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We introduce the concept of extrinsic catenary in the hyperbolic plane. Working in
the hyperboloid model, we define an extrinsic catenary as the shape of a curve
hanging under its weight as seen from the ambient space. In other words, an
extrinsic catenary is a critical point of the potential functional, where we calculate
the potential with the extrinsic distance to a fixed reference plane in the ambient
Lorentzian space. We then characterize extrinsic catenaries in terms of their
curvature and as a solution to a prescribed curvature problem involving certain
vector fields. In addition, we prove that the generating curve of any minimal surface
of revolution in the hyperbolic space is an extrinsic catenary with respect to an
appropriate reference plane. Finally, we prove that one of the families of extrinsic
catenaries admits an intrinsic characterization if we replace the extrinsic distance
with the intrinsic length of horocycles orthogonal to a reference geodesic.
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1. Introduction

The catenary is the solution to the problem of minimizing the potential gravitational
energy of a chain hanging under its weight when supported only at its ends. Euler
proved that by rotating a catenary about the reference line with respect to which
the weight is measured, the resulting surface of revolution has zero mean curvature
[3, 9]. This surface is called a catenoid, the only non-planar minimal surface of
revolution in Euclidean space. Recently, the second author extended the notion to
the catenary in the sphere and the hyperbolic plane [5]. After we fix a reference
geodesic �, the energy functional to be minimized is the potential energy, which is
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given by integrating the distance of points of the chain to �. A critical point of this
functional is called an (intrinsic) catenary.

Embedding the hyperbolic plane (2-sphere) in the hyperbolic space (3-sphere,
respectively), we may ask, as Euler did in Euclidean space, whether the revolution
of a catenary about � is a minimal surface. It turns out that the resulting surface of
revolution is not minimal. This problem was circumvented in the spherical case by
introducing the notion of an extrinsic catenary. More precisely, instead of measuring
the potential using the intrinsic distance, one uses the distance in the ambient
Euclidean space to a plane passing by the centre of the sphere [5]. This paper aims
to provide a similar extension of Euler’s result to the hyperbolic space.

Contrarily to the three-dimensional Euclidean space and sphere, in the hyper-
bolic space, H

3(r), three types of surfaces of revolution exist. Indeed, considering
H

3(r) as a hypersurface of the 4-dimensional Lorentz–Minkowski space E
4
1 (the

hyperboloid model), rotations in H
3(r) correspond to orthogonal transformations

in E
4
1 that leave a 2-dimensional subspace P 2 point-wise fixed. (We refer to P 2 as

the axis of revolution.) Thus, depending on the causal character of the axis of revo-
lution P 2 ⊂ E

4
1, the corresponding surface of revolution is of elliptic, hyperbolic, or

parabolic type1 . Motivated by this classification, instead of measuring the gravita-
tional potential in the hyperbolic plane H

2(r) from the intrinsic distance to a fixed
geodesic of H

2(r), as in Ref. [5], the potential will be measured using the extrin-
sic distance. More precisely, the extrinsic catenary problem consists in finding the
shape of a curve γ : [a, b] → H

2(r) ⊂ H
3(r), which is a critical point of the potential

energy

γ �−→
∫ b

a

distE
4
1
(γ(t), P 2)‖γ̇(t)‖dt,

where distE
4
1
(γ(t), P 2) is the distance in E

4
1 between P 2 and the point γ(t).

Depending on the causal character of P 2, critical points of the potential energy
functional will be called extrinsic catenaries of elliptic, hyperbolic, and parabolic
types. Our main theorem will extend Euler’s result about the catenoid to the
hyperbolic space. Namely, we have (we prove it as theorem 5.3 in §5)

Main Theorem 1.1. The generating curves of minimal surfaces of revolution in
H

3(r) of elliptic, hyperbolic, and parabolic types are extrinsic catenaries of spherical,
hyperbolic, and parabolic types, respectively.

In addition, we show that one of the families of extrinsic catenaries admits an
intrinsic characterization by using the so-called horocatenaries. In other words, a
horocatenary is a critical point of the potential energy functional obtained by replac-
ing distE

4
1
(γ(t), P 2) with the length of a horocycle orthogonal to a fixed reference

geodesic. Thus, we obtain the following theorem (we prove it as theorem 6.1 in §6)

1A surface of revolution with axis P 2 is of elliptic type if P 2 is spacelike, hyperbolic type if
P 2 is timelike, and parabolic type if P 2 is lightlike. The terminology stands for the fact that the
orbits of the revolution are ellipses, hyperbolas, and parabolas, respectively.
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Catenaries and minimal surfaces of revolution in hyperbolic space 3

Main Theorem 1.2. Every hyperbolic horocatenary is an extrinsic catenary in
H

2(r) of the elliptic type. Consequently, the generating curves of minimal surfaces
of revolution in H

3(r) of the elliptic type are horo-catenaries.

Surfaces of revolution in H
3(r) are well-known objects of investigation. First,

Mori found minimal surfaces of revolution of elliptic type [6].2 Later, do Carmo and
Dajczer obtained all the minimal surfaces of revolution and, among other results,
established their relation with helicoids [2]. To our knowledge, this work is the
first to characterize minimal surfaces of revolution in hyperbolic space through a
variational formulation for their generating curves.

The rest of this paper is divided as follows. In §2, we formulate the extrinsic
catenary problem in H

2(r). Theorem 2.5 characterizes extrinsic catenaries in terms
of their curvature function. In §3, we characterize extrinsic catenaries by prescribing
the curvature in terms of an equation involving Killing vector fields of E

3
1 (theorem

3.2). These vector fields indicate the direction of the geodesics in E
3
1 used to measure

the weight. To be self-contained, in §4, we provide a detailed construction of all
surfaces of revolution in hyperbolic space along with the computation of their mean
curvature. In §5, we prove our main result concerning the characterization of the
generating curves of surfaces of revolution in the hyperbolic space (theorem 5.3).
In §6, we prove that horocatenaries are extrinsic catenaries of the elliptic type,
thus providing an intrinsic characterization for minimal surfaces of revolution of
the elliptic type (theorem 6.1). Finally, we present our concluding remarks and
formulate some open problems in the last section.

2. The extrinsic catenary problem

Minimal surfaces in a three-dimensional Riemannian manifold are critical points of
the area functional. They are characterized by the vanishing of the mean curvature
H. If gij and hij denote the coefficients of the first and second fundamental forms
of a minimal surface, the minimality condition reads

H =
1
2
g22h11 − 2g12h12 + g11g22

g11g22 − g2
12

= 0. (2.1)

We want to classify the minimal surfaces of revolution in the hyperbolic space H
3(r)

of constant sectional curvature K = −(1/r2). In other words, surfaces generated by
1-parameter subgroups of isometries whose orbits are curves of constant curvature
κ contained in a totally geodesic surface, i.e., a copy of H

2(r) in H
3(r). A surface

of revolution is then foliated by hypercycles if 0 < κ < 1/r, horocycles if κ = 1/r,
and circles if κ > 1/r. Thus, we have three classes of minimal surfaces of revolution,
and the classification of the minimal ones will be done regarding their generating
curves.

Let E
n+1
1 = (Rn+1, 〈X,Y 〉1 = −X0Y0 +

∑n
i=1XiYi) be the (n+ 1)-dimensional

Lorentz–Minkowski space. In the hyperboloid model of the hyperbolic space, we

2Surfaces of revolution of elliptic type are often called surfaces of revolution of spherical type.
However, unless P 2 is the yz-plane (the x-axis is timelike), the orbits are not (Euclidean) circles.
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see H
n(r) as a hypersurface in E

n+1
1 of constant sectional curvature K = −1/r2:

H
n(r) = {X = (X0, . . . , Xn) ∈ E

n+1
1 : 〈X,X〉1 = −r2, X0 > 0}. (2.2)

We shall denote by 〈·, ·〉 the induced inner product of H
n(r). In addition, we embed

H
2(r) into H

3(r) by the natural inclusion

(x, y, z) ∈ H
2(r) ↪→ (x, y, z, 0) ∈ H

3(r). (2.3)

The extrinsic catenary problem is formulated as follows:

The extrinsic catenary problem. Given a subspace P 2 of E
4
1, find the shape of a

chain γ : [a, b] → H
2(r) ⊂ H

3(r) that optimizes the potential energy

W[γ] =

∫ b

a
dist(γ(t), P 2)‖γ̇(t)‖dt, (2.4)

where dist(γ(t), P 2) is the distance in E
4
1 of the point γ(t) to P 2.

Remark 2.1. The functional W[γ] is a generalization of the gravitational poten-
tial energy in Euclidean space. In a region close to the surface of the Earth, the
gravitational acceleration g can be considered constant, and the difference ΔU in
potential energy from one height to another is, to a good approximation, linearly
related to the difference in height Δh: ΔU = mgΔh. Thus, if a plane P 2 represents
the level of height zero on the Earth’s surface, each point of a chain of equation γ
and linear mass density μ will contribute an amount μg dist(γ(s), P 2) to the grav-
itational potential energy. Integration over γ gives W[γ] (g = μ = 1). Minimizing
(2.4) does not model a real physical situation, but we shall keep calling W[γ] a
potential energy.

Definition 2.2. Critical points of W[γ] are called extrinsic catenaries.

In the definition of extrinsic catenaries, it is implicitly assumed that γ lies on one
side of the plane P 2, implying that the integrand in (2.4) is positive. In contrast
to how catenaries are defined in Ref. [5], the weight is now calculated using the
extrinsic distance in E

4
1, rather than the intrinsic distance to a given geodesic in

H
2(r).
In E

n+1
1 , there are three types of planes P 2 according to their causal charac-

ter. In general, if P k denotes a k-dimensional subspace of E
n+1
1 , P k is said to be

Lorentzian, Riemannian, or degenerate, if the restriction of the metric 〈·, ·〉1 to P k is
a Lorentzian, Riemannian, or degenerate metric, respectively. Therefore, we define
three types of extrinsic catenaries: γ is an extrinsic catenary of (i) elliptic type, (ii)
hyperbolic type, and (iii) parabolic type if γ is a critical point of (2.4) when P 2 is (i)
Lorentzian, (ii) Riemannian, and (iii) degenerate, respectively.

Let {ex, ey, ez} be the unit velocity vectors of the canonical Cartesian coordi-
nates (x, y, z) of E

3
1 and denote [v1, . . . ,vk] = span{v1, . . . ,vk}. Without loss of

generality, we can suppose that the subspace P 2 is one of the following:

(i) P 2 = [ex, ey] (Lorentzian).
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(ii) P 2 = [ey, ez] (Riemannian).

(iii) P 2 = [ 1√
2
(ey + ex), ez] (degenerate).

To characterize the extrinsic catenaries, we will obtain the Euler–Lagrange equa-
tions of the functional (2.4). This task can be significantly simplified by choosing
a suitable system of coordinates and then applying the standard techniques of the
Calculus of Variations.

Without loss of generality, let � be the geodesic in H
2(r) obtained from the

intersection with the plane of equation z = 0:

�(v) = r
(
cosh

v

r
, sinh

v

r
, 0

)
, v ∈ R. (2.5)

If βv(u) denotes the geodesic with unit velocity X(v) = (0, 0, 1) ∈ T�(v)H
2(r) at

u = 0, 〈X(v), �′(v)〉1 = 0, then we can parametrize H
2(r) by

ψ(u, v) = βv(u) = �(v) cosh
u

r
+ r sinh

u

r
X

= r
(
cosh

u

r
cosh

v

r
, cosh

u

r
sinh

v

r
, sinh

u

r

)
. (2.6)

This coordinate system is known as the semi-geodesic coordinates [9]. Since

ψu =
(
sinh

u

r
cosh

v

r
, sinh

u

r
sinh

v

r
, cosh

u

r

)

ψv =
(
cosh

u

r
sinh

v

r
, cosh

u

r
cosh

v

r
, 0

)
,

(2.7)

the induced metric on H
2(r) takes the form

ds2 = du2 + cosh2 u

r
dv2. (2.8)

Now, we compute the distance in E
3
1 from γ(t) to P 2. If we write γ(t) =

ψ(u(t), v(t)) ∈ H
2(r) ⊂ E

3
1, then from (2.6), we have

dist(γ(t), [ex, ey]) = r sinh
u

r
, dist(γ(t), [ey, ez]) = r cosh

u

r
cosh

v

r
,

and

dist
(
γ(t),

[
1√
2
(ey + ex), ez

])
=

r√
2
e−v/r cosh

u

r
.

The first two distances are the length of the line segment orthogonal to P 2, which
connects γ(t) to P 2. The third distance is trickier since the reference plane is degen-
erate. (Thus, it contains its orthogonal line.) To circumvent this difficulty, we choose
E

3
1 = [ 1√

2
(ey − ex), 1√

2
(ey + ex), ez] and then consider 1√

2
(ey − ex) as playing the

role of the director vector of the ‘line segment orthogonal to P 2, which connects γ(t)
to P 2.’ The distance dist(γ(t), P 2) is then the (Euclidean) length of this line seg-
ment. (Note that L1 = 1√

2
(ey − ex) and L2 = 1√

2
(ey + ex) are two lightlike vectors

orthogonal to ez and normalized by the condition 〈L1, L2〉 = 1.) The definition’s
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suitability for the degenerate case is justified a posteriori : it is the ‘distance’ allow-
ing us to characterize minimal surfaces of revolution of parabolic type similarly to
the classification of surfaces of elliptic and hyperbolic types.

Up to multiplication by a constant, the distance to P 2 can be taken as
sinhu/r (elliptic), coshu/r cosh v/r (hyperbolic), and e−v/r coshu/r (parabolic).
Therefore,

(i) Extrinsic catenaries of elliptic type are critical points of

WE [γ(t)] =
∫ b

a

sinh
u

r

√
u̇2 + v̇2 cosh2 u

r
dt, u > 0. (2.9)

(ii) Extrinsic catenaries of hyperbolic type are critical points of

WH[γ(t)] =
∫ b

a

cosh
u

r
cosh

v

r

√
u̇2 + v̇2 cosh2 u

r
dt, u > 0. (2.10)

(iii) Extrinsic catenaries of parabolic type are critical points of

WP [γ(t)] =
∫ b

a

e−v/r cosh
u

r

√
u̇2 + v̇2 cosh2 u

r
dt, u > 0. (2.11)

The assumption u > 0 means that γ lies on one side of the plane P 2.

The functionals WE , WH, and WP are all of the form
∫
f(u, v)‖γ̇‖dt. To compute

the corresponding Euler–Lagrange equations, we first need the expression of the
geodesic curvature κ in H

2(r) with respect to coordinates (2.6).

Lemma 2.3. If γ(t) = ψ(u(t), v(t)) is a smooth regular curve in H
2(r), its signed

curvature in H
2(r) is given by

κ = − 1
‖γ̇(t)‖3

[
2u̇2v̇

r
sinh

u

r
+
v̇3

r
cosh2 u

r
sinh

u

r
+ (üv̇ − u̇v̈) cosh

u

r

]
. (2.12)

Proof. Let Γk
ij be the Christoffel symbols of the metric ds2 associated with the

coordinates (2.6). The expression for κ is then given by

κ =

√
det gij

(
Γ1

22v̇
3 − Γ2

11u̇
3 − (2Γ2

12 − Γ1
11)u̇

2v̇ + (2Γ1
12 − Γ2

22)u̇v̇
2 + üv̇ − u̇v̈

)
(g11u̇2 + 2g12u̇u̇+ g22v̇2)3/2

.

For the metric ds2 given in (2.8), we have g11 = 1, g12 = 0, and g22 = cosh2 u/r. As
a consequence, Γ1

11 = Γ1
12 = Γ2

11 = Γ2
22 = 0 and

Γ1
22 = −1

r
sinh

u

r
cosh

u

r
, Γ2

12 =
1
r

tanh
u

r
.

Now, using that ‖γ̇‖ =
√
g11u̇2 + 2g12u̇u̇+ g22v̇2 and substituting the expressions

for Γk
ij , Eq. (2.12) is immediate. �
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Lemma 2.4. Consider the functional

Ef [u(t), v(t)] =
∫ b

a

f(u, v)‖γ̇(t)‖dt, (2.13)

where f is some smooth, positive function. The Euler–Lagrange equations of Ef are

v̇

[
f cosh

u

r

(
κ− v̇fu coshu/r

f‖γ̇‖
)

+
u̇fv

‖γ̇‖
]

= 0

u̇

[
f cosh

u

r

(
κ− v̇fu coshu/r

f‖γ̇‖
)

+
u̇fv

‖γ̇‖
]

= 0,
(2.14)

where κ is the geodesic curvature of γ in H
2(r). If, in addition, γ is regular, then

γ is a solution of the Euler–Lagrange equations if, and only if,

κ =
1

f‖γ̇‖
(
v̇fu cosh

u

r
− u̇fv

coshu/r

)
. (2.15)

Proof. The Euler–Lagrange equations associated with the Lagrangian L = f‖γ̇‖
are

∂L
∂u

− d
dt
∂L
∂u̇

= 0 and
∂L
∂v

− d
dt
∂L
∂v̇

= 0. (2.16)

These equations are

fu‖γ̇‖ +
v̇2f coshu/r sinhu/r

r‖γ̇‖ − d
dt

(
fu̇

‖γ̇‖
)

= 0 and

fv‖γ̇‖ − d
dt

(
fv̇ cosh2 u/r

‖γ̇‖
)

= 0.

Equivalently, we have

v̇2fu cosh2 u/r − u̇v̇fv + (1/r)v̇2f sinhu/r coshu/r
‖γ̇‖ − f

d
dt

(
u̇

‖γ̇‖
)

= 0

u̇2fv − u̇v̇fu cosh2 u/r − 2
r u̇v̇f sinhu/r coshu/r

‖γ̇‖ − f cosh2 u
r

d
dt

(
v̇

‖γ̇‖
)

= 0.

After some manipulations, both equations can be expressed as

0 = v̇

[
u̇fv − v̇fu cosh2 u/r

‖γ̇‖

− f coshu/r
‖γ̇‖3

(
cosh u

r (u̇v̈ − v̇ü) +
v̇ sinhu/r

r

(
2u̇2 + cosh2 u

r
v̇2

))]

and

0 = u̇

[
u̇fv − fuv̇ cosh2 u/r

‖γ̇‖

− f coshu/r
‖γ̇‖3

(
cosh

u

r
(u̇v̈ − v̇ü) +

v̇ sinhu/r
r

(
2u̇2 + cosh2 u

r
v̇2

))]
.

https://doi.org/10.1017/prm.2024.56 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.56


8 L. C. B. da Silva and R. López

The identities (2.14) are now obtained using the above two equations and the
expression of κ given in Eq. (2.12). �

Finally, we are in a position to characterize the extrinsic catenaries in the
hyperbolic plane.

Theorem 2.5. Let γ(t) = ψ(u(t), v(t)) be a regular curve in H
2(r). Then, γ is an

extrinsic catenary if, and only if, its curvature κ in H
2(r) satisfies:

(i) Elliptic type:

κ =
1

r‖γ̇‖
v̇ cosh2 u/r

sinhu/r
. (2.17)

(ii) Hyperbolic type:

κ =
1

r‖γ̇‖
(
− u̇ sinh v/r

coshu/r cosh v/r
+ v̇ sinh

u

r

)
. (2.18)

(iii) Parabolic type:

κ =
1

r‖γ̇‖
(

u̇

coshu/r
+ v̇ sinh

u

r

)
. (2.19)

Proof. Just apply lemma 2.4 to the functionals in Eqs. (2.9)–(2.11). In other
words, choose f in Eq. (2.15) as sinhu/r, coshu/r cosh v/r, and e−v/r coshu/r,
respectively. �

Remark 2.6. If in the variational formulation of the extrinsic catenary problem,
§1, we assumed that the chain’s length is prescribed, there would be a constraint∫ b

a
‖γ̇(t)‖dt = c. Consequently, the quantity dist(γ(t), P 2) in (2.4) would have to

be replaced by dist(γ(t), P 2) + λ, where λ is a Lagrange multiplier. In the func-
tional (2.13), adding a Lagrange multiplier implies that the function f should be
replaced by f + λ. The corresponding Euler–Lagrange equations coincide with those
of theorem 2.5 after a translation in E

4
1 of the plane P 2.

3. Characterization of extrinsic catenaries

In this section, we provide a coordinate-free characterization of extrinsic catenaries
with the help of Killing vector fields of E

4
1. The motivation comes from the Euclidean

catenary y(x) = 1/a cosh(ax+ b) in the (x, y)-plane. This curve is the solution to
the hanging chain problem in the Euclidean plane. In this setting, the reference line
is the horizontal line � of equation y = 0, and the corresponding Euler–Lagrange
equation is

y′′

(1 + y′2)3/2
=

1

y
√

1 + y′2
. (3.1)

The left-hand side is just the curvature κ of the curve y = y(x). The right-
hand side is the Euclidean product n · ey divided by the distance to �, where
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Catenaries and minimal surfaces of revolution in hyperbolic space 9

n = (−y′, 1)/
√

1 + y′2 is the unit normal of y = y(x) and −ey = (0,−1) is the
direction of gravity in Euclidean plane. Thus, Eq. (3.1) can be expressed as

κ =
n · ey

dist(γ, �)
. (3.2)

Observe that the direction of gravity −ey also has a geometric interpretation. It
gives the direction of the geodesics orthogonal to � used to compute dist(γ, �).

We can provide a similar result for extrinsic catenaries in hyperbolic space. How-
ever, since the potential energy (2.4) measures the distance in E

4
1 from the plane

P 2, it is natural to expect that the right-hand side of Eq. (3.2) will incorporate the
extrinsic nature of (2.4). Such a characterization of hyperbolic extrinsic geodesics
will be obtained as a corollary of a more general result:

Theorem 3.1. A regular curve γ(t) = ψ(u(t), v(t)) in H
2(r) is a critical point of

the functional (2.13) if, and only if, its curvature κ in H
2(r) satisfies

κ = −〈n,∇f〉
f

, (3.3)

where n is the unit normal of γ and ∇f is the gradient vector field of f .

Proof. The tangent vector of γ is γ̇ = u̇∂u + v̇∂v. Thus, the unit normal n is

n =
1

‖γ̇‖
(
−v̇ cosh

u

r
∂u +

u̇

coshu/r
∂v

)
, (3.4)

where {∂u, ∂v} is the coordinate basis determined by the parametrization ψ. The
expression of the gradient of f with respect to this basis is

∇f = fu∂u +
fv

cosh2 u/r
∂v. (3.5)

It follows from Eqs. (3.4) and (3.5) that

〈n,∇f〉 =
1

‖γ̇‖
(
−v̇ cosh

u

r
fu +

u̇

coshu/r
fv

)
.

This equation and Eq. (2.15) finally prove Eq. (3.3). �

Finally, we are in a position to provide the following characterization for extrinsic
catenaries.

Theorem 3.2. A regular curve γ(t) = ψ(u(t), v(t)) in H
2(r) is an extrinsic cate-

nary if, and only if, its curvature κ in H
2(r) satisfies

κ(t) = − 〈n(t),X(t)〉
dist(γ(t), P 2)

, (3.6)

where X is the Killing field in E
3
1 of the geodesics in E

3
1 orthogonal to P 2. If γ is a

catenary of hyperbolic or elliptic type, such geodesics connect γ to a point of P 2.
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Proof. If X is a vector field in E
3
1, its tangent part X� in H

2(r) is given by

X� = X − 1
r2

〈X,ψ〉ψ = 〈X,ψu〉ψu +
〈X,ψv〉

cosh2 u/r
ψv, (3.7)

where ψ is the parametrization (2.6) of H
2(r). Consider now the three types of

Killing vector fields that determine the distance between a point of H
2(r) and a

subspace P 2 depending on the causal character of P 2. Denote by {ex, ey, ez} the
canonical basis of E

3
1.

(i) If P 2 = [ex, ey], the Killing vector field is X = ez and, from (3.7), we have

X� = −1
2

sinh
2u
r

cosh
v

r
ex − 1

2
sinh

2u
r

sinh
v

r
ey +

(
1 − sinh2 u

r

)
ez

= cosh
u

r
ψu.

(ii) If P 2 = [ey, ez], the Killing vector field is X = −ex and, from (3.7), we have

X� =
(
−1 − cosh2 u

r
cosh2 v

r

)
ex − 1

2
cosh2 u

r
sinh

2v
r

ey − 1
2

sinh
2u
r

cosh
v

r
ez

= sinh
u

r
cosh

v

r
ψu +

sinh v/r
coshu/r

ψv.

(iii) If P 2 = [ 1√
2
(ey + ex), ez], the Killing vector field X = − 1√

2
(ex + ey) and,

from (3.7), we have

X� = − 1√
2

(
1 + e−v/r cosh2 u

r
cosh

v

r

)
ex

− 1√
2

[
1 + e−v/r cosh2 u

r
sinh

v

r

]
ey − e−v/r

2
√

2
sinh

2u
r

ez

=
e−v/r

√
2

sinh
u

r
ψu − e−v/r

√
2 coshu/r

ψv.

Let us compute the gradient ∇f in H
2(r) of the distances to each of the above

planes P 2.

(i) In the elliptic case, f(u, v) = r sinhu/r. Using Eq. (3.5) and ∂u = ψu and
∂v = ψv in (2.7), we obtain that ∇f = X�.

(ii) In the hyperbolic case, f(u, v) = r coshu/r cosh v/r. Using Eq. (3.5) and
∂u = ψu and ∂v = ψv in (2.7), we obtain that ∇f = X�.

(iii) In the parabolic case, f(u, v) = r√
2
e−v/r coshu/r. Using Eq. (3.5) and

∂u = ψu and ∂v = ψv in (2.7), we obtain that ∇f = X�.
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Finally, applying theorem 3.1 gives the desired result. Indeed,

κ = −〈n,∇f〉
f

= − 〈n,X�〉
dist(γ, P 2)

= − 〈n,X〉
dist(γ, P 2)

.

�

4. Surfaces of revolution in hyperbolic space

This section describes the three types of surfaces of revolution in H
3(r). To define

them, we first exploit the fact that all isometries of H
3(r) are induced by orthogonal

transformations of E
4
1. Later, after introducing a convenient coordinate system for

each surface type, we compute their mean curvature.
Let P k denote a k-dimensional subspace of E

4
1 and O(P k) be the set of orthogonal

transformations of E
4
1 with positive determinant and that leave P k pointwise fixed.

(In the context of the Lorentzian geometry, the orthogonal transformations of E
4
1

are often referred to as Lorentzian transformations.) Following do Carmo–Dajczer
[2], we have the following classification for surfaces of revolution in H

3(r).

Definition 4.1. Consider two subspaces P 2, P 3 ⊂ E
4
1 such that P 2 ⊂ P 3 and P 3 ∩

H
3(r) �= ∅. Let γ : I → H

2(r) = P 3 ∩ H
3(r) be a regular curve that does not intersect

P 2. The orbits of γ under the action of O(P 2) is called a surface of revolution in
H

3(r) generated by γ and rotated around P 2. In addition, the surface of revolution
is said to be of

(i) elliptic type, if P 2 is Lorentzian,

(ii) hyperbolic type, if P 2 is Riemannian, and

(iii) parabolic type, if P 2 is degenerate.

Remark 4.2. In the hyperboloid model, the orbits of the action of a revolution
of elliptic, hyperbolic, and parabolic types are ellipses, hyperbolas, and parabolas,
respectively. In [2], surfaces of elliptic type are said to be spherical. However, the
orbits are elliptic unless P 2 is orthogonal to the x-axis (i.e., the canonical time-
like direction). Finally, note that from an intrinsic viewpoint, we can alternatively
describe the orbits as circles, hypercycles, and horocycles.

Now, we shall explain the general recipe of how to choose the planes P 2 and
P 3 and the generating curve γ in the constructions below. First, we fix a basis
{e1, e2, e3, e4} of E

4
1 (not necessarily the canonical one). Later, we shall take

P 2 = [e1, e2] and P 3 = [e1, e2, e3]. Finally, to generate a surface of revolution,
we take a curve γ(t) = x1(t)e1 + x2(t)e2 + x3(t)e3 and then rotate it around P 2.
Without loss of generality, the parametrizations of the three types of surfaces of
revolution are the following:
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(i) Surfaces of elliptic type. Consider P 2 = [ex, ey] and P 3 = [ex, ey, ez]. The
members Eθ of O(P 2) take the form

Eθ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ

⎞
⎟⎟⎠ .

Given a curve γ(t) = (x(t), y(t), z(t), 0) ∈ H
2(r) = P 3 ∩ H

3(r), we obtain a
surface of revolution SE parametrized by

SE(t, θ) = Eθ(γ(t)) = (x(t), y(t), z(t) cos θ, z(t) sin θ). (4.1)

(ii) Surfaces of hyperbolic type. Consider P 2 = [ey, ez] and P 3 = [ey, ez, ex]. The
members Hθ of O(P 2) take the form

Hθ =

⎛
⎜⎜⎝

cosh θ 0 0 sinh θ
0 1 0 0
0 0 1 0

sinh θ 0 0 cosh θ

⎞
⎟⎟⎠ .

Given a curve γ(t) = (x(t), y(t), z(t), 0) ∈ H
2(r) = P 3 ∩ H

3(r), we obtain a
surface of revolution SH parametrized by

SH(t, θ) = Hθ(γ(t)) = (x(t) cosh θ, y(t), z(t), x(t) sinh θ). (4.2)

(iii) Surfaces of parabolic type. Consider the subspaces P 2 = [(ey + ex)/
√

2, ez]
and P 3 = [(ey + ex)/

√
2, ez, (ey − ex)/

√
2]. The members Pθ of O(P 2) take

the form

Pθ =

⎛
⎜⎜⎜⎜⎜⎝

1 +
θ2

2
−θ

2

2
0 −θ

θ2

2
1 − θ2

2
0 −θ

0 0 1 0
−θ θ 0 1

⎞
⎟⎟⎟⎟⎟⎠
.

Now, given a curve γ(t) = (x(t), y(t), z(t), 0) ∈ H
2(r) = P 3 ∩ H

3(r), we obtain
a surface of revolution SP(t, θ) = Pθ(γ(t)) parametrized by

SP(t, θ) =
(
x+

θ2

2
(x− y), y +

θ2

2
(x− y), z,−θ(x− y)

)
. (4.3)

Let us calculate the mean curvature of the surfaces of revolution parametrized
as above.

Proposition 4.3. Let Sγ be a surface of revolution in H
3(r) ⊂ E

4
1 with generating

curve γ(t) = (x(t), y(t), z(t), 0). Let H be the mean curvature of Sγ . We have,

(i) If Sγ is of elliptic type, then

H =
z [x(ÿż − ẏz̈) − y(ẍż − ẋz̈) + z(ẍẏ − ẋÿ)] + (xẏ − ẋy)‖γ̇‖2

2rz‖γ̇‖3
. (4.4)
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(ii) If Sγ is of hyperbolic type, then

H =
x [x(ÿż − ẏz̈) − y(ẍż − ẋz̈) + z(ẍẏ − ẋÿ)] − (yż − ẏz)‖γ̇‖2

2rx‖γ̇‖3
. (4.5)

(iii) If Sγ is of parabolic type, then

H = − (x− y) [x(ÿż − ẏz̈) − y(ẍż − ẋz̈) + z(ẍẏ − ẋÿ)]
2r(x− y)‖γ̇‖3

− [(x− y)ż − (ẋ− ẏ)z] ‖γ̇‖2

2r(x− y)‖γ̇‖3
. (4.6)

Proof. First, note we may employ the ternary product ×1 of E
4
1 to define a vector

product × in H
3(r). Indeed, if X,Y ∈ TpH

3(r), we have

X × Y = X ×1 Y ×1
p

r
=

1
r

det

⎛
⎜⎜⎝
x1 y1 z1 w1

x2 y2 z2 w2

x y z w
−ex ey ez ew

⎞
⎟⎟⎠ ,

where p = (x, y, z, w), X = (x1, y1, z1, w1), and Y = (x2, y2, z2, w2). Here, the vec-
tors of the orthonormal basis {ex, ey, ez, ew} are placed in the last line to guarantee
that ex ×1 ey ×1 ez = ew.

Consider a parametrization Φ = Φ(u1, u2) of a surface of H
3(r). Recall that the

coefficients (gij) of the first fundamental form are gij = 〈∂Φ/∂ui, ∂Φ/∂uj〉. Fix the
unit normal

ξ =
1√

det gij

∂Φ
∂u1

× ∂Φ
∂u2

.

The coefficients (hij) of the second fundamental form are

hij =
〈
∇∂Φ/∂ui

∂Φ
∂uj

, ξ

〉
=

〈
∂2Φ

∂ui∂uj
, ξ

〉
.

Then, the mean curvature H of Φ(u1, u2) is given by

H =
g22h11 − 2g12h12 + g11h22

2(g11g22 − g2
12)

. (4.7)

We now compute (4.7) in each of the three types of surfaces of revolution.

(i) Let Sγ be of revolution of spherical type. Without loss of generality, we may
parametrize it as in (4.1): Sγ = SE . The tangent plane is spanned by

∂SE
∂t

= (ẋ, ẏ, ż cos θ, ż sin θ) and
∂SE
∂θ

= (0, 0,−z sin θ, z cos θ).

Thus, the first fundamental form of SE becomes

ds2 = (−ẋ2 + ẏ2 + ż2)dt2 + z2dθ2 = ‖γ̇‖2dt2 + z2dθ2.
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The unit normal ξ of SE is given by

ξ =
1

r‖γ̇‖
(
yż − ẏz, xż − ẋz, (ẋy − xẏ) cos θ, (ẋy − xẏ) sin θ

)
.

Let us compute the second fundamental form’s coefficients hij . The second
derivatives of SE are

∂2SE
∂t2

= (ẍ, ÿ, z̈ cos θ, z̈ sin θ),
∂2SE
∂t∂θ

= (0, 0,−ż sin θ, ż cos θ),

and

∂2SE
∂θ2

= (0, 0,−z cos θ,−z sin θ).

Thus, we have h12 = 0 and

h11 =
1

r‖γ̇‖ [x(ÿż − ẏz̈) − y(ẍż − ẋz̈) + z(ẍẏ − ẋÿ)] , h22 =
z(xẏ − ẋy)

r‖γ̇‖ .

Substitution of hij and gij in Eq. (4.7) gives the desired expression (4.4).

(ii) Let Sγ be a surface of revolution of hyperbolic type. Without loss of generality,
we may parametrize it as in (4.2): Sγ = SH. The tangent plane is spanned by

∂SH
∂t

= (ẋ cosh θ, ẏ, ż, ẋ sinh θ) and
∂SH
∂θ

= (x sinh θ, 0, 0, x cosh θ). (4.8)

Thus, the first fundamental form of SH becomes

ds2 = (−ẋ2 + ẏ2 + ż2)dt2 + z2dθ2 = ‖γ̇‖2dt2 + x2dθ2. (4.9)

The unit normal ξ of SH is given by

ξ =
1

r‖γ̇‖
(
(yż − ẏz) cosh θ, xż − ẋz, ẋy − xẏ, (yż − ẏz) sinh θ

)
.

Let us compute the second fundamental form’s coefficients hij . The second
derivatives of SH are

∂2SH
∂t2

= (ẍ cosh θ, ÿ, z̈, ẍ sinh θ),
∂2SH
∂t∂θ

= (ẋ sinh θ, 0, 0, ẋ cosh θ),

and

∂2SH
∂θ2

= (x cosh θ, 0, 0, x sinh θ).

Thus, we have h12 = 0 and

h11 =
1

r‖γ̇‖ [x(ÿż − ẏz̈) − y(ẍż − ẋz̈) + z(ẍẏ − ẋÿ)] , h22 = −x(yż − ẏz)
r‖γ̇‖ .

Again, a substitution of hij and gij in Eq. (4.7) gives (4.5).
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(iii) Let Sγ be a surface of revolution of parabolic type. Without loss of generality,
we may parametrize it as in (4.3): Sγ = SP . The tangent plane is now spanned
by

∂SP
∂t

=
((

1 +
θ2

2

)
ẋ− θ2

2
ẏ,
θ2

2
ẋ+

(
1 − θ2

2

)
ẏ, ż, θẏ − θẋ

)

and
∂SP
∂θ

=
(
θ(x− y), θ(x− y), 0, y − x

)
.

Thus, the first fundamental form of SP becomes

ds2 = (−ẋ2 + ẏ2 + ż2)dt2 + (x− y)2dθ2 = ‖γ̇‖2dt2 + (x− y)2dθ2.

The unit normal ξ of SP is given by

ξ =
[
θ2

2
(xż − ẋz) −

(
1 +

θ2

2

)
(yż − ẏz)

]
ex

r‖γ̇‖

−
[
θ2

2
(yż − ẏz) +

(
1 − θ2

2

)
(xż − ẋz)

]
ey

r‖γ̇‖
+

(
xẏ − ẋy

) ez

r‖γ̇‖ − θ [(x− y)ż − (ẋ− ẏ)z]
ew

r‖γ̇‖ .

Let us compute the second fundamental form’s coefficients hij . The second
derivatives of SP are

∂2SP
∂t2

=
((

1 +
θ2

2

)
ẍ− θ2

2
ÿ,

θ2

2
ẍ+

(
1 − θ2

2

)
ÿ, z̈, θÿ − θẍ

)
,

∂2SP
∂t∂θ

= (ẋ− ẏ)
(
θ, θ, 0,−1

)
, and

∂2SP
∂θ2

=
(
x− y, x− y, 0, 0

)
.

Thus, we have h12 = 0 and

h11 = − 1
r‖γ̇‖ [x(ÿż − ẏz̈) − y(ẍż − ẋz̈) + z(ẍẏ − ẋÿ)] ,

h22 = −(x− y)
(x− y)ż − (ẋ− ẏ)z

r‖γ̇‖ .

Substitution of hij and gij in Eq. (4.7) gives (4.6).

�

5. Minimal surfaces of revolution

This section proves the first of our main results, theorem 5.3 below, concerning the
characterization of minimal surfaces of revolution in hyperbolic space. (See figure 1.)
To do that, we use proposition 4.3 to express the mean curvature in terms of the
curvature κ of the generating curve, proposition 5.2. Then, we compare the resulting
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Figure 1. Examples of minimal surfaces of revolution in the Poincaré ball model
of H

3(1) obtained from the hyperboloid model (2.2) through stereographic projec-
tion (x0, x1, x2, x3) �→ (x1/(1 + x0), x2/(1 + x0), x3/(1 + x0)). (In the figures, the purple
spheres indicate the points in the ideal boundary of H

3(1).) The generating curves of the
surfaces are found by numerically solving the differential equation obtained by equating
the expressions for the curvature given in lemma 2.3 and theorem 2.5. (a) Elliptic type.
(b) Parabolic type. (c) Hyperbolic type.

expression with the curvatures of the extrinsic catenaries that appear in theorem
2.5.

First, we need an expression for the curvature of a generic curve in H
2(r).

Lemma 5.1. The curvature κ of γ(t) = (x(t), y(t), z(t)) in H
2(r) is given by

κ = −x(ÿż − ẏz̈) − y(ẍż − ẋz̈) + z(ẍẏ − ẋÿ)
r‖γ̇‖3

. (5.1)

Proof. The unit normal of the hyperbolic plane H
2(r) seen as a surface of E

3
1 is

given by N = γ/r. Thus, it follows that we may express the curvature κ of γ(t) =
(x(t), y(t), z(t)) in H

2(r) as

κ =
〈N ×1 γ̇,∇γ̇ γ̇〉

‖γ̇‖3
=

〈γ ×1 γ̇, γ̈〉1
r‖γ̇‖3

, (5.2)

where the vector product of V = (vx, vy, vz) with W = (wx, wy, wz) in E
3
1 is

defined as V ×1 W = (−vywz + vzwy,−vxwz + vzwx, vxwy − vywx). A straightfor-
ward computation shows that γ ×1 γ̇ = (ẏz − yż, ẋz − xż, xẏ − ẋy). Therefore,

〈γ ×1 γ̇, γ̈〉1 = −x(ÿż − ẏz̈) + y(ẍż − ẋz̈) − z(ẍẏ − ẋÿ).

Substitution of 〈γ ×1 γ̇, γ̈〉1 in Eq. (5.2) proves (5.1). �

Proposition 5.2. Let Sγ be a surface of revolution in H
3(r) ⊂ E

4
1 with generating

curve γ(t) = (x(t), y(t), z(t), 0) ∈ H
2(r) ⊂ H

3(r). Then, Sγ is minimal if, and only
if, the curvature of its generating curve satisfies
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(i) if Sγ is of elliptic type, then

κ =
xẏ − ẋy

rz‖γ̇‖ , (5.3)

(ii) if Sγ is of hyperbolic type, then

κ = −yż − ẏz

rx‖γ̇‖ , (5.4)

(iii) if Sγ is of parabolic type, then

κ = − (x− y)ż − (ẋ− ẏ)z
2r(x− y)‖γ̇‖ . (5.5)

Proof. It is enough to substitute the formula for κ obtained in (5.1) in each of the
expressions for the mean curvature of surfaces of revolution given in proposition
4.3. �

Theorem 5.3. Let Sγ be a surface of revolution in H
3(r) ⊂ E

4
1 with generating

curve γ(t) = (x(t), y(t), z(t), 0) ∈ H
2(r) ⊂ H

3(r). Then, Sγ is a minimal surface of
revolution in H

3(r) of elliptic, hyperbolic, or parabolic type if, and only if, γ is an
extrinsic catenary of elliptic, hyperbolic, or parabolic type, respectively.

Proof. Let γ(t) = ψ(u(t), v(t)) be the generating curve of a surface of revolution.
We calculate the right-hand sides of Eqs. (5.3)–(5.5). Using the parametrization ψ
given in (2.6), we can write

γ(t) = r

(
cosh

u(t)
r

cosh
v(t)
r
, cosh

u(t)
r

sinh
v(t)
r
, sinh

u(t)
r

)
.

Then

xẏ − ẋy

rz‖γ̇‖ =
v̇ cosh2 u

r

r‖γ̇‖ sinh u
r

, (5.6)

yż − ẏz

rx‖γ̇‖ =
u̇ sinh v

r − v̇ cosh v
r cosh u

u sinh u
r

r‖γ̇‖ cosh v
r cosh u

r

, (5.7)

(x− y)ż − (ẋ− ẏ)z
r(x− y)‖γ̇‖ =

u̇+ v̇ cosh u
r sinh u

r

r‖γ̇‖ cosh u
r

. (5.8)

Finally, we conclude the proof using the expressions for the curvature κ of an
extrinsic catenary given in theorem 2.5. �
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6. Hyperbolic horocatenary

In this section, we consider a variation of the hanging chain problem introduced
by López [5] where one measures the distance to a reference geodesic by using the
so-called horocycle distance [4]. In other words, we shall employ dh(�, p) defined as
the distance measured along the horocycle passing through p and orthogonal to the
geodesic �. The solutions to this problem will be called hyperbolic horocatenary [5].
Using horocatenaries will allow us to provide an intrinsic characterization of the
extrinsic catenaries of the elliptic type, theorem 6.1.

As done for hyperbolic catenaries, we first introduce a coordinate system adapted
to the problem. In the hyperboloid model, horocycles correspond to the curves given
as the intersection of H

2(r) with lightlike planes of E
3
1 not passing through the origin

[8]. (Thus, horocycles are implicitly written as Euclidean parabolas.) Alternatively,
we may describe horocycles as the orbits of the one-parameter subgroup of parabolic
rotations [2], i.e., rotations induced in H

2(r) by the orthogonal transformations of
E

3
1 that leave a lightlike plane P 2 pointwise fixed. As a concrete example, consider

the plane P 2 = [ex + ey, ez], where {ex, ey, ez} is the canonical basis given by the
unit velocity vectors associated with the Cartesian coordinates (x, y, z). The orthog-
onal transformations of E

3
1 that leave P 2 pointwise fixed correspond to a lightlike

rotation Lθ with axis (1, 1, 0) and whose matrix is given by [7]

Lθ =

⎛
⎜⎜⎜⎜⎜⎝

1 +
θ2

2
−θ

2

2
−θ

θ2

2
1 − θ2

2
−θ

−θ θ 1

⎞
⎟⎟⎟⎟⎟⎠
. (6.1)

Now, let �(v) be the geodesic

v �→ �(v) = r
(
cosh

v

r
, sinh

v

r
, 0

)
. (6.2)

The horocycles orthogonal to � are given by u �→ Lu/r(�(v)). We may then
parametrize H

2(r) as φ(u, v) = Lu/r(�(v)), which gives

φ = r

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
1 +

u2

2r2

)
cosh

v

r
− u2

2r2
sinh

v

r

u2

2r2
cosh

v

r
+

(
1 − u2

2r2

)
sinh

v

r

u

r

(
sinh

v

r
− cosh

v

r

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (6.3)

Alternatively, using the identity cosh v/r − sinh v/r = e−v/r, we may rewrite the
parametrization as

φ(u, v) = r

(
cosh

v

r
+

u2

2r2
e−v/r, sinh

v

r
+

u2

2r2
e−v/r,−u

r
e−v/r

)
. (6.4)
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The tangent vectors of the parametrization φ are

φu = e−v/r
(u
r
,
u

r
,−1

)
, φv =

(
sinh

v

r
− u2

2r2
e−v/r, cosh

v

r
− u2

2r2
e−v/r,

u

r
e−v/r

)
.

(6.5)

Then, the coefficients gij of the metric are

g11 = e−2v/r,

g12 = e−v/r

(
−u
r

sinh
v

r
+

u3

2r3
e−v/r +

u

r
cosh

v

r
− u3

2r3
e−v/r − u

r
e−v/r

)
= 0

and

g22 = − sinh2 v

r
+
u2

r2
e−v/r sinh

v

r
− u4

4r4
e−2v/r + cosh2 v

r
− u2

r2
e−v/r cosh

v

r

+
u4

4r4
e−2v/r +

u2

r2
e−2v/r = 1.

In short, the metric of H
2(r) in the coordinates system φ(u, v) is

g = e−2v/r du2 + dv2. (6.6)

This coordinate system is similar to the semi-geodesic coordinate system. From
now on, we shall refer to φ as the horo-geodesic parametrization. Note that the
coordinate curves v �→ φ(u, v) are geodesics: φvv = (1/r)φ⇒ ∇φv

φv = 0. On the
other hand, the coordinate curves u �→ φ(u, v) are horocycles.

By construction, the coordinate horocycles are orthogonal to the geodesic
�(v) = φ(0, v). Thus, the horocycle distance can be computed as

dh(φ(u, v), �) =
∫ u

0

e−v/r dt = u e−v/r. (6.7)

Note that dh is nothing but the height of φ with respect to the xy-plane. Therefore,
we can provide an intrinsic characterization of extrinsic catenary of spherical type

Theorem 6.1. Every hyperbolic horocatenary in H
2(r) is an extrinsic catenary

of the elliptic type. Consequently, the generating curves of minimal surfaces of
revolution in H

3(r) of the elliptic type are horocatenaries.

Remark 6.2. The horo-geodesic coordinates are analogous to the semi-geodesic
coordinates after we exchange u and v. Thus, the Christoffel symbols are

Γ1
11 =

Fu

F
= 0, Γ2

11 = −FFv =
1
r
e−2v/r, Γ1

12 =
Fv

F
= −1

r
, Γ2

12 = 0, Γi
22 = 0,

where F = e−v/r. The curvature of γ(t) = φ(u(t), v(t)) in H
2(r) is given by

κ =
üv̇ − u̇(v̈ + (u̇2/r)e−2v/r + (2v̇2/r))

ev/r(e−2v/ru̇2 + v̇2)3/2
. (6.8)
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7. Conclusion

We introduced the concept of extrinsic catenaries in the hyperbolic plane,
providing novel insights into the variational formulation of curves in non-
Euclidean ambient manifolds. Utilizing the hyperboloid model, we defined extrin-
sic catenaries as critical points of the gravitational potential functional cal-
culated from the extrinsic distance to a fixed reference plane in the ambient
Lorentzian space. We delved into the characterization of extrinsic catenaries
in terms of their curvature and as solutions to a prescribed curvature prob-
lem involving specific vector fields, and we showed that the generating curve
of any minimal surface of revolution in the hyperbolic space is an extrinsic
catenary.

We note that catenaries of the elliptic type obey a conservation law. Indeed,
the Lagrangian L associated with catenaries of the elliptic type, see Eq. (2.9),
does not depend on the coordinate v, which implies ∂L/∂v̇ is a first integral3 .
Geometrically, this first integral is associated with a Clairaut-like relation, thus
providing information about the angle ϑ between an extrinsic catenary of the elliptic
type and the v-coordinate curves of the parametrization (2.6): following theorem
4.1 of Ref. [1], we can prove that

1
2

sinh
2u
r

cosϑ = constant. (7.1)

In this context, the v-coordinates curves play the role of parallels if we see the
hyperbolic plane as an invariant surface generated by rotations of the hyper-
bolic type. (We obtain (2.6) by applying Hu/r, Eq. (4.2), to the geodesic �(v) = r
(cosh(v/r), sinh(v/r), 0) followed by the exchange (x, y, z, w) �→ (x, z, w, y).)

Extrinsic catenaries of the hyperbolic and parabolic types have no obvious first
integrals. Thus, we may ask whether similar conservation also holds for them or
whether the absence of circular coordinates in the Lagrangian is just an artefact of
a bad choice of coordinates for the hyperbolic plane.

In many aspects, horocycles behave as extrinsically flat curves in hyper-
bolic geometry, and replacing geodesics with them often leads to problems with
good properties. In this work, we established that extrinsic catenaries of the
elliptic type could be intrinsically characterized by replacing the extrinsic dis-
tance with the intrinsic length of horocycles orthogonal to a reference geodesic,
in analogy with (intrinsic) catenaries [1, 5]. The notion of extrinsic catenar-
ies only makes sense when working with the hyperboloid model. Thus, we
may also ask whether providing intrinsic characterizations for extrinsic cate-
naries of the hyperbolic and parabolic types is possible. Consequently, we ask
whether it is possible to characterize the generating curve of any hyperbolic
minimal surface of revolution without resorting to a specific model for H

3. A
similar question can also be posed concerning minimal surfaces of revolution
in S

3.

3A non-constant function is a first integral if it is constant along the solution curves of the
problem min

∫
L(u, v, u̇, v̇)dt.
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1 L. C. B. da Silva and R. López. Catenaries in Riemannian surfaces. São Paulo J. Math.
Sci. (2024), doi:10.1007/s40863-023-00399-z

2 M. do Carmo and M. Dajczer. Rotation hypersurfaces in spaces of constant curvature.
Trans. Amer. Math. Soc. 277 (1983), 685–709.

3 L. Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive
solutio problematis isoperimetrici latissimo sensu accepti. Leonhard Euler, Vol. 1/24 (Opera
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