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Abstract. Lutwak (Adv. Math., vol. 118(2), 1996, pp. 244–294) defined the notion
of Lp-geominimal surface area based on Lp-mixed volumes. Recently, Wang and Qi (J.
Inequal. Appl., vol. 2011, 2011, pp. 1–10) introduced the concept of Lp-dual geominimal
surface area based on Lp-dual mixed volumes. In this paper, based on Lp-dual mixed
quermassintegrals, we define the concept of Lp-dual mixed geominimal surface area
and establish several inequalities for this new notion.
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1. Introduction and main results. LetKn denote the set of convex bodies (compact,
convex subsets with non-empty interiors) in Euclidean space �n. For the set of convex
bodies containing the origin in their interiors, the set of convex bodies whose centroids
are at the origin and the set of origin-symmetric convex bodies in �n, we write Kn

o, Kn
c

and Kn
os, respectively. Sn

o denotes the set of star bodies (about the origin) in �n. Let
Sn−1 denote the unit sphere in �n, and let V (K) denote the n-dimensional volume of a
body K . Let B denote the standard Euclidean unit ball in �n and write ωn = V (B) for
its volume. We also note that i denotes any real number in this paper.

The notion of geominimal surface area was introduced by Petty[17]. For K ∈ Kn,
the geominimal surface area, G(K), of K is defined by

ω
1
n
n G(K) = inf{nV1(K, Q)V (Q∗)

1
n : Q ∈ Kn}.

Here Q∗ denotes the polar of body Q, and V1(M, N) denotes the mixed volume of
M, N ∈ Kn (see [11]). For other important affine notions of surface area, in particular
affine surface area, see [7, 8, 9, 21, 25, 26].

Both affine surface area and geominimal surface area are unimodular affine
invariant functionals of convex hypersurfaces. Isoperimetric inequalities involving
geominimal surface area are not only closely related to many isoperimetric inequalities
involving affine surface area but, in fact, also clarify the equality conditions of many
of these inequalities. Lutwak [15] demonstrated that there are extensions of all of the
known inequalities involving affine and geominimal surface areas to Lp-affine and
Lp-geominimal surface areas which are part of a new Lp-Brunn–Minkowski theory
initialized by Lutwak. In particular, Lutwak [15] discovered an important relationship
between Lp-affine and Lp-geominimal surface areas, which has found a number of
applications (see, e.g., [22, 28]).

Based on the notion of Lp-mixed volumes, Lutwak [15] introduced Lp-geominimal
surface area. For K ∈ Kn

o, p ≥ 1, the Lp-geominimal surface area, Gp(K), of K is defined
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by

ω
p
n
n Gp(K) = inf{nVp(K, Q)V (Q∗)

p
n : Q ∈ Kn

o}. (1.1)

Here Vp(M, N) denotes the Lp-mixed volume of M, N ∈ Kn
o (see [15]).

If p = 1, Gp(K) is just Petty’s geominimal surface area G(K).
A dual theory to the Lp-Brunn–Minkowski theory (i.e. the theory of Lp-mixed

volumes and related concepts) was also developed by Lutwak (see [3, 6, 13, 14, 19, 27]).
Based on the notion of Lp-dual mixed volumes, Wang and Qi [24] gave a definition of
Lp-dual geominimal surface area as follows: For K ∈ Sn

o , p ≥ 1, the Lp-dual geominimal
surface area, G̃−p(K), of K is defined by

ω
− p

n
n G̃−p(K) = inf{nṼ−p(K, Q)V (Q∗)−

p
n : Q ∈ Kn

os}. (1.2)

Here Ṽ−p(M, N) denotes the Lp-dual mixed volume of M, N ∈ Sn
o (see [15]).

For this new notion of Lp-dual geominimal surface area, Wang and Qi [24]
established the following geometric inequalities.

THEOREM 1A. If K ∈ Sn
o , p ≥ 1, then

G̃−p(K) ≥ nω
− p

n
n V (K)

n+p
n

with equality if and only if K is an ellipsoid centred at the origin.

THEOREM 1B. If K ∈ Kn
c , 1 ≤ p < n, then

G̃−p(K)G̃−p(K∗) ≤ (nωn)2

with equality if and only if K is an ellipsoid.

THEOREM 1C. If K ∈ Sn
o , 1 ≤ p < q, then

(
G̃−p(K)n

nnV (K)n+p

) 1
p

≤
(

G̃−q(K)n

nnV (K)n+q

) 1
q

.

The quantity

(
G̃−p(K)n

nnV (K)n+p

) 1
p

is called the Lp-dual geominimal surface area ratio of K ∈ Sn
o .

Wang and Leng in [23] extended the notion of Lp-dual mixed volume to a
family of Lp-dual mixed quermassintegrals. The main aim of this paper is to define a
corresponding notion of Lp-dual mixed geominimal surface areas based on Lp-dual
mixed quermassintegrals, and to extend the above inequalities to the entire family of
these new Lp-dual mixed geominimal surface areas.
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For K ∈ Sn
o , p ≥ 1 and 0 ≤ i < n, we define the Lp-dual mixed geominimal surface

area, G̃−p,i(K), of K by

ω
− p

n−i
n G̃−p,i(K) = inf{nW̃−p,i(K, Q)W̃i(Q∗)−

p
n−i : Q ∈ Kn

c}. (1.3)

Here W̃i(M) denotes the dual quermassintegrals of M ∈ Sn
o , and W̃−p,i(M, N) denotes

the Lp-dual mixed quermassintegrals of M, N ∈ Sn
o (see Section 2).

From definitions (1.2) and (1.3) and formula (2.12), it follows that

G̃−p,0(K) = G̃−p(K).

The main results can be stated as follows: First, we establish the extended form of
Theorem 1A, given by Theorem 1.1, and also obtain Theorem 1.2, which is the dual
form of Theorem 1.1.

THEOREM 1.1. If K ∈ Sn
o , p ≥ 1 and 0 < i < n, then

G̃−p,i(K) ≥ nω
− p

n−i
n W̃i(K)

n+p−i
n−i ,

with equality if and only if K is a ball centred at the origin.

THEOREM 1.2. If K ∈ Kn
c , p ≥ 1 and 0 < i < n, then

G̃−p,i(K) ≤ nω
2n−2i+p

n−i
n W̃i(K∗)−

n+p−i
n−i

with equality if and only if K is a ball centred at the origin.

Moreover, we obtain the extended versions of Theorems 1B and 1C.

THEOREM 1.3. If K ∈ Kn
c , p ≥ 1 and 0 < i < n − p, then

G̃−p,i(K)G̃−p,i(K∗) ≤ (nωn)2

with equality if and only if K is a ball centred at the origin.

THEOREM 1.4. If K ∈ Sn
o , 1 < p < q and 0 < i < n, then

(
G̃−p,i(K)n−i

nn−iW̃i(K)n+p−i

) 1
p

≤
(

G̃−q,i(K)n−i

nn−iW̃i(K)n+q−i

) 1
q

.

We call

(
G̃−p,i(K)n−i

nn−iW̃i(K)n+p−i

) 1
p

the Lp-dual mixed geominimal surface area ratio of K ∈ Sn
o .

Finally, we obtain the following Brunn–Minkowski-type inequality for Lp-dual
mixed geominimal surface area.
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THEOREM 1.5. If K, L ∈ Sn
o , λ,μ ≥ 0 (not both zero) and p ≥ 1, then for 0 ≤ i < n

G̃−p,i(λ · K +−p μ · L)−
p

n+p−i ≥ λG̃−p,i(K)−
p

n+p−i + μG̃−p,i(L)−
p

n+p−i ,

with equality if and only if K and L are dilates.

Here λ · K +−p μ · L denotes the Lp-harmonic radial combination of K and L (see
(2.4)). For log-concavity properties of other important geometric functionals we refer
to [1, 16, 20].

The proofs of Theorems 1.1–1.4 will be given in Section 3 of this paper. In Section
4, we give the proof of Theorem 1.5.

2. Preliminaries.

2.1. Radial functions and polars of star bodies and convex bodies. If K is a compact
star-shaped (about the origin) set in �n, then its radial function, ρK = ρ(K, ·) : �n \
{0} −→ [0,∞), is defined by (see [2, 18])

ρ(K, u) = max{λ ≥ 0 : λ · u ∈ K}, u ∈ Sn−1.

If ρK is continuous and positive, then K will be called a star body. Two star bodies
K and L are said to be dilates (of one another) if ρK (u)/ρL(u) is independent of u ∈ Sn−1.

If K ∈ Kn
o, the polar body, K∗, of K is defined by (see [2, 18])

K∗ = {x ∈ �n : x · y ≤ 1, y ∈ K}. (2.1)

Clearly,

(K∗)∗ = K. (2.2)

For K ∈ Kn
o and its polar body, the well-known Blaschke–Santaló inequality can

be stated as follows (see [12]).

THEOREM 2A. If K ∈ Kn
c , then

V (K)V (K∗) ≤ ω2
n (2.3)

with equality if and only if K is an ellipsoid.

2.2. Dual quermassintegrals and Lp-dual mixed quermassintegrals. For K, L ∈ Sn
o ,

p ≥ 1 and λ,μ ≥ 0 (not both zero), the Lp-harmonic radial combination, λ · K +−p

μ · L ∈ Sn
o , of K and L is defined by (see [15])

ρ(λ · K +−p μ · L, ·)−p = λρ(K, ·)−p + μρ(L, ·)−p. (2.4)

For K ∈ Sn
o and any real i, the dual quermassintegrals, W̃i(K), of K are defined by

(see [10])

W̃i(K) = 1
n

∫
Sn−1

ρ(K, u)n−idS(u). (2.5)
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Obviously,

W̃0(K) = 1
n

∫
Sn−1

ρ(K, u)ndS(u) = V (K). (2.6)

Based on Lp-harmonic radial combinations of star bodies, Wang and Leng [23]
introduced the notion of Lp-dual mixed quermassintegrals as follows: For K, L ∈ Sn

o ,
p ≥ 1, ε > 0, real i 	= n, the Lp-dual mixed quermassintegrals, W̃−p,i(K, L), of K and
L are defined by (see [23])

n − i
−p

W̃−p,i(K, L) = lim
ε−→0+

W̃i(K+−pε · L) − W̃i(K)
ε

. (2.7)

The above definition and Hospital’s rule give the following integral representation
of Lp-dual mixed quermassintegrals (see [23]):

W̃−p,i(K, L) = 1
n

∫
Sn−1

ρ
n+p−i
K (u)ρ−p

L (u)dS(u), (2.8)

where the integration is with respect to spherical Lebesgue measure S on Sn−1. From
(2.8) and definition (2.5), we get

W̃−p,i(K, K) = W̃i(K). (2.9)

The Minkowski inequality for Lp-dual mixed quermassintegrals states the
following (see [23]).

THEOREM 2B. If K, L ∈ Sn
o , p ≥ 1, and i 	= n, then for i < n or n < i < n + p,

W̃−p,i(K, L) ≥ W̃i(K)
n+p−i

n−i W̃i(L)−
p

n−i ; (2.10)

for i > n + p, inequality (2.10) is reversed. Equality holds in either case if and only if K
and L are dilates. For i = n + p, (2.10) holds with equality for all K and L.

Recall that Lutwak [15] introduced the Lp-dual mixed volume as follows: For
K, L ∈ Sn

o , p ≥ 1, the Lp-dual mixed volume, Ṽ−p(K, L), of K and L is defined by

n
−p

Ṽ−p(K, L) = lim
ε−→0+

V (K +−p ε · L) − V (K)
ε

. (2.11)

From (2.11), (2.6) and (2.7), we see that

W̃−p,0(K, L) = Ṽ−p(K, L). (2.12)

3. Proofs of Theorems 1.1–1.4. In this section, we will prove Theorems 1.1–1.4.
First, we need the following lemma for the proofs of Theorems 1.1–1.2.

LEMMA 3.1 ([10]). If K ∈ Kn
o and 0 ≤ i < n, then

W̃i(K) ≤ ω
i
n
n V (K)

n−i
n , (3.1)

with equality for 0 < i < n if and only if K is a ball centred at the origin.
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Proof of Theorem 1.1. From definitions (1.3), (2.10) and (3.1) and the Blaschke–
Santaló inequality (2.3), we have that for 0 < i < n

ω
− p

n−i
n G̃−p,i(K) = inf{nW̃−p,i(K, Q)W̃i(Q∗)−

p
n−i : Q ∈ Kn

c}
≥ inf{nW̃i(K)

n+p−i
n−i [W̃i(Q)W̃i(Q∗)]−

p
n−i : Q ∈ Kn

c}
≥ inf{nW̃i(K)

n+p−i
n−i [ω

2i
n

n (V (Q)V (Q∗))
n−i

n ]−
p

n−i : Q ∈ Kn
c}

≥ nω
− 2p

n−i
n W̃i(K)

n+p−i
n−i ,

i.e.

G̃−p,i(K) ≥ nω
− p

n−i
n W̃i(K)

n+p−i
n−i . (3.2)

By the equality conditions of (2.10), (3.1) and (2.3), we see that equality holds in
(3.2) if and only if K is a ball centred at the origin. �

Proof of Theorem 1.2. From definition (1.3) and inequality (2.10), we have for
0 < i < n

ω
− p

n−i
n W̃i(K∗)

n+p−i
n−i G̃−p,i(K)

= inf{nW̃−p,i(K, Q)W̃i(K∗)
n+p−i

n−i W̃i(Q∗)−
p

n−i : Q ∈ Kn
c}

≤ inf{nW̃−p,i(K, Q)W̃−p,i(K∗, Q∗) : Q ∈ Kn
c}. (3.3)

Since K ∈ Kn
c , taking Q = K , it follows from formulas (3.1), (3.3) and (2.3) that

ω
− p

n−i
n W̃i(K∗)

n+p−i
n−i G̃−p,i(K)

≤ inf{nW̃i(K)W̃i(K∗) : K ∈ Kn
c}

≤ inf{nω
2i
n

n [V (K)V (K∗)]
n−i

n : K ∈ Kn
c}

= nω2
n,

i.e.

G̃−p,i(K) ≤ nω
2n−2i+p

n−i
n W̃i(K∗)−

n+p−i
n−i . (3.4)

By the equality conditions of (2.10), (3.1) and (2.3), we see that equality holds in
(3.4) if and only if K is a ball centred at the origin. �

Proof of Theorem 1.3. From definition (1.3), it follows that for any Q ∈ Kn
c

ω
− p

n−i
n G̃−p,i(K) ≤ nW̃−p,i(K, Q)W̃i(Q∗)−

p
n−i . (3.5)

Since K ∈ Kn
c , taking Q = K in (3.5), we get that

ω
− p

n−i
n G̃−p,i(K) ≤ nW̃−p,i(K, K)W̃i(K∗)−

p
n−i ,

i.e.

ω
− p

n−i
n G̃−p,i(K) ≤ nW̃i(K)W̃i(K∗)−

p
n−i . (3.6)
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Similarly,

ω
− p

n−i
n G̃−p,i(K∗) ≤ nW̃i(K∗)W̃i(K)−

p
n−i . (3.7)

Combining (3.6) and (3.7), we get for 0 < i < n − p

ω
− 2p

n−i
n G̃−p,i(K)G̃−p,i(K∗) ≤ n2[ω

2i
n

n (V (K)V (K∗))
n−i

n ]
n−i−p

n−i

≤ n2ω
2(n−i−p)

n−i
n ,

i.e.

G̃−p,i(K)G̃−p,i(K∗) ≤ (nωn)2. (3.8)

By the equality conditions of (2.3) and (3.1), we see that equality holds in (3.8) if
and only if K is a ball centred at the origin. �

Proof of Theorem 1.4. From (2.8) and 1 ≤ p < q, we have by Hölder’s inequality

W̃−p,i(K, Q) = 1
n

∫
Sn−1

ρK (u)n+p−iρQ(u)−pdS(u)

= 1
n

∫
Sn−1

[
ρK (u)n+q−iρQ(u)−q] p

q
[
ρK (u)n−i] q−p

q dS(u)

≤ W̃−q,i(K, Q)
p
q W̃i(K)

q−p
q ,

i.e. (
W̃−p,i(K, Q)

W̃i(K)

) 1
p

≤
(

W̃−q,i(K, Q)

W̃i(K)

) 1
q

. (3.9)

Thus, from definition (1.3) and (3.9), we get for 0 < i < n

1
ωn

(
G̃−p,i(K)n−i

nn−iW̃i(K)n+p−i

) 1
p

= inf

{(
W̃−p,i(K, Q)

W̃i(K)

) n−i
p W̃i(Q∗)−1

W̃i(K)
: Q ∈ Kn

c

}

≤ inf

{(
W̃−q,i(K, Q)

W̃i(K)

) n−i
q W̃i(Q∗)−1

W̃i(K)
: Q ∈ Kn

c

}

≤ 1
ωn

(
G̃−q,i(K)n−i

nn−iW̃i(K)n+q−i

) 1
q

,

that is (
G̃−p,i(K)n−i

nn−iW̃i(K)n+p−i

) 1
p

≤
(

G̃−q,i(K)n−i

nn−iW̃i(K)n+q−i

) 1
q

. �
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4. Brunn–Minkowski-type inequalities. In this section we study Brunn–
Minkowski-type inequalities for Lp-dual mixed geominimal surface areas. First, we
prove Theorem 1.5. Next, we show that for Lp-radial combination of star bodies, we
also have a Brunn–Minkowski-type inequality. The proof of Theorem 1.5 requires the
following lemma.

LEMMA 4.1. If K, L ∈ Sn
o , p ≥ 1, λ,μ ≥ 0 (not both zero) and 0 ≤ i < n, then for

any Q ∈ Sn
o ,

W̃−p,i(λ · K +−p μ · L, Q)−
p

n+p−i ≥ λW̃−p,i(K, Q)−
p

n+p−i + μW̃−p,i(L, Q)−
p

n+p−i , (4.1)

with equality if and only if K and L are dilates.

Proof. Since 0 ≤ i < n, we have −(n + p − i)/p < 0. Hence, by (2.8) and
Minkowski’s integral inequality (see [5]), we have for any Q ∈ Sn

o ,

W̃−p,i(λ · K +−p μ · L, Q)−
p

n+p−i

=
[

1
n

∫
Sn−1

ρ(λ · K +−p μ · L, u)n+p−iρ(Q, u)−pdS(u)
]− p

n+p−i

=
[

1
n

∫
Sn−1

(
ρ(λ · K +−p μ · L, u)−pρ(Q, u)

p2

n+p−i

)− n+p−i
p

dS(u)

]− p
n+p−i

=
[

1
n

∫
Sn−1

(
(λρ(K, u)−p + μρ(L, u)−p)ρ(Q, u)

p2

n+p−i

)− n+p−i
p

dS(u)

]− p
n+p−i

≥ λ

[
1
n

∫
Sn−1

ρ(K, u)n+p−iρ(Q, u)−pdS(u)
]− p

n+p−i

+μ

[
1
n

∫
Sn−1

ρ(L, u)n+p−iρ(Q, u)−pdS(u)
]− p

n+p−i

= λW̃−p,i(K, Q)−
p

n+p−i + μW̃−p,i(L, Q)−
p

n+p−i .

That is,

W̃−p,i(λ · K +−p μ · L, Q)−
p

n+p−i ≥ λW̃−p,i(K, Q)−
p

n+p−i + μW̃−p,i(L, Q)−
p

n+p−i .

By the equality conditions of Minkowski’s integral inequality, we see that equality
holds in (4.1) if and only if K and L are dilates. �
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Proof of Theorem 1.5. From definition (1.3) and Lemma 4.1, we obtain for 0 ≤ i < n[
ω

− p
n−i

n G̃−p,i(λ · K +−p μ · L)
]− p

n+p−i

= inf
{[

nW̃−p,i(λ · K +−p μ · L, Q)W̃i(Q∗)−
p

n−i

]− p
n+p−i

: Q ∈ Kn
c

}
= inf

{[
nW̃−p,i(λ · K +−p μ · L, Q)

]− p
n+p−i

[
W̃i(Q∗)−

p
n−i

]− p
n+p−i

: Q ∈ Kn
c

}
≥ inf

{[
λ

(
nW̃−p,i(K, Q)

)− p
n+p−i + μ

(
nW̃−p,i(L, Q)

)− p
n+p−i

]
×

[
W̃i(Q∗)−

p
n−i

]− p
n+p−i

: Q ∈ Kn
c

}
≥ inf

{
λ

[
nW̃−p,i(K, Q)W̃i(Q∗)−

p
n−i

]− p
n+p−i

: Q ∈ Kn
c

}
+ inf

{
μ

[
nW̃−p,i(L, Q)W̃i(Q∗)−

p
n−i

]− p
n+p−i

: Q ∈ Kn
c

}
= λ

[
ω

− p
n−i

n G̃−p,i(K)
]− p

n+p−i + μ
[
ω

− p
n−i

n G̃−p,i(L)
]− p

n+p−i
.

This yields

G̃−p,i(λ · K +−p μ · L)−
p

n+p−i ≥ λG̃−p,i(K)−
p

n+p−i + μG̃−p,i(L)−
p

n+p−i . (4.2)

By the equality conditions of (4.1), we know that equality holds in (4.2) if and
only if K and L are dilates. �

For K, L ∈ Sn
o , p ≥ 1 and λ,μ ≥ 0 (not both zero), the Lp-radial combination,

λ ◦ K+̃pμ ◦ L ∈ Sn
o , of K and L is defined by (see [4])

ρ(λ ◦ K+̃pμ ◦ L, ·)p = λρ(K, ·)p + μρ(L, ·)p. (4.3)

Based on definition (4.3), Wang and Qi [24] obtained a Brunn–Minkowski-type
inequality for Lp-dual geominimal surface area.

THEOREM 4A. If K, L ∈ Kn
os, p ≥ 1 and λ,μ ≥ 0 (not both zero), then

G̃−p(λ ◦ K+̃n+pμ ◦ L) ≥ λG̃−p(K) + μG̃−p(L)

with equality if and only if K and L are dilates.

Here we extend Theorem 4A and establish the following Brunn–Minkowski-type
inequality for Lp-dual mixed geominimal surface areas. Using definition (4.3), our
result can be stated as follows.

THEOREM 4.1. If K, L ∈ Sn
o , p ≥ 1, λ,μ ≥ 0 (not both zero) and 0 ≤ i < n, then

G̃−p,i(λ ◦ K+̃n+p−iμ ◦ L) ≥ λG̃−p,i(K) + μG̃−p,i(L)

with equality if and only if K and L are dilates.
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Proof. From definitions (1.3) and (4.3), we have for 0 ≤ i < n

ω
− p

n−i
n G̃−p,i(λ ◦ K+̃n+p−iμ ◦ L)

= inf
{

nW̃−p,i(λ ◦ K+̃n+p−iμ ◦ L, Q)W̃i(Q∗)−
p

n−i : Q ∈ Kn
c

}
= inf

{
n
[
λW̃−p,i(K, Q) + μW̃−p,i(L, Q)

]
W̃i(Q∗)−

p
n−i : Q ∈ Kn

c

}
= inf

{
nλW̃−p,i(K, Q)W̃i(Q∗)−

p
n−i + nμW̃−p,i(L, Q)W̃i(Q∗)−

p
n−i : Q ∈ Kn

c

}
≥ inf

{
nλW̃−p,i(K, Q)W̃i(Q∗)−

p
n−i : Q ∈ Kn

c

}
+ inf

{
nμW̃−p,i(L, Q)W̃i(Q∗)−

p
n−i : Q ∈ Kn

c

}
= ω

− p
n−i

n λG̃−p,i(K) + ω
− p

n−i
n μG̃−p,i(L).

Thus,

G̃−p,i(λ ◦ K+̃n+p−iμ ◦ L) ≥ λG̃−p,i(K) + μG̃−p,i(L). (4.4)

Equality holds if and only if λ ◦ K+̃n+p−iμ ◦ L is a dilate of both K and L. This
means that equality holds in (4.4) if and only if K and L are dilates. �
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