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Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates postprandial glycaemic response by enhancing insulin secretion. We
previously demonstrated that the postprandial GLP-1 response was enhanced during the development of diet-induced obesity in rats.
However, the physiological relevance of the enhanced GLP-1 response remained unclear. We aimed to determine the role of endogenous
GLP-1 during obesity development. Male Sprague–Dawley rats were given either a control diet or a high-fat/high-sucrose (HFS, 30 % fat
and 40 % sucrose, weight basis) diet with or without continuous administration of the GLP-1 receptor antagonist, exendin (9–39) (Ex9,
100 μg/d), for 5 weeks. Meal tolerance tests (MTT) were performed to assess postprandial glucose, insulin and GLP-1 responses to a liquid
diet administration (15 kcal (63 kJ)/10 ml per kg body weight) every 2 weeks. The AUC of postprandial glucose in the HFS group was similar
to the control group in both MTT (P= 0·9665 and P= 0·3475, respectively), whereas AUC of postprandial GLP-1 (after 4 weeks,P= 0·0457) and
of insulin (after 2 and 4 weeks, P= 0·0486 and P= 0·0110) was higher in the HFS group comparedwith the control group. In the Ex9 group, AUC
of postprandial glucose (P= 0·0297 and P= 0·0486) was higher along with a lower insulin response compared with the HFS group (P= 0·0564
and P= 0·0281). These results suggest that enhancement of the postprandial GLP-1 response during obesity development has a role in main-
taining a normal postprandial glycaemic response. Hence, enhancing endogenous GLP-1 secretion by certain materials could be a potential
target for prevention of glucose intolerance.
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Chronic consumption of a diet containing high fat and high
sucrose is known to cause obesity. Obesity, the cause of
metabolic disorders, such as hyperglycaemia, insulin resistance
and type 2 diabetes(1–3), also affects gut hormone secretion(4).
Glucose homeostasis is regulated by various hormones, such
as glucagon, insulin, glucocorticoids and incretins (glucose-
dependent insulinotropic polypeptide and glucagon-like
peptide-1 (GLP-1)). GLP-1, produced in enteroendocrine L-cells,
is released in response to ingested nutrients, such as glucose,
fatty acids, proteins and amino acids(5–10). Due to its incretin
effect (stimulating insulin secretion), increased GLP-1 secretion
plays a role in normalising the postprandial glucose homeosta-
sis(11). Incretin-based therapy is effectively used for type 2 diabe-
tes treatment. Therefore, increasing GLP-1 secretion may be a
promising target for prevention and treatment of glucose
intolerance(12).

Up to date, a consensus on how does GLP-1 secretion/
production change during the progression of diet-induced
obesity (DIO) has not been established(13,14). Studies report that
GLP-1 secretion is diminished during obesity development(15–17).
In contrast, we previously demonstrated that GLP-1 secretion in
response to normal diet administration was increased by chronic
consumption of high fat and high sucrose in rats, at least in the early
stage of DIO(18). Thus, the role of endogenous GLP-1 in the devel-
opment of glucose intolerance and obesity has not been clearly
identified.

The present study aims to clarify the role of endogenousGLP-
1 in postprandial glycaemia during progression of DIO. For this,
a GLP-1 receptor antagonist, exendin (9–39) (Ex9), was chroni-
cally delivered using an osmotic pump implanted subcutane-
ously in rats fed an obesogenic high-fat and high-sucrose
diet. Ex9, a thirty-one-amino-acid peptide, is a specific and
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competitive antagonist of the GLP-1 receptor and is widely used
to block GLP-1 signalling(19–22). Meal tolerance tests (MTT) using
a liquid diet rather than the conventional glucose solution were
conducted to assess postprandial responses of glucose, insulin
and GLP-1. Simultaneously, the gastric emptying rate was evalu-
ated during the MTT.

Material and methods

Animals and diets

Male Sprague–Dawley rats (5 weeks old, weight about
120–150 g) were purchased from Japan SLC, Inc. and given an
American Institute of Nutrition-93G (control) diet(23) for 1 week
to adapt to their new environment before conducting the experi-
ment. Rats were housed individually and maintained in a tem-
perature-controlled room (22 ± 2°C) at 50 ± 5 % humidity with
a standard light cycle (08.00–20.00 hours light period). All rats
were given access to diet and water ad libitum. The GLP-1
receptor antagonist, Ex9 (analytical grade, purity > 95 %), was
purchased from Thermo Fisher Scientific Inc. Ex9 was dissolved
in sterile saline and transferred to the Alzet Mini osmotic pump
(Model 2006, Durect corporation) following the manufacturer’s
instructions. According to a previous study, Ex9 impairs glucose
tolerance during an oral glucose tolerance test (OGTT)(24).
In our study, 100 μg/day per rat of Ex9 was used to block
GLP-1 signalling. Rats were anaesthetisedwith sodiumpentobar-
bital (50 mg/kg body weight, Somnopentyl injection; Kyoritsu
Seiyaku Corporation) and subcutaneously implanted with the
osmotic pump in the interscapular region. Ex9 or vehicle was
delivered at a constant rate of 0·13 μl/h throughout the experi-
mental period (35 d).

Rats were divided into three groups (n 8–9/group) to have
comparable body weight, glucose and GLP-1 levels based on
measurements the day prior to starting test diet feeding and

Ex9 administration. The control groupwas fed a control diet with
continuous saline administration, the high-fat/high-sucrose
(HFS) group was fed a HFS diet (30 % fat and 40 % sucrose,
shown in Table 1)(18,25) with continuous saline administration
and the Ex9 group was also fed the HFS diet with continuous
Ex9 administration for 5 weeks. Body weight and food intake
were measured every 2 d. All experimental animal procedures
were approved by the Hokkaido University Animal
Committee, and animals were maintained in accordance with
the Hokkaido University guidelines for the care and use of labo-
ratory animals. Because we aimed to clarify the role of enhanced
GLP-1 response in DIO model rats, and because the role of
GLP-1 in insulin secretion is well established in normal condi-
tions, we examined the effect of Ex9 in the HFS-fed rats, not
in the control-fed rats.

Meal tolerance tests

Following the feeding periods of 2 and 4 weeks, MTT were con-
ducted to determine postprandial glucose, insulin, GLP-1 and
gastric emptying responses to ‘meal’ administration. Rats were
fasted for 16 h before basal blood collection (0 min) and were
then orally administered a liquid diet (15 kcal (63 kJ)/10 ml
per kg body weight; Ensure H, Abbott) premixed with aceta-
minophen (100 mg/kg body weight; Sigma Aldrich). Blood sam-
pleswere collected from the tail vein at 15, 30, 60, 90 and 120min
following the liquid diet administration and immediately trans-
ferred to chilled tubes containing heparin (final concentration
at 50 IU/ml blood; Ajinomoto Company, Inc.) and aprotinin
(final concentration at 500 Kallikrein inhibitor units (kIU)/ml
blood; Wako Pure Chemical Industries, Ltd.). Blood samples
were centrifuged at 2300 g for 10 min at 4°C and plasma samples
were collected and stored at −80°C until further analysis.
Glucose levels were measured using the Glucose CII Test Kit
(Wako Pure Chemical Industries). Gastric emptying rate was
assessed by the acetaminophen (paracetamol) absorption
test(26–28). Acetaminophen levels were determined using an
acetaminophen detection kit (Kanto Chemical Co., Inc.).
Plasma insulin was measured using an insulin ELISA (U-E type,
AKRIN-130; Shibayagi Company Limited). The Rat Insulin ELISA
assay has a range of 0·156–10 ng/ml. Antibodies in this kit are
specific to insulin which cross-reacts with rat proinsulin, mouse
insulin and human insulin. The intra-assay precision and
inter-assay precision are < 2% and < 3%, respectively. GLP-1
concentration was determined using Multi Species GLP-1 Total
ELISA Kit (EZGLP1T-36K; Merck Millipore). The GLP-1 Total
ELISA detects bothGLP-1 (7–36) andGLP-1 (9–36) and has no sig-
nificant cross-reactivitywithGLP-2,GIP, glucagon andoxyntomo-
dulin. The minimum detection limit of the assay is 1·5 pM. The
intra-assay precision and inter-assay precision are < 5% and
< 12%, respectively.

Blood and tissue collection

Following a 5-week feeding period and an overnight fasting,
blood samples were taken from the portal vein and abdominal
aorta of rats under sodium pentobarbital anaesthesia (50 mg/kg
of bodyweight) using a syringe filled with heparin (final concen-
tration 50 IU/ml), aprotinin (final concentration 500 KIU/ml) and

Table 1. Experimental diet composition (g/kg of diet)

Ingredient Control HFS

Maize starch 397·486 –
Casein* 200 200
Dextrinised maize starch† 132 –
Sucrose 100 399·486
Soyabean oil 70 70
Lard oil – 230
Fibre (cellulose)‡ 50 50
Mineral mixture§ 35 35
Vitamin mixture§ 10 10
L-Cystine 3 3
Choline bitartrate 2·5 2·5
tert-Butylhydroquinone 0·014 0·014
Energy density
kcal/g 3·96 5·11
kJ/g 16·57 21·38

HFS, high-fat/high-sucrose.
*Acid casein (Fonterra, Ltd.).
† TK-16 (Matsutani Chemical Industry Co., Ltd.).
‡ Just Fiber BH200FCC (Morimura Bros., Inc.).
§ Mineral and vitamin mixtures were prepared according to the American Institute of
Nutrition 93G formulation.
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dipeptidyl peptidase (DPP)-IV inhibitor (final concentration
50 μmol/l; DPP4-010; Merck Millipore. Plasma was collected
and stored as described above for measurements of glucose,
insulin, total GLP-1, TAG and total cholesterol levels. For
measurement of DPP-IV activity, blood samples were simultane-
ously collected from the portal vein and abdominal aorta into a
syringe containing only heparin (final concentration 50 IU/ml).
Total GLP-1 and insulin levels were assessed using Multi Species
GLP-1 Total ELISA (EZGLP1T-36K; Merck Millipore) and Rat
Insulin ELISA (AKRIN-010T; Shibayagi Company Limited) kits,
respectively. Plasma TAG and cholesterol levels were measured
using the TAG E-Test and Cholesterol E-Test kits (Wako Pure
Chemical Industries), respectively. DPP-IV activity was mea-
sured based on the rate of surrogate substrate (Gly-Pro-p-nitro-
aniline; Gly-Pro-pNA) hydrolysis as described previously(29–31).

Rats were killed by exsanguination and intestinal segments
were immediately dissected and washed with a cold saline
solution (0·9 % NaCl). Sections (2 cm) of the jejunum, ileum
and colon were taken from the middle region of each dissected
segment. Caecum tissues were washed with cold saline and
divided equally into two parts, and 2 cm from the middle region
was collected. All intestinal samples for GLP-1 measurement
were immediately frozen in liquid N2 and stored at −80°C until
further analysis. Mesenteric, retroperitoneal and epididymal
adipose tissues were carefully dissected and weighed to
determine the visceral adipose tissue weight.

Measurement of glucagon-like peptide-1 content in
intestinal tissue

An ethanol–acid solution was prepared by mixing absolute etha-
nol, water and 12 M HCl at a ratio of 74:25:1(32). Tissue samples
were submerged in the ethanol acid solution (5 ml/g tissue)
and homogenised at 25 000 rpm (Ultra-Turrax homogeniser
T18, IKA) for 2 min. Homogenised samples were placed at 4°C
for 24 h. After 24 h, aliquots (150 μl) of homogenate were stored
separately at −30°C until protein analysis. The remaining homog-
enate was centrifuged at 2000 g for 20 min. The supernatant was
collected and stored at −80°C until analysed. Protein and GLP-1
content were measured using Lowry’s protein assay and Multi
Species GLP-1 Total ELISA kit (EZGLP1T-36K; Merck Millipore),
respectively. Homogenate samples were diluted 30-fold for pro-
tein measurement, whereas the supernatant was diluted 500- or
1000-fold (colon only) for GLP-1 measurement.

Statistical analysis

Sample size was calculated based on the experimental design
(two-way repeated-measures ANOVA) for MTT to determine
the role of endogenous GLP-1 in glucose homeostasis as the pri-
mary outcome measure using G*Power software (version 3.1.9.2)
following the power= 0·8, significant level= 0·05 and effect size
= 0·25. According to Cohen’s effect size conventions for ANOVA
F tests(33), we used medium effect size for the total sample size
calculation(34,35). Hence, the total number of rats was calculated
as twenty-four (eight rats/group) in the present study. Results
are presented as means with their standard errors. Significant
effects of time, treatment and the interactions of time and treat-
ment were assessed by two-way repeated ANOVA in the MTT

results. One-way ANOVA, Tukey–Kramer’s test or Student’s t test
were used to determine significant differences among treatment
groupswith P< 0·05 considered statistically significant. Datawere
statistically analysed using JMP pro version 13.0 software (SAS
Institute, Inc.).

Results

Body weight, energy intake and tissue weights

There were no significant differences in the initial body weights
of the rats between groups (182·1 (SE 2·5) to 184·0 (SE 2·7) g,
P= 0·9000). At the end of the 5-week feeding period, average
body weights of the HFS (P= 0·0054) and Ex9 (P= 0·0209)
groups were significantly higher than the control group
(Fig. 1(A)). HFS and Ex9 groups had higher body weight gain
(P= 0·0008 and P= 0·0030), energy intake (P= 0·0011 and
P= 0·0073), visceral adipose tissue weights (P= 0·0005 and
P= 0·0069) (mesenteric (P= 0·0091 and P= 0·0473), epididymal
(P= 0·0007 and P= 0·0078) and retroperitoneal (P= 0·0002
and P= 0·0030)) and liver weight (P= 0·0003 and P= 0·0007)
than the control group (Fig. 1(B)–(H)). No significant differences
were observed between the HFS and Ex9 groups in any
parameters.

Basal glucose, insulin and glucagon-like peptide-1 levels

After the 2- and 4-week feeding periods, rats were fasted
overnight (16 h) before conducting the MTT. No significant
differences were observed in any of the measured parameters
after 2 and 4 weeks (Fig. 2). Basal glucose (P= 0·4547) and
GLP-1 (P= 0·1243) levels did not differ between any groups
(Fig. 2(D) and (F)), whereas the basal insulin level tended to
be higher in the HFS group compared with the control group
(P= 0·0587) after 4 weeks (Fig. 2(E)).

Postprandial glycaemic, insulin, glucagon-like peptide-1
and gastric emptying responses during meal tolerance
tests after a 2-week feeding period

In this experiment, an MTT using a liquid diet was conducted to
determine postprandial glucose, insulin, GLP-1 and gastric
emptying during obesity development. After a 2-week feeding
period, postprandial glucose levels in the Ex9 group were
tended to be higher compared with the HFS and control groups
from 30 to 60 min. The glucose level at 90 min (P= 0·0079) and
AUC (P= 0·0337) in the Ex9 groupwere significantly higher than
the control group (Fig. 3(A) and (B)). The postprandial insulin
level at 15 min in the HFS group was significantly higher than
the control group (P= 0·0216), whereas the Ex9 group showed
an intermediate level between the HFS and control groups
(Fig. 3(C)). The AUC of insulin in the HFS group was larger than
in the control groups (P= 0·0486) (Fig. 3(D)). Postprandial
GLP-1 secretion following liquid diet administration in the HFS
(P= 0·3829) and Ex9 (P= 0·5708) groups was slightly higher
than in the control group (Fig. 3(E) and (F)). There was a signifi-
cant effect of treatment (P< 0·05) on the GLP-1 response
assessed by two-way repeated-measures ANOVA. Changes in
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plasma acetaminophen concentrations were not different
between treatments (Fig. 3(G)).

Postprandial glycaemic, insulin, glucagon-like peptide-
1and gastric emptying responses during meal tolerance
tests after 4-week feeding period

Postprandial glucose levels in the Ex9 groupwere slightly higher
than the control group (15–90 min) and significantly (120 min)
(P= 0·0241) higher than the control group following administra-
tion of the liquid diet (Fig. 4(A)). The AUC of glucose in the Ex9
group was significantly higher than in the control group
(P= 0·0036) (Fig. 4(B)), while the HFS group had a similar gly-
caemic response compared with the control group (P= 0·3475).
In contrast to the glucose response, the HFS group had a higher

level of insulin secretion than the other groups (P= 0·0081)
(Fig. 4(C) and (D)). Basal GLP-1 levels in the HFS (P= 0·1088)
and Ex9 (P= 0·3791) groups were slightly increased compared
with that in the control group. But GLP-1 levels at 60
(P= 0·0395) and 90 min (P= 0·0422) in the HFS group and at
90 min in Ex9 group (P= 0·0343) became significantly higher
than the control group, demonstrating that the postprandial
GLP-1 response was larger in the HFS and Ex9 groups than
the control group (Fig. 4(E)). Significant effects of treatment
on postprandial glycaemia, insulin and GLP-1 secretion were
detected by two-way repeated-measures ANOVA in both MTT
(Figs. 3 and 4). Plasma acetaminophen responses at all time
points in the HFS and Ex9 groups were similar to the control
group (Fig. 4(G)).
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Fig. 1. Body weight, energy intake and tissue weights after a 5-week feeding period of control and high-fat/high-sucrose (HFS) diets with or without continuous exendin
(9–39) (Ex9) administration. Rats were provided either a control or HFS diet with addition of either saline or Ex9 administration (100 μg/d) for 5 weeks. Values are means,
with standard errors represented by vertical bars (n 8–9 rats in each group). a,b Mean values with unlike letters were significantly different between treatments (P< 0·05,
Tukey–Kramer’s test). * To convert kcal to kJ, multiply by 4·184.
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Plasma parameters after 5-week feeding period

Blood samples were collected from the portal vein and abdomi-
nal aorta after overnight fasting to measure fasting gut hormone
levels and other parameters. Consistent with postprandial GLP-1
secretion at 4 weeks, both the HFS (P= 0·0011) and Ex9
(P= 0·0113) groups showed significantly higher GLP-1 concen-
trations compared with the control group (Fig. 5(C)). DPP-IV
activity in both the portal vein (P= 0·5414) and abdominal aorta
(P= 0·3735) was not different among the groups (Figs. 5(D) and
6(E)). Glucose levels were significantly higher in the Ex9 group
compared with the HFS and control groups, both in the portal
vein (P= 0·0022) and abdominal aorta (P= 0·0252) (Figs. 5(A)
and 6(A)). Similar to the postprandial insulin response, portal/
aorta insulin levels in the HFS groupwere higher than in the con-
trol group (P= 0·0198 and P= 0·0431), while the Ex9 group had
an intermediate value between the HFS and control groups
(Figs. 5(B) and 6(B)). TAG and cholesterol levels in the
HFS (P= 0·0416 and P= 0·0116) and Ex9 (P= 0·0569 and
P= 0·0611) groups were higher than in the control group
Fig. 6(C) and (D)).

Glucagon-like peptide-1 content in the intestinal tissues

As expected, GLP-1 content gradually increased along the
proximal–distal axis of intestinal regions. In the ileal segment,
the GLP-1 content of the HFS group (P= 0·0094) was significantly
higher than in the control group (Fig. 7(C)). The Ex9 group
(P= 0·1016) also showed a similar tendency, but slightly less
than the HFS group. Conversely, there were no significant
differences inGLP-1 concentration in the other intestinal segments
(Fig. 7).

Discussion

The primary purpose of the present study was to determine the
physiological relevance of increased/decreased postprandial
GLP-1 secretion during development of DIO or glucose intoler-
ance. We found that normalisation of the postprandial glycaemic
response was accompanied by an increase in insulin and GLP-1
secretion in rats fed an HFS diet, whereas continuous GLP-1
receptor antagonist administration caused glucose intolerance.
These results indicate that enhancement of the postprandial
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and after oral administration of a liquid diet (Ensure H, 10 ml/kg body weight). Values are means, with standard errors represented by vertical bars (n 8–9 rats in each
group). a,b Mean values with unlike letters were significantly different between treatments (P< 0·05, Tukey–Kramer’s test). † Significant differences between mean
values of the HFS and Ex9 groups (P< 0·05, Student’s t test). NS indicates that there was no significant difference among treatments. TI, time; TR, treatment.
* To convert glucose in mg/dl to mmol/l, multiply by 0·0555.
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GLP-1 response plays an important role in preventing glucose
intolerance development during DIO.

In general, a high-fat and/or high-sucrose diet has been
used to establish obesity and metabolic disorder animal
models(2,36–38). In this experiment, rats were fed an HFS diet
(40 % fat and 30% sucrose) for 5 weeks in order to monitor
chronic changes in postprandial glucose, insulin and GLP-1
responses during progression of DIO. Our results suggest that a
diet containing high fat and high sucrose establishes obesity in
an animal model, even in a shorter period (5 weeks) than gener-
ally employed (8–12 weeks or longer). However, body weight,
body weight gain and visceral adipose tissue weight in the HFS
and Ex9 groups were similar levels. It can be assumed that longer
experimental periods are required to observe the effect of block-
ing endogenous GLP-1 signal on these parameters.

Postprandial glycaemic and insulin responses are generally
assessed using a classical OGTT. In the present study, oral
administration of a liquid diet (Ensure H, containing all of
nutrients) was employed in MTT as it is more appropriate meth-
odology for investigating postprandial metabolic responses,
compared with OGTT(39). Postprandial GLP-1 levels in the
HFS and Ex9 groups were slightly higher after a 2-week feeding
and significantly higher after a 4-week feeding than the control
group. Our results confirmed that chronic consumption of a

high-fat and high-sucrose diet enhances postprandial GLP-1
secretion in response to the meal administration(18).

In the present study, gastric emptying rates were unchanged
by the chronic HFS diet with or without Ex9 compared with the
control group; therefore, enhanced GLP-1 responses in the HFS
and Ex9 groups cannot be explained by differences in the rate
of nutrient load into the small intestine from the stomach.
Although Ex9 has been previously reported to accelerate gastric
emptying(19,40), the results suggest the role of endogenous GLP-1
as incretin hormone, independently of effect on gastric empty-
ing(41). In addition, the gastric emptying rate is regulated by vari-
ous factors such as ghrelin, serotonin, CCK, PYY, not only on
GLP-1(18,42). In line with our study, gastric emptying was not
changed by Ex9 treatment(41,43). Increased GLP-1 production in
the ileum may contribute to the increased GLP-1 secretion. It is
also speculated that the sensitivity of L-cells to luminal nutrients
was increased following chronic consumption of a high-fat and
high-sucrose diet. No significant differences were observed in
GLP-1 concentration in the other intestinal segments, suggesting
that L-cells located in the ileum segment are more susceptible to
chronic obesogenic diet feeding than other intestinal segments. It
could be implied that the ileum might play an important role in
postprandial GLP-1 release. This was supported by the findings
that postprandial GLP-1 secretion is stimulated by luminal
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contents on L-cells in the proximal ileum(44,45). In the present
study, we did not observe compensatory elevation of GLP-1
secretion by Ex9 treatment, compared with the HFS group. It
can be assumed that GLP-1 secretion in both high-fat and high-
sucrose feeding groups (HFS and Ex9) might be the maximum
level that can be secreted from the L-cells in our experimental
models. Compensatory elevations of GLP-1 by Ex9 have not
always been found in previous studies(46,47). Although both the
HFS and Ex9 groups showed elevated postprandial GLP-1 secre-
tion compared with the control group, postprandial insulin secre-
tion was diminished in the Ex9 group compared with the HFS
group. These results clearly demonstrate that postprandial
GLP-1was effectively blocked byEx9 treatment, resulting in insuf-
ficient insulin secretion. Accordingly, our results illustrate that
chronic HFS feeding with continuous Ex9 administration rapidly
established postprandial hyperglycaemia, while HFS alone main-
tained a glycaemic response similar to the control group in both
the 2- and 4-week feeding periods. Previous studies demonstrated
that Ex9 treatment for 14 d accelerated glucose intolerance in rats
assessed by OGTT(24) and intraperitoneal injection of Ex9 prior to
OGTT-induced glucose intolerance in rats(48). Overnight fasting
(14–18 h) is generally employed in typical metabolic studies(49,50),
but prolonged fastingmay affect glycaemic response and improve
insulin sensitivity, compared with relatively shorter(51–53).
However, we previously did not observe impaired glycaemic

response after 6-h fasting in DIO rats fed the HFS diet for
4 weeks(18). That result (6-h fasting) and the present result (over-
night fasting) suggest that postprandial glucose tolerancewas par-
tially maintained in rats fed the HFS diet, regardless of fasting
periods. It can be concluded that elevation of postprandial
GLP-1 plays an important role in the prevention and amelioration
of glucose intolerance during DIO through increasing insulin
responses. Hence, enhancing endogenous GLP-1 secretion could
be a potential target for prevention of glucose intolerance and
obesity development.

After a 5-week feeding period, the fasting glucose level in the
HFS group was similar to the level of the control group, whereas
fasting GLP-1 and insulin levels were elevated in the HFS group.
In the Ex9 group, the fasting glucose level was higher with a par-
tially lower insulin level compared with the HFS group. These
results demonstrate that not only postprandial GLP-1 but also
fasting GLP-1 plays an important role in the prevention of blood
glucose elevation. Similar elevations in fasting TAG and choles-
terol levels in the HFS and Ex9 groups suggest that endogenous
GLP-1 does not directly affect dyslipidaemia under the experi-
mental conditions.

Liquid diet Ensure H contains nutrients such as carbohydrates,
proteins, lipids, vitamins and minerals, which are used for nutrient
preservation after surgery or as nutritional support. It has been
reported that GLP-1 secretion is stimulated by proteins,
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carbohydrates, TAG and fatty acids(6,7,54,55). In this experiment, the
effect of specific diet components that stimulate postprandialGLP-1
secretion still has not been investigated. Thus, examining a single
nutrient during anMTT is needed in future studies to determine the
adaptive changes of single-nutrient-induced postprandial GLP-1
secretion during development of DIO.

Conclusions

The postprandial glycaemic response in the HFS group was sim-
ilar to the control group, whereas postprandial GLP-1 and insulin
secretion were increased in the HFS group. In the Ex9 group,
which blocked the GLP-1 signal, the postprandial glycaemic
response was elevated with a lower insulin response compared
with the HFS group. It could be concluded that enhancement of
postprandial GLP-1 induction by chronic feeding of an obeso-
genic diet has a role in maintaining normal postprandial glycae-
mia in diet-induced obese rats.
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