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On subparacompact and countably
subparacompact spaces

M.K. Singal and Pushpa Jain

A space is said to be subparacompact if every open covering of

it has a a-discrete closed refinement. Subparacompactness is

equivalent to F -screenability of McAuley and also to

a-paracompactness of Arhangel'skiT. Some properties of these

spaces have been obtained in this note. Countably subparacompact

spaces, which can be defined in an analogous manner, have also

been studied.

In [12] McAuley has introduced the concept of F -screenability. He

calls a space X , F -screenable if every open covering of X has a

O-discrete closed refinement. Obviously every regular paracompact space

is F -screenable. Bing [2] has given an example (Example H, [2]) to show

that there exists a normal F -screenable space which is not paracompact.

However, as proved by McAuley [72], in a collectionwise normal space

F -screenability implies paracompactness. Again in [1], ArhangeI'skiT

introduced the notion of a-paracompactness. According to him, a space X

is a-paracompact if it has the property that 'for every open covering U

of X there exists a sequence {U } , of open coverings of X such that

for each x € X there exists a positive integer m(x) and a U 6 U such

that St[x, U , ,) c U ' , where St[x, U / \) denotes the union of all

those members of U , . which contain x . Burke and Stoltenberq [5] and
m(x)
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Coban [6] proved simultaneously, but independently, that F -screenability

implies a-paracompactness. But, later on, Burke [3] proved that

F -screenability and a-paracompactness are actually equivalent. He

further proved that any of these properties of a space X is equivalent to

any of the following two properties of X :

(1) every open covering of X has a a-locally finite closed

refinement;

(2) every open covering of X has a a-closure preserving closed

refinement.

A space characterized by any of the above four properties is called by

Burke [3] a subparacompact space. Subparacompactness has also been studied

recently by HodeI [9]. In the present note we present some further results

on subparacompact spaces. In Section 1, some results concerning

subparacompact subsets are obtained. Section 2 deals with some sum

theorems. In Section 3 countably subparacompact spaces have been studied.

1. Subsets and subparacompactness

As with the other compactness properties, it can easily be verified

that every closed subset of a subparacompact space is subparacompact. In

fact, the following stronger result can be proved.

THEOREM 1.1. Every F -subset (that is, a countable union of closed

subsets) of a subparacompact space is subparacompact.

Proof. Let ^ be a subparacompact space and let A be an F -subset

of X . Let U = {U : a t A} be an open (in A ) covering of A . Let

U = A n U' for each a € A , where U' is open in X . Since A is an

o a a *
oo

F -subset , there exist closed subsets A. of X such that A = U A. .
;=i ^

Now, for each i , let W. be an open covering of X whose elements are

I ^ A . and all U''s . Since X is subparacompact, W. has a O-locally
^ ct %

finite closed

00

refinement V. = U \fl. . Let Up. be the collection of all
t vt j=1
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those elements of VJ. which intersect A. . Each iP. is locally finite

CO

with respect to X . U U. is an open covering of A. such that every

3=1 V %

element of II3'. is contained in some U' . Let U*.3' = \B n A : B 6 U3'.\

CO 00

and let U* = U U U*.3 . Then U* is a a-locally finite (in A )
i=l J=l

closed (in /I ) refinement of U . Hence A is subparacompact.

DEFINITION 1.1. A subset A of a topological space X is said to

be a generalized F -subset if for each open subset U of X containing

A there exists an F -subset B of X which is contained in U and

contains A .

THEOREM 1.2. Every generalized F^-subset of a subparaaompaat space

is subparacompaot.

Theorem 1.2 will easily follow from Theorem 1.1 and the following

THEOREM 1.3. Let X be a topologiaal spaae and let A be a subset

of X suah that every open subset of X which contains A contains a

subparacompaot set which contains A . Then A is subparacompact.

Proof. Let U = {U : a € A} be an open (in A ) covering of A .

For each a , let U = A n V where V is open in X . Then

A c U V . By the given condition there exists a subparacompact subset

B of X such that A c B <= U V . Now {V n B : a € A} is an open
aeA

covering of B . Thus it has a a-locally finite (in B ) closed (in B )

00

refinement W = U W. . Let III. = {W. . : j i A.} . If W. . = V. . n B ,
i = 1 t v 13 " i 1*3 13

where V. . is closed in X , then V.. n A is closed in A . Also the

family V. = {V. . n A : j i A.} is locally finite in A for each i , and

t- 1*3 T*

OO

U V. covers A . Hence A is subparacompact.
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THEOREM 1.4. If every open subset of a subparacompaet space X is

subparacompaet, then every subset of X is subparacompaet.

Proof. Let A be a subset of X and let U be an open (in A )

covering of A . Then there is a collection U* of open subsets of X

such that U = {U* n A : U* € U*} . Let G = U{U* : U* £ U*} . Then

G is an open subset of X and U* is an open covering of G . Thus

there is a sequence {U*} _ of open (in G and hence in X ) coverings

of G such that for each x £ G there is a positive integer m{x) and

U* d U* such that St[x, um/x))
 c u* • F o r e a c h * > l e t

U = {U* n A : U* € U*} . Then W ^ } " is a sequence of open (in A )

coverings of A satisfying the condition for subparacompactness of A .

2. Sum theorems

DEFINITION 2.1. (Katuta, [70]). A family {Aa : a € A} of subsets

of X is said to be order locally finite if there is a linear ordering

'<' of the index set A such that for each a € A , the family

{A. : 8 < a} is locally finite at each point of A
p a

Every a-locally finite family is order locally finite, but not

conversely.

In [73], Singal and Arya have proved that for a topological property

P which is weakly hereditary (that is, a property which when possessed by

a space is also possessed by every closed subset of it) and for which the

locally finite sum theorem holds (that is, if {F : a € A} is a locally

finite closed covering of X such that each F has the property P ,

then X has the property P ) , the following results are true:

THEOREM 2.1. Let V be an order locally finite open covering of a

space X such that the closure of each member of U possesses the

property V . Then X possesses P .

THEOREM 2.2. If X is a regular space, if V is an order locally

finite open covering of X each member of which possesses the property ?

and if the frontier of each member of 1/ is compact, then X possesses
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the property P .

We shall prove that the locally finite sum theorem holds for

subparacompactness.

THEOREM 2.3. If {F : a (. A} is a locally finite closed covering

of a space X such that each F is subparacompact, then X is

subparacompact.

Proof. Let U = {£/ : g £ A} be an open covering of X . Then

{U n F : 3 £ A} is an open covering of F for each a . Since F is

00

subparacompact, therefore there exists a family 1/ = U 1/. of closed
i=l V

subsets of F^ (and hence of X ) such that each V. is a discrete (in

F and hence in X ) family of subsets of F such that f is a

00

covering of F . For each i , let W. = U I/* and let W = U W. .
" * aeA x i=l l

Then W is a closed covering of X which is a refinement of U . Also,

we shall show that each W. is locally finite. Let x £ X . Since
tr

{Fa : a d A} is locally finite, there exists an open set M such that

M n F = 0 for all except finitely many indices a , say

OL , a_, ..., a . We can assume that x £ F for each
± d. n ex.

l 2 n
i = l, 2 n . Since each one of the collections I/. , I/. , ..., I/.

3 3 3

is discrete, therefore, for each i = 1, 2, ..., w there exists an open

set V. such that x i V. and V. intersects at most one member of

aiV. . Thus x £ W n ... n W n M which is a neighbourhood of x which

intersects only finitely many members of W. and hence W. is locally

finite. Thus W is a O-locally finite closed refinement of ti and hence

X is subparacompact.

COROLLARY 2.1. A disjoint topological sum of subparacompact spaces
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is subparacompact.

Since subparacompactness is weakly hereditary, it follows in view of

Theorem 2.3 above that Theorems 2.1 and 2.2 are true for

P = subparacompact. Thus we have the following results.

THEOREM 2.4. If V is an order locally finite open covering of X

such that the closure of each member of V is subparacompact, then X is

subparacompact.

THEOREM 2.5. Let X be a regular space and \l be an order locally

finite open covering of X such that each member of V is subparacompact

and the frontier of each member of \J is compact. Then X is

subparacompact.

Since every a-locally finite family is order locally finite, we have

the following important results as corollaries to Theorems 2.U and -2.5.

COROLLARY 2.2. Let V be a a-locally finite open covering of a

space X such that the closure of each member of V is subparacompact.

Then X is subparacompact.

COROLLARY 2.3. Let X be a regular topological space and let V be

a a-locally finite open covering of X such that each member of 1/ is

subparacompact and the frontier of each member of \J is compact. Then X

is subparacompact.

DEFINITION 2.2. [Hodel, «]. A subset A of a space is said to be

oo

elementary if it is open and if there exists a sequence {A.}., of open
1? i*—±.

oo

subsets of X such that Ac U A . and A. c A for all i . A covering
i=l 1 1

of X consisting of elementary sets is said to be an elementary covering.

As a result of Theorem 2.3 and the weak hereditary character of

subparacompactness, we have the following;

THEOREM 2.6. If V is a a-locally finite elementary covering of

X such that each element of V is subparacompact, then X is

subparacompact.

THEOREM 2.7. Let V be a locally finite open covering of a regular

space X such that each member of V is subparacompact and the frontier
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of each member of V is Lindelof. Then X is subparacompact.

Proof. Let f = {V : a 6 A} be the given locally finite open

covering of X . For each a € A , Fr7 is Lindelof. Therefore there

a
exists a countable subfamily Iv : i = 1, 2, ...} of 1/ which covers

FrV . Let F. = Fr7 % U V , so that F_ is a closed subset of FrF
1 a i=2 cu 1

and hence of X such that F c V . We shall prove that there exists an

open set U^ such that F c U a U c V . Since X is regular, for

each x € F. there is an open set U such that x € U c U c P
1 ^ a; a; x a

Since F is Lindelof, the open covering {U : x 6 F } of F has a

countable subcovering, say U',U', ... , such that for each n i N ,

U' n W *> Va = 0 . Now X ̂  Fa = [AT -v ? a I u FrKa and

Fr^a n F± = & , since V^ is open and ^ c KQ . Let j/ i X <\- 7^ .

If !/ f Fry then again by regularity of X there exists an open set V
1 y

such that y i V c~V c X "x F . If y i X ^ 7 , then X <\- 7 is an

open set containing y such that X i> V n F' = $ ; for if 2 € ^ then

7 is an open set containing z such that V n \x *v< 7„ = P » which
1 1 "• I-*

Since Fr^~ is Lindelof the covering

<,X ^ V , V : y £ FrV >

V' V', ... , which covers X ^ V and such that for each n € N ,

: y £ FrV > of -f 'v* V has a countable subcovering, say

7' n F= p . For each n £ N , let

[/" = U' ^ U{V' : p < n}

and
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V" = V -v, U{U' : p < n) .
n n P

Then U'^ n V"m = p for all n, m t N . Let U± = U U", ^ = U 7^ so

that Fx c y and X ^ 7 c 7 . Hence F. c y c ~U c X ^ V c V

U , being a closed subset of 7 , is subparacompact.

Wow suppose that for eaeh i = 1, 2, ..., n-1 , there exists an open

set U. such that F. c y. c y. c V where
i ^ t ^ a.

i

ct-1
F. =^ U £/, u U y

=1 Ĵ l k = i + 1 «
and i/. i s subparacompact. We s h a l l now cons t ruc t U and F as

follows. Let F^ = Fr7a i. U [/,

oo , n _ ] _ oo

i f x € F t h e n x € U 7 , a : ^ U £ / , , a ; f U 7 , . I I 1/ ,

rr~2 ) f °° )i
i m p l i e s t h a t i ( ? = F r 7 ' o U y . u U 7 . T h e r e f o r e

x € U V and thus x € V . A s b e f o r e , t h e r e f o r e , t h e r e e x i s t s an
k=n k n

open set U such that F c U c U c V and U i s subparacompact.
n

The proof is complete by induction and we can define a family

U = {J/ : n = 1, 2, ...} of open sets satisfying

(a) U is a covering of Frl^ ;

(b) (U : n = 1, 2, ...} is locally finite.

To prove (a), let x t FrVa • Since iv : i = 1, 2, ... i is point

finite, we can take the largest integer i such that x € 7 . Then
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x £ U V and x { U V . I n case x € U £/. we are done.

Otherwise x £ F. and so x £ U. . (b) is obvious in view of the fact
t i

that the family (U : n = 1, 2, ...} is a family of subsets of a locally
n

finite family \V : n = 1, 2, ...> .

CO

Let FQ = ? a ^ U y, ; then {? : n = 1, 2, ...}u {FQ} is a

locally finite closed covering of V each member of which is

subparacompact. Hence V is subparacompact. Thus {V : a £ A} is a

locally finite closed covering of X each member of which is

subparacompact. Hence X is subparacompact in view of Theorem 2.3.

DEFINITION 2.3. (Dowker [7]). A space X is said to be totally

normal if it is normal and if every open subset G of X is expressible

as a union of a locally finite (in G ) family of open F -subsets of X .

It is proved in [7] that every subset of a totally normal space is

totally normal.

THEOREM 2.8. Every subset of a totally normal subparaaompaat space

is subparacompact.

Proof. In view of Theorem l.k we prove only that every open subset of

a totally normal subparacompact space is subparacompact. Let G be an

open subset of X . Then G = U G where {G : a £ A} is locally

finite in G and each G is an open F -subset of X . Wow G is

totally normal and hence normal. Therefore there exists a locally finite

open refinement {# : a £ A} of {G : a £ A} such that H cz G for
a a a a

each a £ A , where H denotes the closure of H in G . It can easily
a a

If
a

follows that G is subparacompact. Hence the theorem.

be seen that H is an F -subset of X . Therefore, by Theorem 2.3, it
ct a
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3. Countably subparacompact spaces

A space X is said to be countably subparacompact if every countable

open covering of X has a O-discrete closed refinement.

This definition is due to Hode I [9]. It is proved essentially in [77]

that in a normal space countable subparacompactness, countable

paracompactness and countable metacompactness are all equivalent. Also, in

a screenable space (that is, a space in which every open covering has a

a-mutually disjoint open refinement) countable subparacompactness is

equivalent to subparacompactness [of. HodeI [9]). It can easily be

verified that a space is countably subparacompact if and only if it

satisfies the condition:

given a countable open covering {U : n = 1, 2, ...} of X , there

is a countable closed covering {F . : n = 1, 2, ...; j = 1, 2, ...}

of X with F . c U for all n and all j .

In the present section we obtain some more characterizations of countable

subparacompactness, and we find that if we add the word 'countable' with

the open coverings in the equivalences for subparacompactness obtained by

Burke [3] (mentioned in the introduction) we obtain the equivalences for

countable subparacompactness [Theorem 3.1]. Throughout, N will be used

to denote the set of all natural numbers.

THEOREM 3.1. For a topological space X the following are

equivalent:-

(i) every countable open covering of X has a o-disarete closed

refinement;

(ii) every countable open covering of X has a a-locally finite

closed refinement;

(Hi) every countable open covering of X has a a-closure

preserving closed refinement.

Before proving this theorem we prove the following lemma.

LEMMA 3.1. Let every countable open covering of X have a

•closure preserving closed refinement. Then for every sequence ^uM^n=1
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of countable open coverings of X j where U(n) = {U.(n) : i € N] and

oo

£/.(n+l) c U.(n) for all i d N , there exists a sequence {!/(«)} _. of

oo

closed coverings of X such that for each n d N , V(n) = U V (n) and

the following are satisfied:-

(1) "m(") = [V• M : i d N] and V in) is closure preserving for

each m d it ;

(2) V. (n) c U.M , for all i and m i N ;

( 3 ) Vi mM C Vi m+l(n) ' f°r aU i and

(It) Vi m(n+l) c Vi m(n) , for all i and m (. N .

Proof of the lemma. Let n d N . Let ?{n) = U P (n) be a

O-closure preseirving closed refinement of U(n) . We now construct another
oo

CJ-closure preserving closed refinement. W(n) = U W (n) of U(n) as
m=l

follows: Let U (n) = U P .{n) . Then W(n) = U 1)1 (n) is a a-closure
m ism V m=± m

preserving closed refinement of U(n) such that W (n) c W (n) . Now,
vn wi+±

l e t t , m, n € N . If m < n , l e t 7. (n) = P . If m > n , define

Vi m(n) = U{(/ € Wm(fe) : W c U^n), k d N, n < fe 5 m} .

Each V. (n) , being a f in i t e union of closed se t s , i s closed. Let
"V ylTl

00

1/ (n) = {V. (n) : i i N] . Let l/(n) = U V M . Then {l/(n)}°° n i sm v ,m m n=lm=l

the required sequence of closed coverings.

Proof of Theorem 3.1. (i) =» (ii) and (ii) =» (Hi) are obvious.

Therefore we prove that (Hi) =» Cij. Let U = {i/. : -£ e TV} be a countable

open covering of X . We shall construct a a-discrete closed refinement
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of U . For each n d N , let £/.(l, n) = U. . Then {U(l, «)}°° , , where

(J(l, n) = {j/.(l, n) : i £ N) is a sequence of countable open coverings of

f̂ . Thus, by the above lemma there exists a sequence {1/(1, ")} , of

countable closed coverings of X such that for each n t N , the following

are satisfied:

(i) 1/(1, n) = U 1/(1, n) ;

m=l

(ii) 1/ (l, n) = {7. (l, n) : •£ € tf} and is closure preserving for

each m i. N ;

(iii) K. m(l, n) c U.(l, n) , for all i and m i N ;

(iv) 7. m(l, n) c 7. .n(l, n) , for all i and w k N ;
Z "/ % m+X

(v) 7. (1, n+1) c 7. (1, M ) , for all i and m i N .

By induction, therefore, it follows that for each k (. N , we can

construct a sequence {V(k, n)} of countable closed coverings of X

and a sequence of countable open coverings {U(k, n)} . such that for

each n f N , the following are satisfied:-

(1) V{k, n) = U V (k, n) ;
m=l

(2) 1/ (fe, w) = {7. (fe, n) : i f ff} and is closure preserving for
777 7* jW

each m (: N ;

(3) 7. (fc, n) c U.(k, n) , for each i and m d N ;

(It) 7. (fe, w) c 7. +1(fe, ") » for each i and m d N ;

(5) 7. (fc, n+1) c 7. {k, n) , for each i and m f A? ;

(6) £/.(fc+l, n) = U. ^ U 7. (&, 1) .

Each (i(fe, n) is an open covering of X , for if x 6 * and £/. is
I
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the first member of U containing x , then x € UAk, n) for any

k, n i N . For i, m, n, k € N , define

WAk, m, n) = V. (k, 1) n V. (fc+i, n) .
lr lr jilt L- fill

Then W(k, m, n) = {WAk, m, n) : i £ N} is a closure preserving

collection of closed sets. Let i, V i. N with V # i . Let V < i ,

then

AUfc, m, n) c K. _(fe+l, n) c y.(fe+l, n)

^ i " U . 7 j , n ( f e ' X)

t7<^ t / )

c y . ^ K . , (fe, 1) , since V < i
1s Is $7%

c U. ̂  W., (k, m, n) .

Hence W., (k, m, n) n WAk, m, n) = 0 for all i, V d N with i + V .

% %

Thus W.t(k9 m, n) , being a family of mutually disjoint closed sets, is

discrete for each fe, m, n $ N . Also W.(kt m9 n) c U. . To prove that
1 %

oo oo

W = U U U W(k, m, n) is a covering of X , let a; € J . Then there
k=l m=l n=l

exists a i ( IF and k i N such that a; f U Ak, m) and x f U Ak, m)
3 t

for i < j . Since V(k, m) is a covering of X , there is an n € N

such that a; t V 6 U (k, m) . Then there is an i (. N such that

x € V. (k, m) and x { 7., ,(k', m') for V < i . We show that
lr y Ti %• yTX

x d WAk, m, n) . We notice that if V < i ,

V., (fc+1, n) c U.Ak+1, n)

and so,

Thus

UV

/ . , Jk+1, n) n v. (k, l) = p .

https://doi.org/10.1017/S0004972700047249 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700047249


302 M.K. Singal and Pushpa Jain

x £ V. (fe, m) ^ U V., (fe+1, n)
i,n . i . i ,m

c V. (k, 1) ̂  U V., (fe+1, n)
i,n . | . v ,m

= V^ n(k, 1) ̂  U V., ffl(fe
+l. n) , in virtue of (3) and (6)

c Vi n{k, 1) n ^ m(k+l, n) = W^k, m, n) .

Hence W is a O-discrete closed refinement of U ; which proves

(Hi) = (i).

THEOREM 3.2. A closed continuous image of a countably subparacompact

space is countably subparacompact.

Proof. Let / : X -*• Y be a closed continuous mapping from a

countably subparacompact space AT to a space Y . Let U = {U. : i € N}

be a countable open cover of Y . By continuity of f ,

f (U) = \f [u.) : i £ Nf is a countable open cover of X . Therefore

00

there exists a closed refinement P = U P of / (U) where each P
71=1

is a closure preserving collection of closed sets. Since / is a closed

mapping, f\P ) = {f(P) : P £ V } is a closure preserving collection of

closed sets in Y . Thus f{?) is a a-closure preserving refinement.

Hence Y is countably subparacompact.

THEOREM 3.3. If f : X -* Y is a closed, continuous mapping from a

regular space X onto a countably subparacompact space Y such that

f (y) is compact for each y € Y , then X is countably subparacompact.

Proof. Suppose U ={£/.: i £ N} is an open cover of X . For each

y £ Y , we can find a finite subcollection U(y) c U such that

/"•"•(j/) c U{y) = U{y : U £ U(y)} . Let V(y) = Y -v f[x °» U(y)) . Then

V = {V(y) : y £ Y] is an open cover of Y . Since U is countable and

{U{y) : y £ Y] c {lil : W is a finite subcollection of U} we see that

{U(y) : y £ Y) is countable. Then {U(y) : y £ Y) and hence 1/ is

countable. Thus, by countable subparacompactness of Y , V has a
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O-discrete closed refinement V* = U V* . Clearly

/"•"•(I/*) = {.f~ " V * ) : V* f I/*} is a a-discrete refinement of

iU(y) : y (. Y) . Given V* € IM , let #(7*) be a fixed element of Y

such that f~X(V*) c ll[y(V*)) . For each n i N , let

Un = {•f~1(lM) n y : 7* € I/*, £/ € U(j/(f*))} . Since f"1(l/*) is a discrete

collection in X , each t f Ĵ  has a neighbourhood N which intersects
cc

at most one element of /~1(l'*j . Since each element of /~1(l/*)

intersects only finitely many elements of U* and each element of (J* is

contained in some element of / ("*) it follows that N will intersect

only finitely many elements of U* . So U* is locally finite and

00

U* = U U* is a a-locally finite refinement of U . Since X is
n=l

regular, it follows that every countable open cover of X has a a-locally

finite closed refinement. Hence X is countably subparacompact.

REMARKS. It is easy to see that the results of Theorems 1.1, 1.2,

1.3, l.U, 2.3, 2.k, 2.5, 2.6, 2.7, 2.8 and Corollaries 2.1, 2.2, 2.3 in

Sections 1 and 2 remain true if 'subparacompact1 is replaced by 'countably

subparacompact1.
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