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REPRESENTING HOMOLOGY CLASSES ON SURFACES 

BY 

JAMES A. SCHAFER 

Let T2 = S1xS1, where S 1 is the unit circle, and let {a, 0} be the integral 
basis of Hi(T2) induced by the 2 S ^factors. It is well known that 0 ^ X = 
pa + qP is represented by a simple closed curve (i.e. the homotopy class appq 

contains a simple closed curve) if and only if gcd(p, q) = 1. It is the purpose of 
this note to extend this theorem to oriented surfaces of genus g. 

Let Sg be an oriented surface of genus g > 0 . The fundamental group 7rg can 
be presented as {au . . . , ag, bu . . . , bg: fl! [a» bt]} and Hi(Sg) is a free abelian 
group with 2 g canonical generators, au . . . , ag, j 8 i , . . . , j3g, the images of at, bt 

respectively. Recall that a homology class XeHi(S g ) is said to be represented 
by a simple closed curve if and only if there exists a homotopy class a e 7Ti(Sg) 
containing a simple closed curve and h(a) = X where h:77i(Sg)-» TTi(Sg)ab = 
Hi(Sg) is the Hurewicz map. It is the purpose of this note to prove the 
following theorem. 

THEOREM. Let Sg be an oriented surface of genus g > 0 , and let 
{ « i , . . . , ag; ]8 i , . . . , ]8g} be the canonical basis of Hi(Sg). Then 0 7e X = 
ZiPi«i + ^ift eHi(Sg) is represented by a simple closed curve if and only if 
g c d { p i , . . . , p g , q i , . . . , q g } = l . 

Proof. Suppose gcd{pu . . . , qg}= 1, then X is part of an integral basis for 
Hi(Sg). Now Hi(Sg) supports a non-degenerate skew-symmetric bilinear form 
(the intersection pairing) and au . . . , ag, jS i , . . . , j6g is a symplectic basis for 
this pairing. Since the form is skew-symmetric, every vector is isotropic, i.e. 
X - X = 0. From the non-degeneracy of the form, choose Y^ 0 so that X • Y = 
1. It is easy to see that the form restricted to the subspace generated by X and 
Y is non degenerate. It follows easily that Hi(Sg)^{X, Y}©{X, Y}"\ Hence X 
is part of a symplectic basis for Hi(Sg). We may assume X = M(«i) where M is 
a symplectic transformation on Hi(Sg). Now every symplectic automorphism of 
Hi(Sg) is induced by an automorphism of 7Ti(Sg). This is most easily demon
strated by exhibiting a set of generators for the symplectic automorphisms of 
Z 2 g and showing each is induced by an automorphism of 7Ti(Sg) [1]. By 
Nielsen's theorem [2], every automorphism of 7Ti(Sg) is induced by a 
homeomorphism of Sg. If h is a homeomorphism h : Sg -» Sg such that h* = M 
and AiS 1 -» Sg is a simple closed curve representing a1 then hk is a simple 
closed curve representing X. 
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Conversely, suppose À e 7Ti(Sg) contains a simple closed curve and À repres
ents X in Hi(Sg). Since À represents X ^ 0, À contains a non separating simple 
closed curve. From results of Zieschang [3], there exists an automorphism 
a : 7Ti(Sg) —> 7Ti(Sg) mapping a^ to À. Then a* is a symplectic automorphism and 
maps a i to X. Therefore X is a part of a symplectic basis, hence a basis, so the 
gcd{pu . . . , qg} must be one. 

Let w = w(au . . . , bg)e 7Ti(Sg) and let JV(w, ai) = sum of the exponents 
(positive and negative) of occurrences of at in w. Similarly define N(w, bt). 

COROLLARY. If gcd{N(w, ai), N(w, a 2 ) , . . . , N(w, bg)} ̂  1 then the coset 
w[7Tg, 7rg] do^5 not contain a simple closed curve. 

Proof. The image of w in Hi(Sg) is YA [N(W, a ^ + N(w, ft*) ft] and the coset 
w[irg, 7rg] contains all possible representatives of the image of w. 
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