, $-\mu$.

Let $\rho_{1}=e^{2 \pi i / q^{b}}$. The Galois group $G\left(K / K_{1}\right)$ is isomorphic to the Galois $\operatorname{group} G\left(Q\left[\rho_{1}\right] / Q\right)$ by the natural restriction from K to $Q\left[\rho_{1}\right]$. For $q \neq 2$, it is cyclic of order $(q-1) q^{b-1}$. If s_{1} is a primitive root $\left(\bmod q^{b}\right), G\left(Q\left[\rho_{1}\right] / Q\right)$ is generated by σ, where $\sigma\left(\rho_{1}\right)=\rho_{1}{ }^{s_{1}}$. There is therefore a unique extension of degree 2 , the fixed field of σ^{2}. Let ρ be $e^{2 \pi i / g}$ and let s be a primitive root $(\bmod q)$. Set $\omega=\sum_{i \| 1}^{\frac{1}{2}(\sigma-1)}(\rho)^{s^{2 i}}$. Clearly, $\omega^{\sigma^{2}}=\omega$. Also as is well known, ω is irrational and thus $Q[\omega]$ is the fixed field. The algebraic integers in $Q[\omega]$ are of the form $a+b \omega$, where a and b are integers. This follows since the algebraic integers in $Q[\rho]$ are in $Z[\rho]$ and the conjugates of ω are linearly independent. We see then that $\mu=a+b \omega$. Furthermore, $\omega+\omega^{\sigma}+1=0$. In our case, $\mu^{\sigma}=a+b \omega^{\sigma}=a-b(1+\omega)=-a-b \omega$. This shows that $2 a-b=0$ and $\mu=a(1+2 \omega)$. Let I be a prime ideal of the algebraic integers in $Z\left[\rho_{1}\right]$ containing q. Since ω is a sum of $\frac{1}{2}(q-1) q$ th roots of 1 all of which are congruent to $1(\bmod I)$ we see that $1+2 \omega \equiv 0(\bmod I)$. This means that $\mu \equiv 0(\bmod I)$. However, since χ has degree $p, \mu \equiv p(\bmod I)$, giving a contradiction. This completes the proof of the theorem.

We now discuss the case $a=3,|G|=p^{3} g_{0}$. The methods above do not apply since \bar{P} is now abelian. However, we can apply the character theory described in $(\mathbf{4} ; \mathbf{5})$ to this case. We first show that except for a trivial case, $O^{p^{\prime}}(G) / Z$ is simple.

Theorem 4.5. If G does not have a normal p-Sylow group, Z is the only nontrivial normal subgroup of $O^{p^{\prime}}(G)$, and thus $O^{p^{\prime}}(G) / Z$ is simple.

Proof. We assume that G does not have a normal p-Sylow group. Let $H=O^{p^{\prime}}(G)$. Let K be a non-trivial normal subgroup of H. The proof consists of several steps.
(1) If K is a p^{\prime}-group, then $O_{p^{\prime}}(H) \neq e$. Therefore $O_{p^{\prime}}(G) \neq e$, contradicting the primitivity of χ. This means that K is not a p^{\prime}-group.
(2) Let P be a p-Sylow group of G. Clearly $P \subseteq H$. Let $P_{0}=P \cap K$. If $\xi \in P_{0}, \xi \notin Z$, there is a $\tau \in P$ such that $\xi^{\tau}=\xi\left(\xi_{2}\right)^{r},\left\langle\xi_{2}\right\rangle=Z$, for any $r, 0 \leqq r \leqq p-1$. This implies that $Z \subseteq P_{0}$. Suppose that $P_{0}=Z$. Then $K=Z \times K_{0}$, where $K_{0}=O_{p^{\prime}}(K)$. Since $K \neq Z, K_{0} \neq e$. This gives a normal non-trivial p^{\prime}-subgroup K_{0}, contradicting (1). Therefore $P_{0} \not ⿻ Z$. If $P_{0}=P$, then $K=H$, giving a contradiction. We see that $\left|P_{0}\right|=p^{2}$.
(3) Suppose that $P \subseteq H_{1} \subseteq H$. We will compute $O^{p}\left(\bar{H}_{1}\right)$. Since \bar{P} is abelian, we use Grün's theorem (14) to see that $\bar{H}_{1} / O^{p}\left(\bar{H}_{1}\right) \cong \bar{P} \cap C\left(N_{\bar{H}_{1}}(\bar{P})\right)$. If $N_{\bar{H}}(\bar{P}) \neq \bar{P}$, then $C\left(N_{\bar{H}_{1}}(\bar{P})\right)=\bar{Z}$ by $(4,7 \mathrm{~A})$. This means that $O^{p}\left(\bar{H}_{1}\right)=\bar{H}_{1}$. If we know that $O^{p}\left(\bar{H}_{1}\right) \neq \bar{H}_{1}$, this implies that $N_{\bar{H}_{1}}(\bar{P})=\bar{P}$ and hence $N_{H_{1}}(P)=P$.
(4) Consider the group $P K$. Clearly $|P K|=p^{3} r_{0}$, where $|K|=p^{2} r_{0}$. Certainly, $P K / K$ is cyclic of order p. This shows that $O^{p}(P K) \neq P K$ and thus $O^{p}(\overline{P K}) \neq \overline{P K}$. Applying part (3) with $H_{1}=P K$, we have $N_{P K}(P)=P$. As $P_{0}=P \cap K$ is not a p-Sylow intersection group (4, 7A), $N_{K}\left(P_{0}\right)=P_{0}$ since any element of K normalizing P_{0} must normalize P. Since P_{0} is abelian, $P_{0} \subset C_{K}\left(N_{K}\left(P_{0}\right)\right)$. By Burnside's theorem (14, p. 169), K has a normal p-complement. This normal p-complement is then normal in G, contradicting the primitivity of χ unless it is e. We see then that $K=P_{0}, P_{0} \triangleleft G$. Again, since there are no p-Sylow intersection groups, $P \triangleleft G$, contradicting the hypothesis. This completes the proof of the theorem.

The following theorem is a collection of several properties of $O^{p}(G)$.
Theorem 4.6. Let $a=3, H=O^{p^{\prime}}(G)$. Suppose that $H \neq P$. Then the character $\chi \mid H$ is primitive. If $\sigma \in G(K / Q(\epsilon))$ and $\chi^{\sigma}|H \neq \chi| H$, then $\bar{\chi} \chi^{\sigma} \mid H$ is irreducible. In this case $\chi \bar{\chi}=1+\chi_{2}, \chi_{2}$ is irreducible, $\chi_{2}{ }^{\sigma} \neq \chi_{2}$. Furthermore, $\chi \mid H$ is real on p-regular elements.

Proof. The primitivity of $\chi \mid H$ follows from Theorem 4.5 as there are no non-trivial normal subgroups except Z. From now on in this theorem we replace G by $O^{p^{\prime}}(G)$.
(1) We first show that if $\chi^{\sigma} \bar{\chi}$ is irreducible for all $\sigma \in G(K / Q(\epsilon))$ with $\chi^{\sigma} \neq \chi$, then χ is real on p-regular elements. Suppose that $\chi \neq \bar{\chi}$ on some p-regular element. There is an element in $G(K / Q(\epsilon))$ such that $\chi^{\sigma}=\bar{\chi}$ for p-regular elements. We know that $\chi^{\sigma} \neq \chi$ and so $y=\chi^{\sigma} \bar{\chi}$ is irreducible. Let y^{θ} be the modular character corresponding to y. Since y has degree p^{2}, it is of p-defect 1 . However, $Z \in \operatorname{ker} y$ and thus y can be considered as a character of \bar{G}. Here it is of p-defect 0 and hence is modularly irreducible. However, $\left(\chi^{\sigma}\right)^{\theta}=\bar{\chi}^{\theta}$ since $\chi^{\sigma}=\bar{\chi}$ on p-regular elements. Certainly, $\bar{\chi}^{\theta} \bar{\chi}^{\theta}$ is not irreducible since the characters corresponding to the symmetric and skew symmetric tensors are summands. This shows that $\left(\chi^{\sigma} \bar{\chi}\right)^{\theta}$ is not irreducible, giving a contradiction. We see that χ is real on p-regular elements.
(2) We now show that $\chi^{\sigma} \bar{\chi}$ is irreducible if $\chi^{\sigma} \neq \chi$. The results of (5) are applied. These are described in $(\mathbf{4} ; \S 8)$. We use the notation of (4) here.

Suppose that $\chi^{\sigma} \bar{\chi}$ is reducible. Since all of the constituents of $\chi^{\sigma} \bar{\chi}$ have degrees at most $p^{2}-1$, they are all in $B_{0}(p)$. We can therefore write

$$
\chi^{\sigma} \bar{\chi}=\sum_{i=1}^{e} a_{i} \chi_{i}+a_{0}\left(\sum_{k=1}^{t} \chi_{0}^{k}\right) .
$$

Since χ is zero on $P-Z$, the multiplicities of $\chi_{0}{ }^{k}, k=1,2, \ldots, t$, are all the same. We use an argument similar to (4, §8).

Suppose that $a_{i} \neq 0, b_{i}>0$. Since $\chi_{i}(1) \equiv b_{i}\left(\bmod p^{2}\right), \chi_{i}(1) \leqq p^{2}-1$, we see that $\chi_{i}(1)=b_{1}$. This means that $P \subseteq \operatorname{ker} \chi_{i}$, which implies that G is in the kernel of χ_{i} and that $\chi_{i}=1$. Further, $\chi^{\sigma}=\chi$, contradicting the hypothesis.

Suppose that $a_{i} \neq 0, b_{i}<0$. As in (4), $\left\{\left|b_{i}\right|+\chi_{i}\right\}\left|\bar{P}=m \rho_{\bar{P}}, m>\left|b_{i}\right|\right.$, where $\rho_{\bar{P}}$ is the regular representation of \bar{P}. We have $p^{2}-1 \geqq \chi_{i}(1)=$ $m p^{2}-\left|b_{i}\right| \geqq\left|b_{i}\right|\left(p^{2}-1\right)$. This yields $b_{i}=-1, \chi_{i}(1)=p^{2}-1$. This means that $\chi^{\sigma} \bar{\chi}$ has a linear constituent which can only be 1 by the choice of G. Again $\chi^{\sigma}=\chi$, giving a contradiction.

Finally, we have $\chi^{\sigma} \bar{\chi}=a_{0}\left(\sum_{k=1}^{t} \chi_{0}{ }^{k}\right)$. However, $\left(\sum_{k=1}^{t} \chi_{0}{ }^{k}(\xi)\right) \neq 0$, and thus $a_{0}=0$ also. We have seen then that $\chi^{\sigma} \bar{\chi}$ must be irreducible.
(3) Suppose that $\chi \bar{\chi}=1+y$. If y and y^{σ} had a common constituent, we would have

$$
\chi^{\sigma} \bar{\chi} \overline{\chi^{\sigma} \bar{\chi}}=\chi \bar{\chi} \chi^{\sigma} \overline{\chi^{\sigma}}=(1+y)\left(1+y^{\sigma}\right)=1+\left(y_{1} y^{\sigma}\right)+\ldots=1+1+\ldots
$$

This implies that $\chi^{\sigma} \bar{\chi}$ is reducible. This means that in (4, §8, Case II), $y=\sum_{k=1}^{t} \chi_{0}{ }^{k}$. If y and y^{σ} have no common constituents, $\chi_{0}{ }^{k}$ and $\left(\chi_{0}{ }^{k}\right)^{\sigma}$ are all distinct. This is inconsistent with the results of $(\mathbf{4}, \S 8 ; \mathbf{5})$. We see that ($4, \S 8$, Case I) occurs and $\chi \bar{\chi}=1+\chi_{2}$ with χ_{2} irreducible. Furthermore, $\chi_{2}{ }^{\sigma} \neq \chi_{2}$.
5. Abelian Sylow groups. If q is a prime, $p / 2<q<p$, the q-Sylow group must be abelian. This is easy to show if q is greater than five but difficult for $q=5$. We will prove it in this section for $q \geqq 7$ and save the proof for $q=5$ for a later paper in which linear groups of degree 7 are treated explicitly (see p. 1042 of this issue). The proof does not depend on the fact that G is of prime degree and so we prove it in general. The proof seems to be well known.

Theorem 5.1. If G has a faithful primitive irreducible representation X of degree n and q is a prime, $n / 2<q<n, 7 \leqq q$, then a q-Sylow group of G is abelian.

Proof. If a q-Sylow group P_{q} is non-abelian, $X \mid P_{q}$ must have a constituent of degree q and $n-q$ linear constituents. Let ξ be an element in $Z\left(P_{q}\right) \cap P_{q}{ }^{\prime}$. For an appropriate power ξ^{τ} the eigenvalues of $X\left(\xi^{r}\right)$ are $e^{2 \pi i / g}$ repeated q times and 1 repeated $n-q$ times. This contradicts Blichfeldt's theorem (1, p. 96) since $q \geqq 7$ and shows that P_{q} is abelian.

References

1. H. F. Blichfeldt, Finite collineation groups (Univ. Chicago Press, Chicago, Illinois, 1917).
2. R. Brauer, Zur Darstellungstheorie der Gruppen endlicher ordnung, I; II. Math. Z. 63 (1956), 406-444; 72 (1959), 25-46.
3. _ A note on theorems of Burnside and Blichfeldt, Proc. Amer. Math. Soc. 15 (1964), 31-34.
4. ——Über endliche lineare Gruppen von Primzahlgrad, Math. Ann. 169 (1967), 73-96.
5. R. Brauer and H. S. Leonard, Jr., On finite groups with an abelian Sylow group, Can. J. Math. 14 (1962), 436-450.
6. R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. 45 (1959), 1757-1759.
7. W. Burnside, Theory of groups of finite order, 2nd ed. (Cambridge Univ. Press, Cambridge, 1911).
8. W. Feit, Groups which have a faithful representation of degree less than p-1, Trans. Amer. Math. Soc. 112 (1964), 287-303.
9. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.
10. J. A. Green, Blocks of modular representations, Math. Z. 79 (1962), 100-115.
11. N. Ito, On the degrees of irreducible representations of a finite group, Nagoya Math. J. 3 (1951), 5-6.
12. I. Schur, Über ein Klasse von endlichen Gruppen linearer Substitutionen, Sitzber. Preuss. Akad. Wiss. Berlin 1905, 77-91.
13. H. F. Tuan, On groups whose orders contain a prime to the first power, Ann. of Math. (2) 45 (1944), 110-140.
14. H. J. Zassenhaus, The theory of groups, 2nd ed. (Chelsea, New York, 1958).

California Institute of Technology,
Pasadena, California

[^0]: Received August 11, 1967. This work was part of the author's Ph.D. thesis at Harvard University in 1967. It was supported by a Canadian National Research Council Special Scholarship.

