NOTES ON THE BIRKHOFF ALGORITHM FOR DOUBLY STOCHASTIC MATRICES

BY
RICHARD A. BRUALDI

Abstract

The purpose of this note is to tie together some results concerning doubly stochastic matrices and their representations as convex combinations of permutation matrices.

Let Ω_{n} denote the set of $n \times n$ doubly stochastic matrices. Thus an $n \times n$ matrix $S=\left[s_{i j}\right]$ belongs to Ω_{n} provided $s_{i j} \geq 0(i, j=1, \ldots, n)$, and the sum of the entries in each row and in each column of S equals one. It is readily verified that Ω_{n} is a convex polytope in Euclidean n^{2}-space, and it was shown in [8] that Ω_{n} has dimension $n^{2}-2 n+1$. Birkhoff [$1 ; 10, \mathrm{p} .58$] proved that the extreme points of Ω_{n} are the $n \times n$ permutation matrices, and in doing so gave an algorithm for writing a doubly stochastic matrix as a convex combination of permutation matrices.

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix of 0 's and 1 's such that for each (e, f) with $a_{e f}=1$, there is a permutation matrix $P=\left[p_{i j}\right]$ where $p_{e f}=1$ and $P \leq A$ (the order relation is entrywise). Then A is said to have total support. It was proved in [3] that the faces of Ω_{n} are in one-to-one correspondence with the $n \times n$ matrices A of 0 's and 1's with total support; the face of Ω_{n} associated with A is

$$
\mathscr{F}(A)=\left\{S \in \Omega_{n}: S \leq A\right\} .
$$

If A has total support, then there is a largest integer $k \geq 1$ such that after reordering rows and columns, A is a direct sum $A_{1} \oplus \cdots \oplus A_{k}$ where A_{1}, \ldots, A_{k} have total support. Since k is maximum A_{1}, \ldots, A_{k} cannot be decomposed further into direct sums and are called the fully indecomposable components of A. It was proved in [3] by an elementary combinatorial argument that

$$
\operatorname{dim} \mathscr{F}(A)=\sigma(A)-2 n+k
$$

where $\sigma(A)$ is the number of positive entries of A. It now follows from the

Received by the editors April 29, 1980.
AMS Subject Classification Numbers: 15A51, 05C50, 52A25.
Research partially supported by National Science Foundation Grant No. MCS 76-06374 A01.
classical theorem of Caratheodory [5] that every matrix in $\mathscr{F}(A)$ can be written as a convex combination of no more than $\sigma(A)-2 n+k+1$ permutation matrices.

Let $S=\left[s_{i j}\right] \in \Omega_{n}$ and let $S_{(0,1)}$ be the matrix obtained from S by replacing each positive entry with a one. Thus $\mathscr{F}\left(S_{(0,1)}\right)$ is the smallest face of Ω_{n} containing S. The Birkhoff algorithm for expressing S as a convex combination of permutation matrices proceeds as follows. Choose a smallest positive entry $c_{1}=s_{k l}$ of S. Then there exists a permutation matrix $P_{1}=\left[p_{i j}\right]$ such that $p_{k l}=1$ and $P_{1} \leq S_{(0,1)}$. The matrix $S_{1}=S-c_{1} P_{1}$ is a nonnegative matrix having at least one more zero entry than S. We repeat with S_{1} replacing S (the matrix S_{1}, if not the zero matrix, can be normalized to a doubly stochastic matrix if desired by multiplying by $1 /\left(1-c_{1}\right)$), and continue until the zero matrix is obtained. We shall relax this algorithm somewhat by reversing the order of its two major components. Namely, we first choose a permutation matrix $P_{1} \leq S_{(0,1)}$ and then choose the smallest (positive) entry in those positions of S corresponding to the 1's of P. The matrix $S_{1}=S-c_{1} P_{1}$ still has at least one more zero entry than S. We call any representation of S as a convex combination $c_{1} P_{1}+\cdots+c_{t} P_{t}$ of permutation matrices which is obtained in this way a Birkhoff representation of S.

How good is the Birkhoff algorithm? Good enough so that it expresses S as a convex combination of permutation matrices whose number does not exceed that which is guaranteed by Caratheodory's theorem:
(1) Birkhoff's algorithm expresses the doubly stochastic matrix S as a convex combination of no more than $\sigma\left(S_{(0,1)}\right)-2 n+k+1$ permutation matrices (where k is the number of fully indecomposable components of $S_{(0,1)}$).

The property (1) above was first established by Johnson, Dulmage, and Mendelsohn [7]. Another proof has been given by Nishi [9]. An alternative, and perhaps more revealing, proof can be given using the property:
(2) Each step of Birkhoff's algorithm lowers by at least one the dimension of the smallest face of Ω_{n} containing the doubly stochastic matrix.

To verify (2), let S be an $n \times n$ doubly stochastic matrix. It suffices to assume that $S_{(0,1)}$ is fully indecomposable. Let $T=(1-c)^{-1}(S-c P)$ where $P \leq S_{(0,1)}$ is a permutation matrix and c is the smallest positive entry of S at positions corresponding to the 1 's of P. Then T is doubly stochastic and has at least one more zero entry than S. The matrix $T_{(0,1)}$ then has total support and at least one more zero entry than $S_{(0,1)}$. Suppose that $T_{(0,1)}$ has $p \geq 1$ fully indecomposable components. Then after reordering of rows and columns, $T_{(0,1)}=$ $B_{1} \oplus \cdots \oplus B_{p}$ where B_{1}, \ldots, B_{p} are fully indecomposable. Since $T_{(0,1)} \leq S_{(0,1)}$
and $S_{(0,1)}$ is fully indecomposable, it follows that $\sigma\left(S_{(0,1)}\right) \geq \sigma\left(T_{(0,1)}\right)+p$. Hence

$$
\begin{aligned}
\operatorname{dim} \mathscr{F}\left(T_{(0,1)}\right) & =\sigma\left(T_{(0,1)}\right)-2 n+p \\
& \leq \sigma\left(S_{(0,1)}\right)-p-2 n+p \\
& \leq \operatorname{dim} \mathscr{F}\left(S_{(0,1)}\right)-1
\end{aligned}
$$

Property (1) is now a consequence of (2). For, if $S \in \Omega_{n}$ and $S_{(0,1)}$ has k fully indecomposable components, then $\operatorname{dim} \mathscr{F}\left(S_{(0,1)}\right)=\sigma\left(S_{(0,1)}\right)-2 n+k$. Hence after at most $\sigma\left(S_{(0,1)}\right)-2 n+k$ steps of the Birkhoff algorithm, the resulting doubly stochastic matrix lies in a face of Ω_{n} of dimension 0 , that is, is a permutation matrix. It follows that S is then expressed as a convex combination of at most $\sigma\left(S_{(0,1)}\right)-2 n+k+1$ permutation matrices.

A lower bound for the minimum number of permutation matrices in a representation of a doubly stochastic matrix as a convex combination of permutation matrices can be obtained as follows. Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix of 0 's and 1 's with total support. Let U be a set of positions of A such that $(k, l) \in U$ implies $a_{k l}=1$. Then U is said to be strongly stable [2] provided each permutation matrix $P=\left[p_{i j}\right]$ with $P \leq A$ satisfies $p_{k l}=1$ for at most one $(k, l) \in U$. Denote by $\alpha(A)$ the maximum cardinality of a strongly stable set of positions of A. In [2] it is shown that $\alpha(A)=\max \sigma(X)$ where the maximum is taken over all submatrices X of A such that the submatrix of A complementary to X (the one formed by the rows complementary to the rows in which X lies and the columns complementary to the columns in which X lies) is a $p \times(n-1-p)$ zero submatrix for some $p=0,1, \ldots, n-1$. In particular, $\alpha(A)$ is at least equal to the maximum number of 1 's in a row (take $p=n-1$) and in a column (take $p=0$) of A. The following property is immediate.
(3) The $n \times n$ doubly stochastic matrix S cannot be expressed as a convex combination of fewer than $\alpha\left(S_{(0,1)}\right)$ permutation matrices. In particular, Birkhoff's algorithm expresses S as a convex combination of at least $\alpha\left(S_{(0,1)}\right)$ permutation matrices.

In (1) and (3) are given upper and lower bounds for the number of steps required in any application of Birkhoff's algorithm to a doubly stochastic matrix. We shall show that in each case equality can always be obtained and in the following strong sense: no matter how Birkhoff's algorithm is carried out the number of permutation matrices achieves equality. Before doing so, we first illustrate the following property:
(4) The number of permutation matrices in a Birkhoff representation of a doubly stochastic matrix S need not be unique.

Let S be the doubly stochastic matrix

$$
\frac{1}{6}\left[\begin{array}{llll}
1 & 4 & 0 & 1 \\
2 & 1 & 3 & 0 \\
2 & 1 & 1 & 2 \\
1 & 0 & 2 & 3
\end{array}\right]
$$

Then $S=\frac{1}{6} P_{1}+\frac{1}{6} P_{2}+\frac{1}{3} P_{3}+\frac{1}{3} P_{4}$ is a Birkhoff representation of S, where

$$
\begin{array}{ll}
P_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right], & P_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
P_{3}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right], & P_{4}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{array}
$$

Also $S=\frac{1}{6} Q_{1}+\frac{1}{6} Q_{2}+\frac{1}{6} Q_{3}+\frac{1}{6} Q_{4}+\frac{1}{3} Q_{5}$ is a Birkhoff representation of S where

$$
\begin{array}{ll}
Q_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right], & Q_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right],
\end{array}
$$

Let A be an $n \times n$ matrix of 0 's and 1 's with total support. Then from the formula for $\alpha(A)$ it follows that the strong stability number $\alpha(A)$ of A satisfies $1 \leq \alpha(A) \leq\lceil n / 2\rceil\lceil(n+1) / 2\rceil$. If $n \geq 2$ and A is fully indecomposable, then each row and column of A contains at least two 1 's, so that $2 \leq \alpha(A)$.
(5) Let t be an integer with $1 \leq t \leq\lceil n / 2\rceil\lceil(n+1) / 2\rceil$. Then there exists an $n \times n$ doubly stochastic matrix S such that $\alpha\left(S_{(0,1)}\right)=t$ and each Birkhoff representation of S uses exactly t distinct permutation matrices.

If $t=1$, then in (5) we may take S to be an $n \times n$ permutation matrix. To complete the verification we let $t \geq 2$ and construct an $n \times n$ fully indecomposable matrix A of 0 's and 1 's with $\alpha(A)=t$ such that $\mathscr{F}(A)$ is a simplex of dimension $t-1$. It then follows that a doubly stochastic matrix S in the interior of $\mathscr{F}(A)$ (that is, $S_{(0,1)}=A$) requires exactly t distinct permutation matrices in each of its representations as a convex combination of permutation matrices.

Let p and q be positive integers with $p+q=n-1$. Let E be the $(q+1) \times q$ vertex-edge incidence matrix of a tree and F the $(p+1) \times p$ vertex-edge incidence matrix of a tree. Let X be any $(q+1) \times(p+1)$ matrix of 0 's and 1 's such that the $n \times n$ matrix

$$
A=\left[\begin{array}{ll}
X & E \\
F^{t} & 0
\end{array}\right]
$$

has at least two 1's in each row and column. Then it follows from results in [3] that A is fully indecomposable and $\mathscr{F}(A)$ is a simplex of dimension $\sigma(A)-$ $2 n+1=\sigma(X)-1$. Since $\alpha(A) \geq \sigma(X)$, it follows that $\alpha(A)=\sigma(X)$. Now choose $p=\lfloor(n-1) / 2\rfloor$ and $q=\lfloor n / 2\rfloor$, and choose E and F to be vertex-edge incidence matrices of paths whose initial and terminal vertices correspond, respectively, to the first and last row. Then all row and column sums of A will be at least 2 if the entries of X in positions $(1,1)$ and $(q+1, p+1)$ equal one. Since $(q+1) \times$ $(p+1)=\lceil n / 2\rceil\lceil(n+1) / 2\rceil$, the conclusion now follows.

To construct matrices for which equality occurs in (1), we first need to review some ideas. A fully indecomposable matrix A is called nearly decomposable provided each matrix obtained from A by replacing a 1 with 0 is not fully indecomposable (it could not even be of total support). Let A be an $n \times n$ nearly decomposable matrix of total support with $n \geq 2$. Then [6, see also 4] there exists an integer n_{1} with $1 \leq n_{1} \leq n-1$ and an $n_{1} \times n_{1}$ nearly decomposable matrix A_{1} such that after reordering rows and columns, A has the form

$$
\left[\begin{array}{c|ccccc}
A_{1} & & & E & & \tag{6}\\
\hline & 1 & 0 & \cdots & 0 & 0 \\
& 1 & 1 & \cdots & 0 & 0 \\
F & \vdots & \vdots & & \vdots & \vdots \\
& 0 & 0 & \cdots & 1 & 0 \\
& 0 & 0 & \cdots & 1 & 1
\end{array}\right]
$$

where all entries of E and F are zero except for the entry of each in the upper right corner. If $n_{1}>1$, a similar decomposition holds for A_{1}, and so on.

Associated with an $n \times n$ matrix $A=\left[a_{i j}\right]$ of 0 's and 1 's is a bipartite graph $B G(A)$ of $2 n$ vertices $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$; there is an edge joining x_{i} and y_{j} if and only if $a_{i j}=1(i, j=1, \ldots, n)$, and these are the only edges. Let A be fully indecomposable. By rearranging rows and columns, we may assume that $I_{n} \leq A$ where I_{n} is the $n \times n$ identity matrix. Since A is fully indecomposable, $B G(A)$ is connected. Hence there is a spanning tree of $B G(A)$ which has among its edges the n edges $\left[x_{1}, y_{1}\right], \ldots,\left[x_{n}, y_{n}\right]$ of $B G(A)$. This spanning tree is associated with an $n \times n$ matrix T of 0 's and 1's where $I_{n} \leq T \leq A$. We call T a tree matrix; note that $\sigma(T)=2 n-1$.

For $1 \leq p, q \leq n$, the $n \times n$ matrix $E=\left[e_{i j}\right]$ where $e_{p q}=1$ and $e_{i j}=0$ otherwise is denoted by $E_{i j}^{n}$.
(7) Let A be an $n \times n$ fully indecomposable matrix of 0 's and 1's. Then there is a tree matrix T with $I_{n} \leq T \leq A$ such that the $p=\sigma(A)-2 n+1$ positions of $A-T$ whose entries equal one can be ordered as $\left(i_{1}, j_{1}\right), \ldots,\left(i_{p}, j_{p}\right)$ where for $l=1, \ldots, p$ there is a permutation matrix P_{l} whose (i_{l}, j_{l}) entry equals one and

$$
P_{l} \leq T+E_{i_{i} j_{1}}^{n}+\cdots+E_{i i_{i}}^{n} .
$$

We first verify (7) for nearly decomposable matrices by induction on n. The case $n=1$ being trivial, we let $n \geq 2$. We may assume A has the form (6) where A_{1} is an $n_{1} \times n_{1}$ nearly decomposable matrix and $1 \leq n_{1} \leq n-1$. By induction there is a tree matrix T_{1} with $I_{n_{1}} \leq T_{1} \leq A_{1}$ such that the s positions of $A_{1}-T_{1}$ with a nonzero entry can be ordered as $\left(i_{1}, j_{1}\right), \ldots,\left(i_{s}, j_{s}\right)$ where for $l=1, \ldots, s$ there is a permutation matrix Q_{l} whose $\left(i_{l}, j_{l}\right)$ entry is one and

$$
Q_{l} \leq T_{1}+E_{i, j_{1}}+\cdots+E_{i, i .}
$$

Let

$$
T=\left[\begin{array}{c|ccccc}
T_{1} & & & & 0 & \\
\hline & & & & & \\
& 1 & 0 & \cdots & 0 & 0 \\
1 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
& 0 & 0 & \cdots & 1 & 0 \\
& 0 & 0 & \cdots & 1 & 1
\end{array}\right]
$$

Then $I_{n} \leq T \leq A$ and T is a tree matrix. Since A is nearly decomposable (and hence fully indecomposable) there is a permutation matrix $P \leq A$ whose $(1, n)$-entry equals one. It now follows easily that the ordering $\left(i_{1}, j_{1}\right), \ldots,\left(i_{s}, j_{s}\right),(1, n)$ of the positions of $A-T$ with a nonzero entry has the required properties; the required permutation matrices are $P_{1}=$ $Q_{1} \oplus I_{n-n_{1}}, \ldots, P_{s}=Q_{s} \oplus I_{n-n_{1}}, P_{s+1}=P$. Thus (7) holds for nearly decomposable matrices. Now let B be an $n \times n$ fully indecomposable matrix which is not nearly decomposable. Then by replacing certain 1's with 0's, we arrive at a nearly decomposable matrix A with $A \leq B$. Let T be a tree matrix with $I_{n} \leq T \leq A$ satisfying (7). Ordering the positions of $B-T$ with nonzero entries as $\left(i_{1}, j_{1}\right), \ldots,\left(i_{p}, j_{p}\right),\left(i_{p+1}, j_{p+1}\right), \ldots,\left(i_{q}, j_{q}\right)$ where $\left(i_{p+1}, j_{p+1}\right), \ldots,\left(i_{q}, j_{q}\right)$ are the positions of $B-A$ with a nonzero entry in any order, we complete the verification.

We now construct doubly stochastic matrices for which equality holds in (1).
(8) Let A be an $n \times n$ fully indecomposable matrix of 0 's and 1 's. Then in the notation of (7) the matrix

$$
S=\frac{1}{2^{p+1}-1}\left(2^{p} I_{n}+2^{p-1} P_{1}+\cdots+2 P_{p-1}+P_{p}\right)
$$

is in the face $\mathscr{F}(A)$ of dimension $p=\sigma(A)-2 n+1$. Every representation of S as a convex combination of permutation matrices requires at least $p+1$ distinct permutation matrices. Every Birkhoff representation of S requires exactly $p+1$ permutation matrices.

To verify (8) we argue with $S^{\prime}=\left(2^{p+1}-1\right) S$ instead of S. Suppose S^{\prime} is written as a nonnegative linear combination of t permutation matrices Q_{1}, \ldots, Q_{t}. At least one of the matrices Q_{1}, \ldots, Q_{t} has a one in the $\left(i_{p}, j_{p}\right)$ position, and the sum of the coefficients of all such matrices is $b_{p}=1$. Hence at least one of the permutation matrices Q_{1}, \ldots, Q_{t} has a zero in the $\left(i_{p}, j_{p}\right)$ position and a one in the (i_{p-1}, j_{p-1})-position; the sum of the coefficients of all such matrices is b_{p-1} where $1 \leq b_{p-1} \leq 2$. Since $b_{p}+b_{p-1} \leq 3$, at least one of the permutation matrices Q_{1}, \ldots, Q_{t} has a zero in positions $\left(i_{p}, j_{p}\right),\left(i_{p-1}, j_{p-1}\right)$, and a one in position (i_{p-2}, j_{p-2}); the sum of the coefficients of all such matrices is b_{p-2} where $1 \leq b_{p-2} \leq 2^{2}$. Continuing like this we see that $t \geq p+1$. Since $\operatorname{dim} \mathscr{F}(A)=p=\sigma(A)-2 n+1$, it follows from (1) that each Birkhoff representation of S requires at most $p+1$ distinct permutation matrices and hence exactly $p+1$ distinct permutation matrices.

Let A be an $n \times n$ matrix of 0 's and 1 's of total support with k fully indecomposable components. Using (8) one can construct doubly stochastic matrices $S \in \mathscr{F}(A)$ whose Birkhoff representations require exactly $\operatorname{dim} \mathscr{F}(A)+$ $1=\sigma(A)-2 n+k+1$ distinct permutation matrices.

We conclude these notes with some questions. Let $m=n$! Since the vertices of Ω_{n} are the $n \times n$ permutation matrices P_{1}, \ldots, P_{m}, the map

$$
f:\left(c_{1}, \ldots, c_{m}\right) \rightarrow c_{1} P_{1}+\cdots+c_{m} P_{m}
$$

from the ($m-1$)-dimensional simplex $\left\{\left(c_{1}, \ldots, c_{m}\right): c_{i} \geq 0, \sum_{i} c_{i}=1\right\}$ to Ω_{n} is a continuous surjection, and for each $S \in \Omega_{n}, f^{-1}(S)$ is a compact convex set. Each m-tuple in $f^{-1}(S)$ furnishes a representation of the doubly stochastic matrix S as a convex combination of permutation matrices. It is a fundamental and very difficult question to ask for the m-tuple in $f^{-1}(S)$ with the fewest number of positive coordinates, that is, for a representation of S as a convex combination of the smallest possible number $c(S)$ of distinct permutation matrices. The properties (1) and (3) furnish upper and lower bounds on $c(S)$. It seems unlikely that a Birkhoff representation always exists with $c(\boldsymbol{S})$ distinct permutation matrices, although we have not constructed an example to substantiate this. It is easy to see that a Birkhoff representation corresponds to an extreme point of the polytope $f^{-1}(S)$. Are there other extreme points? The
answer most likely is in the affirmative; otherwise, there would have to be a Birkhoff representation of S with $c(S)$ permutation matrices.

Doubly stochastic matrices have been used as a basic data structure for storing and processing uncertain information in multisensor data correlation [12, 13]. In these papers, the entropy of an $n \times n$ doubly stochastic matrix S has been defined by

$$
H(S)=\sup \left\{h\left(c_{1}, \ldots, c_{m}\right):\left(c_{1}, \ldots, c_{m}\right) \in f^{-1}(S)\right\}
$$

where $H\left(c_{1}, \ldots, c_{m}\right)=\sum_{i=1}^{m}-c_{i} \log c_{i}$, the entropy of the probability distribution $\left(c_{1}, \ldots, c_{m}\right)$. Thus the entropy of a permutation matrix is 0 and that of the $n \times n$ matrix J_{n} with each entry equal to $1 / n$ is $\log n$! The entropy of every other $n \times n$ doubly stochastic matrix S satisfies $0 \leq H(S) \leq \log n!$. An $n \times n$ doubly stochastic matrix S can be regarded as a probabilistic model of a bijection $h: X \rightarrow Y$ between two sets of n elements, a fuzzy bijection. The row sums of S being one means every element of X for sure goes someplace; the column sums of S being one means for sure every element of Y comes from someplace. Birkhoff's theorem then becomes: every fuzzy bijection is a convex combination of bijections. Since one interpretation of entropy of a probability distribution is that of a measure of uncertainty, the entropy of a fuzzy bijection (doubly stochastic matrix) can be interpreted as a measurement of the uncertainty concerning which bijection is involved. For a doubly stochastic matrix S, which representation as a convex combination of permutation matrices has entropy equal to $H(S)$? What is the largest entropy of a Birkhoff representation?

Finally we note that an extension of Birkhoff's algorithm to doubly stochastic matrices over more general number systems has been considered in [11].

References

1. G. Birkhoff, Tres observaciones sobre el álgebra lineal, Univ. Nac. Tucumań Rev. Ser. A, 5 (1946), 147-150.
2. R. A. Brualdi, The diagonal hypergraph of a matrix (bipartite graph), Discrete Math. 27 (1979), 127-147.
3. R. A. Brualdi and P. M. Gibson, Convex polyhedra of doubly stochastic matrices. I. Applications of the permanent function, J. Comb. Theory Ser. A. 22 (1977), 194-230.
4. R. A. Brualdi and M. B. Hedrick, A unified treatment of nearly reducible and nearly decomposable matrices, Lin. Alg. and its Applics. 24 (1979), 51-73.
5. B. Grünbaum, Convex Polytopes, Interscience, New York, 1967.
6. D. J. Hartfiel, A simplified form for nearly reducible and nearly decomposable matrices, Proc. Amer. Math. Soc. 24 (1970), 388-393.
7. D. N. Johnson, A. L. Dulmage, and N. S. Mendelsohn, On an algorithm of G. Birkhoff concerning doubly stochastic matrices, Canad. Math. Bull. 3 (1960), 237-242.
8. M. Marcus and R. Ree, Diagonals of doubly stochastic matrices, Quart. J. Math. Oxford, Ser. (2), 10 (1959), 296-302.
9. A. Nishi, An elementary proof of Johnson-Dulmage-Mendelsohn's refinement of Birkhoff's theorem on doubly stochastic matrices, Canad. Math. Bull. 22 (1979), 81-86.
10. H. J. Ryser, Combinatorial Mathematics, Carus Math. Monograph No. 14, Math. Assoc. of America, Washington, D.C., 1963.
11. H. Schneider, The Birkhoff-Egervary-König theorem for matrices over lattice-ordered groups, Acta Math. Acad. Sci. Hungar. 30 (1977), 91-94.
12. F. Witte, Doubly stochastic matrices and sequential data association, Part I, Information linkage between applied mathematics and industry, 641-646, Academic Press, New York, 1979.
13. F. Witte and D. Lucas, Probabilistic tracking in a multitarget environment, I.E.E.E., 1978, 1212-1219.

Department of Mathematics
University of Wisconsin
Madison, WI 53706, U.S.A.

