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Abstract Continuing earlier studies over the real numbers, we study the expressible set of a sequence
A = (an)n�1 of p-adic numbers, which we define to be the set Ep

A = {
∑

n�1 ancn : cn ∈ N}. We show
that in certain circumstances we can calculate the Haar measure of Ep

A exactly. It turns out that our
results extend to sequences of matrices with p-adic entries, so this is the setting in which we work.
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1. Introduction

A long-standing class of problems in number theory is establishing the rationality or
otherwise of particular infinite series. Very occasionally, spectacular special results like
Apéry’s proof of the irrationality of

ζ(3) =
∞∑

n=1

1
n3

come along [1]. General methods are, however, very rare. Motivated by investigations in
this vein, Erdős [7] defined a sequence of real numbers A = (an)∞

n=1 to be irrational if
the set

EA =
{ ∑

n�1

1
ancn

: cn ∈ N

}
,

which we henceforth refer to as the expressible set of A, contains no rational numbers.
Sequences A that are not irrational are called rational sequences. In Theorem 2 of [7]
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Erdős shows that if limn→∞ a
1/2n

n = ∞ and an ∈ N for all n ∈ N, then
∑

n�1 a−1
n is an

irrational number. In Theorem 3 of [7] Erdős proves that A with an = 22n

(n ∈ N) is
an irrational sequence. To do this he uses Theorem 2 of [7], though this is evidently not
an immediate corollary as limn→∞(22n

)1/2n

= 2. In [8], on the other hand, it is shown
that if, for given ε > 0, we have an < 2(2−ε)n

(n ∈ N), then A is rational and in fact EA
contains an interval. Furthermore, it is shown that if A is a sequence of non-zero numbers
such that

∑
n�1 1/an is conditionally convergent, then EA = R [5]. At the same time it

is possible to give conditions on A for EA to have zero measure [12], and even conditions
for EA to have zero Hausdorff dimension [13]. All this shows that the structure of EA
depends on A in an interesting and complex fashion. While our ultimate goal may be
to decide the rationality or transcendence of individual elements in EA, a more realistic
goal, given our current state of knowledge, is to calculate the measure of EA, or say
something about its structure.

The purpose of this paper is to extend our study of expressible sets to the setting of
the p-adic field for the rational prime p. To make this discussion meaningful and to fix
ideas we need some definitions. For r = pvp(u/v) in Q with u and v coprime to p and
to each other, let |r|p = p−vp . Then dp(r, r′) = |r − r′|p defines a metric on Q and the
completion of Q with respect to the metric dp is denoted Qp and referred to as the set of
p-adic numbers. We also use Zp to denote {x ∈ Qp : |x|p � 1}: the ring of p-adic integers.
It is worth keeping in mind that the metric dp has the ultrametric property: namely, that
dp(r, r′′) � max(dp(r, r′), dp(r′, r′′)). A very basic and easily verified property of Qp is
that each element α of Qp has a ‘p-adic expansion’ α =

∑∞
n=n0

knpn for n0 ∈ Z with
kn ∈ {0, 1, . . . , p− 1} (n ∈ Z) and kn0 �= 0. Furthermore, this p-adic expansion is unique,
by which we mean that the pair (n0, (kn)∞

n=n0
) is uniquely determined by α. From this we

note that |α|p = p−n0 and that the equivalence relation α ≡ β mod pk, for a non-negative
integer k may also be stated as the inequality dp(α, β) � p−k. The main characteristics
of Qp that distinguish it from R stem from the ultrametric property. It turns out that Qp

is a locally compact abelian field and hence comes endowed with a translation-invariant
Haar measure which we refer to as λ. A detailed introduction to this subject appears
in [6]; see also [2] for an alternative construction.

One of the consequences of the ultrametric inequality is the fact that in Qp a series∑
n�1 βn converges if and only if limn→∞ |βn|p = 0. This leads to some striking series

converging to perfectly well-defined p-adic numbers. For instance, φp =
∑∞

n=1 n! is a
convergent series in Qp. This is because, as a standard undergraduate calculation shows,
|n!|p = p−np , where

np =
∞∑

j=1

⌊
n

pj

⌋
,

which tends to infinity with n. Here, of course, for a real number x we have used �x�
to denote its integer part. This example, φp, whose diophantine properties are still a
mystery, illustrates the fact that p-adic numbers with series representations are very
different from those on the real line. For instance, it is not known whether φp is rational
or not. Showing that e =

∑∞
n=1 1/n! is irrational, which might be considered an analogous

question for R, is a routine matter.
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One thing that is immediately clear is that the definition of the expressible set of a
sequence on Qp must be different from that on R. For a sequence of p-adic numbers A,
a natural p-adic analogue of the expressible set is Ep

A = {
∑∞

n=1 ancn : cn ∈ N}. It turns
out that our results also work in the more general context of sequences of matrices with
p-adic entries. In this more general context let A = {(Ak)}∞

k=1 = {(am,n,k)}∞
k=1 be the

sequence of M × N matrices of positive integers. The analogues of expressible sets for
sequences of matrices over R have yet to be properly addressed in the literature. For
a vector α = (α1, . . . , αn) with entries that are p-adic numbers, as is standard, we let
|α|p = max(|α1|p, . . . , |αn|p). For convergence with respect to this metric we call

E
p
A =

{ ∞∑
k=1

(am,n,kcm,n,k) : (cm,n,k) ∈ NM×N for each k ∈ N

}

the expressible set of the sequence A. Let B(a, r) denote the open ball of centre a and
radius r in Qp.

Theorem 1.1. We have

E
p
A =

M∏
m=1

N∏
n=1

B
(
0, max

k∈N

|am,n,k|p
)

and, in particular,

λ(Ep
A) =

M∏
m=1

N∏
n=1

max
k∈N

|am,n,k|p.

As an illustration, if, for every m = 1, . . . , M and n = 1, . . . , N , the number am,n,1 is
not divisible by p (that is, if |am,n,1|p = 1), then λ(Ep

A) = 1, which of course means that
E

p
A has full measure.
When working over R [12] for technical reasons, it is necessary to make the restriction

that A ⊆ N. By analogy, when working over Qp, it is necessary to restrict elements of
A to being members of S∗: a special subset of the space sequences in QMN

p . We now
describe this subset S∗. For a rational number r = a/b with a and b coprime, we use
H(r) to denotes its height max(|a|, |b|). Assume that α is a positive real number. Let
S = ZMN

p ∩QMN . Also let SN denote the set of all sequences of elements from S. We now
use S∗ = S∗(α) to denote the subset of SN consisting of elements {Ck}∞

k=1 = {(cm,n,k)}∞
k=1

with the property that there exist real numbers β and d with 0 < β < 1 and d > 0 such
that for each k ∈ N we have

d · |c1,1,k|−1
p · 2(log2(|c1,1,k|−1

p ))β � |cm,n,k|−1
p � d−1 · |c1,1|−1

p · 2−(log2(|c1,1,k|−1
p ))β

(1.1)

and
H(cm,n,k) � d · |cm,n,k|−α

p . (1.2)

Condition (1.1) ensures that the entries of the sequence of matrices in an element of S∗

are of the same order and condition (1.2) arises from the special character of diophantine
approximation on the p-adic field. The following is our main result; it is a p-adic analogue
of Theorem 1 from [12].
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Theorem 1.2. Let A = {Ak}∞
k=1 = {(am,n,k)}∞

k=1 ∈ S∗ such that the sequence
{|a1,1,k|p}∞

k=1 is non-increasing. Suppose that

lim sup
k→∞

|a1,1,k|−1/(α(M+N)+1)k

p = ∞. (1.3)

Set

SA =
{ ∞∑

k=1

Bk : Bk = (am,n,k · cm,n,k) with {(cm,n,k)}∞
k=1 ∈ S∗

}
.

Then the measure λ(SA) = 0.

The underlying idea of the proof of Theorem 1.2 is stability under perturbation. By this
we mean that for a suitably chosen sequence (an)∞

n=1 taken from an additive coset of Z in
R, if the real number

∑∞
n=1 1/an has a particular diophantine property—whether that is

being transcendental [9], being Liouville [10] or having a particular irrationality measure
[11], for instance—then it is likely, for any sequence of natural numbers (cn)∞

n=1, that the
sequence

∑∞
n=1 1/ancn will have the same or similar properties. The link between the

series
∑∞

n=1 1/an and
∑∞

n=1 1/ancn is achieved by diophantine approximation. In [12],
Khinchin’s Theorem on metric diophantine approximation is used [12, Lemma 7]. In this
paper the link between the series

∑∞
n=1 an and

∑∞
n=1 ancn is achieved via the p-adic

analogue of Khinchin’s Theorem [14].

2. Proof of Theorem 1.1

Let m and n be positive integers such that 0 � m � M and 0 � n � N . Then, for every
K1 ∈ N, the number am,n,K1 is divisible by (maxk∈N |am,n,k|p)−1 and therefore belongs
to B(0, maxk∈N |am,n,k|p). Therefore,

E
p
A ⊂

M∏
m=1

N∏
n=1

B
(
0, max

k∈N

|am,n,k|p
)
.

Recall from elementary number theory the fact that the least common multiple of two
non-zero integers can be expressed as an integer linear combination of the two integers.
This yields, for all integers m, n, K2 and s with 0 � m � M , 0 � n � N , K2 > 0 and
s > 0, that the set {am,n,K2 |am,n,K2 |pc; c ∈ N} contains elements of all residue classes
modulo ps. It follows that each number v ∈ B(0, maxk∈N |am,n,k|p) can be expressed as
v =

∑∞
k=1 am,n,kcm,n,k, where cm,n,k ∈ N. From this we obtain that

M∏
m=1

N∏
n=1

B
(
0, max

k∈N

|am,n,k|p
)

⊂ E
p
A

and the proof of Theorem 1.1 is complete.
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3. An auxiliary result

We deduce Theorem 1.2 from the following more general auxiliary result, which we prove
in this section.

Theorem 3.1. Assume that Y ⊂ ZMN
p is such that, for every x ∈ Y, there exists an

infinite sequence of M × N matrices A = {Ak}∞
k=1 = {(am,n,k)}∞

k=1 ∈ S∗ such that x =∑∞
k=1 Ak with convergence in the metric | · |p. Suppose that the sequence {|a1,1,k|p}∞

k=1
is non-increasing and that

lim sup
k→∞

|a1,1,k|−1/(α(M+N)+1)k

p = ∞. (3.1)

Then the measure λ(Y) = 0.

For the proof of our auxiliary theorem we need the following result from metric number
theory on the p-adic numbers. This is a corollary of the p-adic version of a theorem of
Khinchin, a proof of which can be found in [3] or [14] (see also [4, Theorem 6.3, p. 127]).
To keep our exposition uncluttered, we postpone to § 5 the derivation of Theorem 3.2
from the p-adic version of Khinchin’s Theorem.

Theorem 3.2. Let M and N be positive integers and assume that x = (am,n) ∈ ZMN
p ,

q = (q1, . . . , qN ) ∈ ZN and r = (r1, . . . , rM ) ∈ ZM . Suppose that

|q · x − r|p = max
1�m�M

(∣∣∣∣ − rm +
N∑

n=1

am,nqn

∣∣∣∣
p

)

and that

|(q, r)| = max
(

max
1�n�N

|qn|, max
1�m�M

|rm|
)
.

Set τ = (M + N)/M . Then, for almost all numbers x, the inequality

|(q, r)|τ · log3 |(q, r)| <
1

|q · x − r|p

has finitely many solutions in unknowns q and r.

To complete the proof of Theorem 3.1 we establish that, for x ∈ Y,

|(q, r)|τ · log3 |(q, r)| <
1

|q · x − r|p
(3.2)

for infinitely many (q, r) ∈ ZN × ZM .
Let den(y) be the denominator of the rational number y in reduced form. Let K be a

large positive integer and set q = (q1, . . . , qN ), where qn =
∏K

k=1
∏M

m=1 den(am,n,k) for
n = 1, . . . , N . Also set r = q ·

∑K
k=1 Ak. Condition (1.1) and the fact that the sequence
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{|a1,1,k|p}∞
k=1 is non-increasing imply that

|q · x − r|p =
∣∣∣∣q ·

∞∑
k=K+1

Ak

∣∣∣∣
p

� max
m=1,...,M,
n=1,...,N,

k∈{K+1,K+2,... }

|qnam,n,k|p

= max
m=1,...,M,
n=1,...,N,

k∈{K+1,K+2,... }

|am,n,k|p

� d · |a1,1,K+1|p · 2(log2 |a1,1,K+1|−1
p )β

.

This implies that

1
|q · x − r|p

� d−1 · |a1,1,K+1|−1
p · 2−(log2 |a1,1,K+1|−1

p )β

. (3.3)

From the definitions of q and r, and from the inequalities (1.1) and (1.2), we obtain that
there exists a positive real number W that does not depend on K and such that

|(q, r)| � N · K · max
n=1,...,N

K∏
k=1

M∏
m=1

H(am,n,k)

� WM ·K · N · K · max
n=1,...,N

K∏
k=1

M∏
m=1

|am,n,k|−α
p

� WM ·K · N · K ·
( K∏

k=1

M∏
m=1

d · |a1,1,k|−1
p · 2(log2(|a1,1,k|−1

p ))β

)α

= (dα · W )M ·K · N · K ·
( K∏

k=1

|a1,1,k|−1
p · 2(log2(|a1,1,k|−1

p ))β

)Mα

= (dα · W )M ·K · N · K ·
( K∏

k=1

|a1,1,k|−1
p

)Mα

· 2Mα
∑K

k=1(log2(|a1,1,k|−1
p ))β

.

This implies that, for all sufficiently large |(q, r)|,

|(q, r)|τ · log3 |(q, r)|

� (dα · W )M ·K·τ · (N · K)τ ·
( K∏

k=1

|a1,1,k|−1
p

)Mατ

· 2Mατ
∑K

k=1(log2(|a1,1,k|−1
p ))β

× log3
(

(dα · W )M ·K·N · K ·
( K∏

k=1

|a1,1,k|−1
p

)Mα

· 2Mα
∑K

k=1(log2(|a1,1,k|−1
p ))β

)

� (dα · W )M ·K·τ · (N · K)τ ·
( K∏

k=1

|a1,1,k|−1
p

)Mατ

· 22Mατ
∑K

k=1(log2(|a1,1,k|−1
p ))β

.

(3.4)
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Set R = Mατ + 1. We now consider two cases.

Case 1. First assume that there exists ε > 0 such that

lim sup
k→∞

|a1,1,k|−1/(R+ε)k

p = ∞. (3.5)

From this and the fact that {|a1,1,k|p}∞
k=1 is non-increasing we obtain, for infinitely many

K3, that

|a1,1,K3+1|−1/(R+ε)K3+1

p >

(
1 +

1
K2

3

)
·
(

max
k=1,...,K3

|a1,1,k|−1/(R+ε)k

p

)
. (3.6)

This is because otherwise there would exist k0 such that, for every k1 ∈ N with k1 > k0,

|a1,1,k1+1|−1/(R+ε)k1+1

p �
(

1 +
1
k2
1

)
·
(

max
l=1,...,k1

|a1,1,l|−1/(R+ε)l

p

)
.

This would mean that

|a1,1,k1+1|−1/(R+ε)k1+1

p

�
(

1 +
1
k2
1

)
·
(

max
l=1,...,k1

|a1,1,l|−1/(R+ε)l

p

)

�
(

1 +
1
k2
1

)
·
(

1 +
1

(k1 − 1)2

)
·
(

max
l=1,...,k1−1

|a1,1,l|−1/(R+ε)l

p

)

...

�
(

1 +
1
k2
1

)
·
(

1 +
1

(k1 − 1)2

)
· · ·

(
1 +

1
k2
0

)
·
(

max
l=1,...,k0

|a1,1,l|−1/(R+ε)l

p

)

�
( ∞∏

l=k0

(
1 +

1
l2

))
·
(

max
l=1,...,k0

|a1,1,l|−1/(R+ε)l

p

)

= const.

This is in contradiction to (3.1). Thus inequality (3.6) holds for infinitely many K3. From
(3.6) we obtain that

|a1,1,K3+1|−1
p >

(
1 +

1
K2

3

)(R+ε)K3+1

·
(

max
k=1,...,K3

|a1,1,k|−1/(R+ε)k

p

)(R+ε)K3+1

>

(
1 +

1
K2

3

)(R+ε)K3+1

·
(

max
k=1,...,K3

|a1,1,k|−1/(R+ε)k

p

)(R+ε)K3+1−(R+ε)

=
(

1 +
1

K2
3

)(R+ε)K3+1(
max

k=1,...,K3
|a1,1,k|−1/(R+ε)k

p

)T (ε,R,K3)
,

where
T (ε, R, K) = (R + ε − 1)((R + ε)K + (R + ε)K−1 + · · · + (R + ε))
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and this is greater than or equal to

(
1 +

1
K2

3

)(R+ε)K3+1

·
K3∏
k=1

|a1,1,k|−(R+ε−1)
p . (3.7)

Inequalities (3.3), (3.4) and (3.7) yield, for infinitely many large K4, that

1
|q · x − r|p

� d−1 · |a1,1,K4+1|−1
p · 2−(log2 |a1,1,K4+1|−1

p )β

= |a1,1,K4+1|−(R+ε/2−1)/(R+ε−1)
p · d−1 · |a1,1,K4+1|−(ε/2)/(R+ε−1)

p · 2−(log2 |a1,1,K4+1|−1
p )β

� |a1,1,K4+1|−(R+ε/2−1)/(R+ε−1)
p

�
(

1 +
1

K2
4

)((R+ε/2−1)/(R+ε−1))(R+ε)K4+1

·
K4∏
k=1

|a1,1,k|−(R+ε/2−1)
p

� (dα · W )M ·K4·τ · (N · K4)τ ·
( K4∏

k=1

|a1,1,k|−1
p

)(R−1) K4∏
k=1

|a1,1,k|−ε/2
p

� (dα · W )M ·K4·τ · (N · K4)τ ·
( K4∏

k=1

|a1,1,k|−1
p

)(R−1) K4∏
k=1

22Mατ(log2(|a1,1,k|−1
p ))β

= (dα · W )M ·K4·τ · (N · K4)τ ·
( K4∏

k=1

|a1,1,k|−1
p

)Mατ

· 22Mατ
∑K4

k=1(log2(|a1,1,k|−1
p ))β

� |(q, r)|τ log3 |(q, r)|

and (3.2) follows.

Case 2. Now assume that, for every δ > 0,

lim sup
k→∞

|a1,1,k|−1/(R+δ)k

p < ∞.

There is then an appropriate choice of δ = ξ (say) such that

lim sup
k→∞

|a1,1,k|−1/(R+ξ)k

p = 1. (3.8)

From (3.8) we obtain that, for every sufficiently large k2,

|a1,1,k2 |−1
p < 2(R+ξ)k2

. (3.9)

This implies that there exists a constant C = C(ξ) such that, for every k3 ∈ N,

22Mατ
∑k3

l=1(log2(|a1,1,l|−1
p ))β

< C · 22Mατ
∑k3

l=1(log2 2(R+ξ)l
)β

� C · 22Mατ((R+ξ)β(k3+1)/(R+ξ)β−1). (3.10)

https://doi.org/10.1017/S0013091509000091 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509000091


On expressible sets and p-adic numbers 419

From (3.1) and the fact that {|a1,1,k|p}∞
k=1 is non-increasing we obtain, for infinitely

many K5, that

|a1,1,K5+1|−1
p >

(
1 +

1
K2

5

)RK5+1

·
K5∏
k=1

|a1,1,k|−(R−1)
p , (3.11)

where we have used the same procedure as in the first case but used R instead of R + ε.
Inequalities (3.3), (3.4), (3.9)–(3.11) and the fact that ξ is sufficiently small yield, for
infinitely many sufficiently large K6, that

1
|q · x − r|p

� d−1 · |a1,1,K6+1|−1
p · 2−(log2 |a1,1,K6+1|−1

p )β

> d−1 · 2−(log2 |a1,1,K6+1|−1
p )β ·

(
1 +

1
K2

6

)RK6+1

·
K6∏
k=1

|a1,1,k|−(R−1)
p

> d−1 · 2−(log2(2
(R+ξ)K6+1

))β ·
(

1 +
1

K2
6

)RK6+1

·
K6∏
k=1

|a1,1,k|−(R−1)
p

>

(
1 +

1
K2

6

)RK6+1/2

·
K6∏
k=1

|a1,1,k|−(R−1)
p

> (dα · W )M ·K6·τ · (N · K6)τ ·
( K6∏

k=1

|a1,1,k|−1
p

)Mατ

· 22Mατ
∑K6

k=1(log2(|a1,1,k|−1
p ))β

� |(q, r)|τ · log3 |(q, r)|,

and (3.2) follows.

4. Proof of Theorem 1.2

In this section we prove that SA is null by showing that SA ⊂ Y and then using Theo-
rem 3.1. Let

y =
∞∑

k=1

Bk =
∞∑

k=1

(am,n,k · cm,n,k) ∈ SA.

To prove Theorem 1.2 we have to prove that y satisfies the conditions of Theorem 3.1.
Let φ : N → N be a bijection such that, for em,n,k = am,n,φ(k)cm,n,φ(k), the sequence

{e1,1,k}∞
k=1 is non-decreasing. Set γ = 1

2 (1 + β). Then the number of solutions in non-
negative integers a and b of the inequality

(log2 pa)β + (log2 pb)β � (log2 pa + log2 pb)γ
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is finite. From this fact and (1.1) we obtain that there exists a positive real number D

such that

D · |e1,1,k|−1
p · 2(log2(|e1,1,k|−1

p ))γ

� d2|a1,1,φ(k)|−1
p · 2(log2(|a1,1,φ(k)|−1

p ))β |c1,1,φ(k)|−1
p · 2(log2(|c1,1,φ(k)|−1

p ))β

� |cm,n,φ(k) · am,n,φ(k)|−1
p

= |em,n,φ(k)|−1
p

� d−2 · |c1,1,φ(k)|−1
p · 2−(log2(|c1,1,φ(k)|−1

p ))β · |a1,1,φ(k)|−1
p · 2−(log2(|a1,1,φ(k)|−1

p ))β

� D−1 · |e1,1,k|−1
p · 2−(log2(|e1,1,k|−1

p ))γ

and inequality (1.1) follows when instead of β and am,n,k we have γ and em,n,k respec-
tively. From (1.2) we obtain that

H(em,n,k) = H(am,n,φ(k) · cm,n,φ(k))

� H(am,n,φ(k)) · H(cm,n,φ(k))

� d2 · |am,n,φ(k)|−α
p · |cm,n,φ(k)|−α

p

= d2 · |em,n,φ(k)|−α
p

and so (1.2) follows when instead of am,n,k we have em,n,k. The fact that the sequences
{|a1,1,k|−1

p }∞
k=1 and {|e1,1,k|−1

p }∞
k=1 are non-decreasing and the definition of e1,1,k imply

that |e1,1,k|−1
p is greater than or equal to the first k − 1 terms of {|e1,1,k|−1

p }∞
k=1. Hence

|e1,1,k|−1
p � |a1,1,k|−1

p and (3.1) follows.

5. Proof of Theorem 3.2

In this section we deduce Theorem 3.2 from the p-adic analogue of the convergence
part of a well-known theorem of Khinchin’s on metric Diophantine approximation. See
Theorem 15 in [3] for an up-to-date version of this theorem or see [14, p. 93] if you want
the original reference in which a result of this type was first proved.

For u = (u1, . . . , un) in Zn let H(u) = max1�i�n |ui|. To v = (v1, . . . , vn) in Qn
p and

a = (aij) in Qst
p , where n = s + t and 1 � s < n, we associate the affine form

L(v,a) = max
1�i�s

∣∣∣∣vj +
t∑

i=1

aijvs+i

∣∣∣∣
p

.

The p-adic analogue of the convergence part of Khinchin’s result is the following the-
orem.

Theorem 5.1. Assume that the real function f(h) is positive for all natural numbers
h, and assume that f(h) decreases to 0 as h tends to ∞. Also, for each pair of natural
numbers (s, n) with 1 � s < n assume that

∞∑
h=1

hn−1fs(h) < ∞.

https://doi.org/10.1017/S0013091509000091 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509000091


On expressible sets and p-adic numbers 421

Then, for almost all a ∈ Qst
p , the diophantine inequality

L(u,a) � f(H(u)) (5.1)

admits only finitely many solutions u ∈ Zn.

To prove Theorem 1.2 we use only Theorem 3.2, which is a consequence of Theo-
rem 5.1 (a) and is derived as follows. First we make a series of choices. Set f(h) =
1/hτ log3 h (h ∈ N), u = (−r, q) = (−r1,−r2, . . . ,−rM , q1, q2, . . . , qN ), x = a = (am,n),
n = M + N , τ = (M + N)/M , t = N and s = M . Then L(u,a) = |q · x − r|p and
H(u) = |(−r, q)|. Now we have

∞∑
h=1

hn−1fs(h) =
∞∑

h=1

1
h log3M h

< ∞.

Theorem 5.1 (a) tells us that for almost all x = (am,n) the inequality

|q · x − r|p <
1

|(q, r)|τ log3 |(q, r)|

has only finitely many solutions in unknown pairs u = (r, q). This is Theorem 3.2, as
required.

Note that our choice τ = (M + N)/M is the critical exponent. By this we mean that
if τ < (M + N)/M in our choice of f(h), the corresponding diophantine inequality has
infinitely many solutions.
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5. D. Bodiagin, J. Hančl, R. Nair and P. Rucki, On summing to arbitrary real numbers,
Elem. Math. 63(1) (2008), 30–34.

6. J. W. S. Cassels, Local fields, London Mathematical Society Student Texts, Volume 3
(Cambridge University Press, 1986).
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