ASYMPTOTIC VARIATIONAL FORMULAE
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1. Introduction. The eigenvalues of a second order
self-adjoint elliptic differential operator on Riemannian
n-space R will be considered. Our purpose is to obtain
asymptotic variational formulae for the eigenvalues under
the topological deformations of (i) removing an € -cell (and
adjoining an additional boundary condition on the boundary
component thereby introduced); and (ii) attaching an ¢ -handle,
valid on a half-open interval 0<e< €. In particular the

formulae will exhibit the non-analytic nature of the variation.
Similar variational problems for singular ordinary differential
operators have been considered by the writer in [3] and [4].

The variation of harmonic Green' s functions and other
domain functionals on finite Riemann 2-surfaces has been
considered at length by M. Schiffer and D.C. Spencer in their
book [7]. This elegant theory depends on analytic function
theory and most of the results are written in complex form.
Our treatment depends on the theory of elliptic differential
equations [2] and functional analysis, and has the advantage
that the results are obtained for n > 2 and for differential
equat1ons more general than Laplace' s equation. Even in the
case of the Laplacian operator on finite 2-surfaces, our results
are not readily available in the literature.

The first theorem gives a general asymptatic variational
formula, which in particular can be applied to deformations of
the type (i) and (ii) above. This formula is in effect a
reformulation of Green's symmetric identity. To apply it
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to the cases (i) and (ii) we shall use some uniform asymptotic
estimates for eigenfunctions which were obtained in [1]. The
main results are given in theorems 3 and 5.

2. Preliminaries. Let M be an open, connected
domain with compact closure in R whose boundary B consists
of smooth (n-1)-dimensional closed manifolds. The latter are
supposed to be homeomorphic images of the unit (n-1)-sphere

in Euclidean space, with continuous unit normal vectors. We
do not exclude the possibility that M is a closed Riemannian
space, that is, B 1is void. ILet A denote the Laplacian
operator on M and let a: p — a(p) denote a continuous,
positive-valued function on M. Eigenvalue problems will be
considered for the formally self-adjoint elliptic differential
operator L. defined by

(LI(p) = -(AD)(p) + a(p)(p), peM, £eCM].

The basic domain D 1is defined to be the set of all
complex-valued functions on M which are of class C2[M],
continuous on M, and zero on B, (the last condition being
deleted in the case that B 1is void). The basic eigenvalue
problem for 1L is

(2.1) Lx = \x, xeD.

Our purpose is to derive asymptotic variational formulae
for the eigenvalues X\ of L when the domain D 1is perturbed
to a "slightly different' domain D (or D) by the deforma-

€ €

tion of removing an ¢ -cell (or attaching an ¢ -handle) to M.
Let s(p,q) denote the geodesic distance in M from

P to q, uniquely determined for g in some neighbourhood
of p[2]. Let qj (j=1, 2, ... J) be fixed but arbitrary

points in M. The specific ¢ -cells to be considered are the
open balls Nej defined by

N ={peR:s(p,g)<e}, 0<e <c¢ ; j=1,2,...7.
€) ] ] o)

It will be supposed that the positive number ¢ has been
o
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selected so that (i) Nej CM, and (ii) the boundary vy . of
€]

N , is a smooth homeomorphic image of the unit (n-1)-sphere

€)
in Euclidean space, whenever 0<e <e¢ (j=1, 2, ... J).
- o
The parameter ¢ measures the smallness of N , and as
€)
e =0, N ., shrinks to the point q..
€) J
The notations
J J _
Y = VY Yy ., N = UN _, M =M — N
£ . €] e €] > €
j=1 j=1

will be used. The domain Dj is defined to be the set of all
complex-valued functions on F/I€ which are of class CZ[Ms 1,
continuous on l_\./IS, and zero on BuNE . The notations ( , )
and H H will designate the inner product and norm in the
Hilbert space LZ[M].

The following lemma is an easy consequence of Green's
symmetric identity for L on M [2]. The unit positive
normal n to Y, is supposed to point toward the outside of

v (inside of M ).
€ €
o o
LEMMA. If uce DE , ve D , then
= e haen
) 1
(2.2) (u, Lv) - (Lu,v) = IS [u,+], where”

I [a,v] = J (uv¥ - ¥Vu) *n dS
Y

€

3. The.main variational formula. The asymptotic
variational formula (3. 1) below is to be applied in the sequel

1  Abar over a lower case letter denotes the complex conjugate.
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to the non-analytic surface deformations referred to in the
introduction. The form of (3.1) is somewhat similar to
Hadamard's classical formula [7, p.274]. The latter is
essentially an analytic formula, however, and is not pertinent
to situations in which the basic and perturbed regions are of
different topological types.

THEOREM 1. Let M\ be an eigenvalue of the basic
problem and let x be an arbitrary eigenfunction associated
with A. Let u be a complex number such that there exists

a non-zero ye D: satisfying Ly =py and H y - xH <6 Hx“ »
where 0<6_<_6 <1. Then

(3.1) = =] 1 [x, y][1 + 0(8)] .

Proof. It u be the function with support M  that
e £
coincides with x on M . Since x¢€¢ D, it follows that
€

o
u e D€ . We can then apply the lemma to u and y to obtain

_L-L(U,V) = )\(u’Y) = (Ll, LY) = (Lu’Y) = IE [u’Y] .

However, (u,y)=(x,y) and u(p) =x(p) for pey . Then
€

(3.2) (-N) ay) = 1 [xy].
By hypothesis, ](y x) - (x,x)l [(y X, x)l < 6 Hxl[ and
o] > 1xl1® - fty-x ] > 1=l - slx(% = (1-8) [[x][*

Hence (3. 2) yields

— -2 _ (Y, X) - (X, X)
[ R R e R (LA S

< =l 72 1L eyl

4. Asymptotic variation under cell removal. In this
section Ne will be specialized to a single open ball N 1 with
€

centre q, € M and boundary Y, - . We define the perturbed
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domain D to be the set of all fe D° which vanish on vy , and
€ € €

consider the perturbed eigenvalue problem

(4.1) Ly = py, vyeD

€
The eigenvalues will be denoted by o (0 < My < My <...) and
a corresponding orthonormal set of eigenfunctions by vy,

i

(i=1, 2, ...).

An L-measure for M with respect to the boundary
€
components B and Y, is defined to be the uniquely-determined

solution h of the Dirichlet problem [2]
(4. 2) (Lh)(p) =0, pe Me; h(p) =0, peB; h(p)=1, pe v, -

Let ¢ be the positive-valued function on 0 <e <e  defined
as follows: °

ole ) -1/log ¢ if n=2

-2
en if n_>_3

Except for a multiplicative constant, ¢ is the reciprocal of the

parametrix [2]. Estimates of the type stated in the following
theorem were obtained in [1].

THEOREM 2. Corresponding to each eigenvalue \ of the
basic problem (2.1), of multiplicity m, there are positive
constants ¢ 1 and c (independent of &) such that exactly

m eigenvalues u, of (4.1) lie in the interval [\, Mce(e)
g By 7

provided 0<e <c¢ L It Vyr ¥po --- are orthonormal eigen-
functions associated with Myo By oo there exists an ortho-
normal set xi, xz, oo, X in the eigenspace of X\ such that
—_— m

the uniform estimates

(4.3) y,(p) = x,(p) - x,(q,)h(p) + O()
pe M, 0<e< e, i=1, 2, ..., m
€ - 1
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are valid where Y(c ) = ¢(c ) if n=2 and Y(e)=¢ if n> 3.

It is not our purpose to reproduce the entire proof here.
To indicate some of the arguments, we shall deduce the first
part of the theorem in the cases n =2, 3 rather directly from
some spectral estimation theory given by the writer in [6].
Let A, Ae be the linear integral operators whose kernels

are the respective Green' s functions G(p, q), Ge (p,q)
associated with M, ME . The eigenvalues a, a are known
to be reciprocals of \, p respectively. Let Xa be the eigen-

space corresponding to the m-fold degenerate eigenvalue o,
and let Xae =P X where P€ is the projection mapping
e «a
2 2
from L [M] onto L [ME ]. Clearly ¢ can be chosen so that
dim X
a

=dim X for 0<e <c¢
€ @ - o

For uce Xst , the function f = Ae u - au is a solution of
Lf=0 in M€ satisfying f=- au on y . Let functions g and
€
F be defined in ME by the equations

g(p) =wole )G(p.q,), F(p) =[2max|f|]lg(p) - £(p)
1 Ye

where w =27 or 4w according asn=2 or 3. There is no loss
of generality in supposing €, has been selected so that

g(p) > 1/2 forall pe Y, whenever 0<e < € because of

the singularity of G(p, qi) at p= q,-

Since LF=0 in M_, F=0 on B, and F>0 on vy ,
. - €

it follows from the maximum principle for elliptic differential
equations [2, p.102] that F(p) > 0 throughout ME . Then

f(p) < 2[m$x|fl]g(p). A lower bound for f(p) is established ‘

sirnilarl‘y, fand we then obtain | £(p)| < 2a[max|u|]lg(p), P Ms .
- Y
3

Then “As u - aul| = ||£]] < cole )||u]] forall ue X - Since
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Ae is a symmetric and completely continuous linear trans-
2
formation on L [M ], a known spectral estimation theorem
£
[6, p.35] shows that at least m eigenvalues @ . of Ac lie

in the interval [a - c¢{e ), a]. It is well-known from the
minimum-maximum principle for eigenvalues that Me CcM

implies a > a fn=1, 2, ...). Then an easy induction proof

establishes that there are exactly m eigenvalues in

[@ = cople ), @] This is equivalent to the first statement of
theorem 2. The arguments used to prove the second part are
similar to those used in [5] and will not be given here.

Theorem 2 will now be used to obtain the following special
case of theorem 1.

THEOREM 3. _Ii N, p.i are eigenvalues of (2.1), (4.1)

and x,, y, are corresponding normalized eigenfunctions, as
— i i

described in theorem 2, then the following asymptotic varia-
tional formulae are valid:

2
(4. 4) wom &= [-]x(q) |+ 0W)] [ vhnds
Ye
as € -0, i=1, 2, ..., m.

Proof. Since the L-measure has the property ||h|| = 0(}),
it follows from (4. 3) that ”yi - xiH < &(e )”Xi”’ where &(¢) =

cffe), 0<e <e L Theorem 1 can then be applied provided e
is on a positiv;e interval (O,eo] such that 0 <6(e) < 60 <1.

Since p. is real and y, vanisheson y , (3.1) reduces to
1 i >

(4.5) pom A= [ xvy -nds[t+oW)]

YE

We apply (2.2) to h,y, and h, x in turn to obtain
1

(4. 6) p(hy,) = fyvvi's s ,

€
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(4.7) Mh,x) = [ (hvX - Xvh)'ndS

Ye

Use of (4. 3), (4.6), and (4.7) yields

J vy nds = [n+ 0)i(h x) - (hh)xta,) + (B, 1)0()]

Ve

Mb,x,) + 0(6°)

(4. 8)

- %;(a,)[1 + 0(e)] J vhnds+ o(w’) .

YE

The result (4. 4) then follows from (4.5) and (4. 8).
As an example, consider the elliptic operator L=1- A,

where I is the identity operator, on the unit 2-sphere. The

2 2 2 2
metric is ds =dB® + sin 6 d¢ , where 6, ¢ are the usual
spherical polar angles. We select for 9, the north pole 6 =0.

‘Then Y, is the closed curve 6 =¢, 0< ¢ <27 about -

The eigenvalues of the basic problem (2.1) are )\m =m -m+1,"
m =1, 2, ..., which are (2m-1)-degenerate. The corresponding
-1 -1
normalized eigenfunctions are x_ . =S ’ /lls : ||, where
mi m-1 m-1

S 1 are the spherical harmonics. It will be sufficient to
m_
2

consider the values i=1, 2, ..., m. Thus x (q ) =
mi 1

(21’n—1)6,1 /4™ from the properties of Legendre functions,
i

where 6,1 is the Kronecker symbol, and (4.4) yields
i

-1 -2

1
log:)

mz +1+—1(2 1)6 1 —1} +0
= - - o
B m > (2m i1 g

mi

If i=2, 3, ..., m, the leading variational term vanishes
(i.e. X i has a zero at qi). The variables in the partial

differential equation are separable in this example, and
consideration of the associated Legendre ordinary differential
equation by the methods of [3] or [4] leads to an asymptotic
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s i-2 . .
variation of order ¢ if i> 2. Itis left as an open question
to decide if this is the general situation when x has a zero of

order i-1 at q1.

5. Asymptotic variation under handle attachment. In this
section, Ne will be specialized to two open balls N T N
€

’

€2

with centres q1e M, q2 € M and boundaries Yo Y, 2

respectively. For a fixed homeomorphism h of vy 1 into
€

Y o let points p1 € bye 1 and p2 € Y, be identifiid whenever

P, =h(p1). The corresponding perturbed region M consists
€
of all pointsin M =M — N ith th dari )
points in . Wi e boundaries Yo 10 Yoo
identified according to the rule P, = h(pi). We assume that h
is an orientation-preserving homeomorphism. Thus M is
€
orientable along with M, and Y40 Yo are oppositely

oriented with respect to the common domain M .
3

The perturbed domain D is defined to be the set of all
€ .

continuous complex-valued functions on the closure of Ms
2 %
which are of class C [Me ] and zero on B. The perturbed

eigenvalue problem for this domain is

b

(5.1) Ly = py, yEDE

Instead of z4. 2), the L-measure h to be used in this section
is the solution of the Dirichlet problem

(5.2) (Lh)(p) =0, peME; h(p) =0, pe B;
hp)=(-1), pey . (=1, 2).
€]

The following analogue of theorem 2 has been obtained by the
writer by a proof similar to that in [1].

THEOREM 4. The assertions of theorem 2 remain valid
if (4. 1) is replaced by {5.1) and (4. 3) is replaced by
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(5:3) ) = x(p) - 3x(q,) - x,(a,)]h(p) + O(4).

The following is then obtained as the analogue of theorem 3.

THEOREM 5. If A\, B, are eigenvalues of (2.1), (5.1)

and x,, y, are corresponding normalized eigenfunctions, as
1

i’
described in theorem 4, then

1 2
(5.4) -\ =[3lei(q2) - xi(qi)l + 0(y)] fv v h'ndS
el

as € -0, i=1, 2, ..., m.
Proof. With (5.1) instead of (4.1), (4.5) is replaced by

po- N = [ (xy ¥, - yux) ndS[1+04)].

YE

-
]
>
I

[x(a,) + 0]/ vy nds
Vet

-+

— -1
[x(a,) + 0] [ vy nas+o(e ).
Ye2

The result (5.4) would follow if we knew that the order relation
(5. 3) could be differentiated. The actual proof of (5.4) is
similar to that of theorem 3 and will be omitted.

In the example at the end of section 4, if we take q1 and

q2 to be the north and south poles respectively, then

2 m-1
= 2 - 4 N ={- .
xmi(qi) (2m-1) /4w xm1(q2) (-1) xmi(q1), and (5. 4)
gives in particular
’ -1 -2
2 1 m 1) 1
ko, =™ -m+i+ 2[1 + (-1) }(2m-1) | log - +0]{log .

m=1, 2, ...
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