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1. Introduction

A multi-partite number of orders is a / dimensional vector, the components
of which are non-negative rational integers. A partition of (n1, n2, ..., rij)
is a solution of the vector equation

£ ( " l * » "2fc> •••> nJk) = ( « 1 > « 2 » •••> H j ) C 1 )

in multi-partite numbers other than (0, 0, ..., 0). Two partitions, which differ
only in the order of the multi-partite numbers on the left-hand side of (1),
are regarded as identical. We denote by Px{nx, ..., nj) the number of different
partitions of (nl5 ..., nj) and by p2{n1, ..., nj) the number of those partitions
in which no part has a zero component. Also, we write ^3(«i, ..., nj) for the
number of partitions of (n1; ..., nj) into different parts and pjji^, ..., nj) for the
number of partitions into different parts none of which has a zero component.

By adaptations to j> 1 of the celebrated Hardy-Ramanujan method (1)
for they = 1 case, several authors have recently obtained asymptotic expressions
for />r(«i, •••, nj), which are valid under certain restrictions upon the relative
rates at which the different «, tend to infinity. Auluck (3) obtained a formula
for />I(HI, n2), where n^ and n2 are large but of the same order of magnitude,
i.e. the ratio nljn2 is bounded above and below, and, under the same conditions,
Wright (7) found asymptotic expressions for pr(ni, n2), where r = 1, 2, 3
and 4. In his article, Wright also gave without proof the first few terms of
an asymptotic formula for log/?2(«i> •••> nj), where every nl is of the same
order of magnitude. Meinardus (4) had just previously published a paper
in which he had found the first term of this formula for multi-partites. Later,
Wright (8) obtained asymptotic expressions for pr{n1}

 ni) which hold for
nf+E'<n2<Wi~") where r = 1, 2, 3 and 4 and Ej and e2 are any fixed positive
numbers. This is a substantial relaxation of the restrictions imposed upon nt

and n2 in both (3) and (7). In his article, Auluck also obtained a formula for
Pii^i, n2) when n2 is fixed and nl is large, and Nanda (5) has shown that this
formula remains valid when n2 is large, provided that n2 = o(nf). In an article
in preparation, I extend Wright's method to derive formulae for/?r(

wi> ..., «,)
for r = 1, 2, 3 and 4 and n1...nJ<nJ+1~£3, where n = min «, and s3 is any
fixed positive number. In this article, I evaluatepr(n1, ..., nj) for r — 1 and 3
when one particular nl tends to infinity more rapidly than the fourth power
of every other nt by means of an extension of Nanda's method f and I also

t This problem was suggested to me by Professor E. M. Wright to whom I am also
grateful for much valuable advice in the course of the investigation.
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obtain an asymptotic formula for pr(nu ..., nj) for r = 2 and 4 when one
particular «, tends to infinity more slowly than the cube root of every other «,.

The letters h, k, I, m, n, N, q, r, R, R' and v represent non-negative integers
which may be fixed or variable according to the context and j is used for a
fixed integer greater than unity. C is a positive number, not necessarily the
same at each occurrence, which may depend upon j but not upon any nt.
When there is no statement to the contrary, the symbols O( ), o( ) and ~
refer to the passage of the «, to infinity.

2. Asymptotic Formulae for p,(nu ..., nj)

It is easily seen that/?r("i> •••> nj) *s a symmetric function of n%, ..., n} and
so, without any loss of generality, we may suppose that n x ^ « 2 = •••=";•
Nanda (5) has shown that the asymptotic formula

j
as MJ-MX) holds for n2 = o{n\). If we write R; = T\ nt, the above formula

i = 2
is seen to be a particular case of the following more general theorem.

Theorem 1. If n, = o(n\)for 2<;/^y", then

as «1->oo.
Asymptotic formulae can also be obtained for/?,.(«i> ..., nj) when r = 2, 3

and 4, and indeed the following theorems will be proved.
Theorem 2. If nj = o(nf) for 1 ^ / ^ / - 1 , then

as n,->co for If^l^j— 1.
Theorem 3. # n, = o{n\)for 2^l^j, then

Theorem 4. If ny = o(nf)for 1 ^ / ^ / - 1 ,

as «,->oo for l^l^j— J

3. Two Lemmas

We put
= «2(hu ..., hj) = ( l -
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and

a3(fclf ..., hj) = cc4(hu ..., hj) = l+x\\..x)',

where | xt \ < 1 for 1 f^l^j. Then we write

fr\xl> •••> xj) = 11 ar("l> •••> "/)>
fti hj

where, for r = 2 and 4, Aj, ..., hj each take all positive integral values, while,
for r = 1 and 3, /zl5 ..., hj each take all non-negative integral values except
hi = ... = hj = 0. If we put/7r(0, 0, ..., 0) = 1, we can easily verify from the
definitions of/>r(

wi> ..., nj) that

nj = 0 nj = 0

for /• = 1, 2, 3 and 4.
Before proceeding with the proof of Theorem 1, we require the following

lemma.

Lemma 1. If, when 2^k<C and«, = o{n\) for 2 g I ^ k ,

ni ,n» .»

as n1-yoo, and if

-, *») n n(i-xfr'= £ ... £
» = 1 I = 1 m = 0 n f c = 0

^;,^ 1 /or lf^h^q, then, provided that

R'= t N* = <*«!),
ft = I

«!*+«)

as n1-^co, where the constants implicit in the " O " terms on the right-hand
side of (2) are independent of q.

Before we prove Lemma 1, we prove

Lemma 2. If k^O, m'S: 1 and p is any fixed positive number, then

n-*)} (3)

as n-^co, provided that k = o(«*) a«d w = o(n*).
In order to prove Lemma 1, it is sufficient to show that Lemma 2 holds

when k and m are each o(«*), but it is evident from the following proof that
Lemma 2 remains true provided that k and m are each o{n*). If O:g?:g£

E.M.S.—c
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and k ^>2, then
1 -

Also, forOgf^i ,
W

and l^(l-0

and, for all ?^0,
1 — tgL

Hence, for all k^.0,

[im;1"] / 4 m r \ / r \

^ rEo [1+—)exp{~ Q^}
where E* denotes the sum on the left-hand side of (3). Therefore, since
k = o(»*) and m = o(«*),

and Lemma 2 follows immediately.
We now prove Lemma 1. From the definition of e%i(wi! •••> wt)> w e n a v e

[iVr'ni] [tf~'nfc]

vi = 0 Vic = O

From Lemma 2, we obtain

_ \ni-N1vl,n2,...,nk)=[ —
vi = 0

Clearly, when v1

Pi(nl-N1vu n2,

and therefore,

- ^ i V i , n2,
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It follows that

V! = 0

~n2

Hence,

« J V , ( « I , • • • , «*)

;

since n, = o(nf) for 2 g / ^ A:. Next, if we assume that (2) holds for any positive
«

integers q, Nt, ..., NQ such that V JVft = o(«|), an argument exactly similar
h = 1

to the above shows that (2) remains true when q is replaced by q+l and
Nq+1 = o{n\). Lemma 1 follows immediately by inductive reasoning.

4. Proof of Theorem 1

The generating function of Pi(nu ..., nk + l) is

/!(*!, ..., x4+1)= II (l-Xi'-xfriT1,
ftl frk+ 1

where the product is taken over all non-negative integers ht, ..., hk+1 except
h^ = ... = hk+1 = 0. It follows that, for k^l,

fl(xl,...,xk+1)=fl(xi,...,xk) El' (l-xS'-xfrir1, (4)
hi Afc+i

where the latter product is taken over all non-negative hu ..., hk and all
positive hk+1. We write

nr (i-x*1'...xjy1o~i = i+ t
ftl Afc+l B = 1

where

(n) m
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the sum being taken over all partitions of n of the form n = Z mvm and the
m

product over all the different parts m of the partition, and cn is the coefficient
of y" in g(y), where

a(y)= n - n (i-^'.-xho-1

h, = 0 /ifc = 0

and | y \ < 1. Also

00 00

l o g g f ( y ) = — Z ••• Z log(l—x51...xjj!fc}>)
fti = 0 hk = 0

00 00 00

= Z - Z Z i-1x?'...xiV
hi = 0 »k = 0 r = 1

OD k

= z r-y n a-*;)-1

r = 1 1 = 1

and so, ft
( 1 1 = 1

It follows that

Z 11 \m ft (1-xT) I"""- (7)
(n) m ( J

where the sum is taken over all partitions of n of the form n = Z mv^ and
the product over all the different parts m of the partition. m

We now prove by induction that, if nt = o{n\) for 2 ^ / g j , then

f Z O(rni2)\ (8)

as «!->oo. In (5), Nanda has already demonstrated that (8) is true for/ = 2.
Here, we assume that (8) holds for j = k, where k is any fixed positive integer
greater than unity. From (4) and (5), Pi(nu ..., nk+l) is equal to the coefficient
of x"i

l...xk'
k in Ank+ifl(xl, ..., xk). We see from (6) that there is a one-to-one

correspondence between the terms of An and the partitions of n. We therefore
divide the partitions of n into classes in which each partition has the same
number of parts and we make a corresponding division of the terms of An

into sets. For O ^ g ^ n - 1, the (q+ l)th set has p(i"~9)(«) terms, where Pi""9)(n)
denotes the number of partitions of n into exactly n — q parts. In the first set
there is only one term and its contribution to pl(n1, ..., nk + 1) is equal to the
coefficient of x"'...xj|k in cn(t + 1/1(x1, ..., xk). Also, from (7) and Lemma 1, the
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coefficient of x"'...xjk in cnt+1/1(x1, ..., xk) is asymptotically equal to

E n
("fc+l) m \

V 1 f l/2n X) f «K + I + 1

1 = 2

provided that

It is easily seen that any partition of nk+1 into nk+l—q parts, where
+i> must contain at least nk+l — 2q units. Therefore, for any particular

partition X! mv'm of n t + 1 into nk+1-q parts, f ] vm!^Anfct l_23, where

i - 2 « ) ! for q<$nk + 1 and Anfc+1_2, = l for ^ ^ | « t + 1 . Also,
= Pl(q) for ? g i« t + 1 and P^+1-q\nk+l)<Pl(q) for ? > K + 1 .

Hence, in order to prove (9), it is sufficient to show that
ik+i-l (f.n \~iq Rfc + i + 1

S PM) H f ("/n-iOA-^-2^ E O(r«r*) (10)
1 \ rc / !q = 1 \ rc / r = !

The Hardy-Ramanujan formula (1) for p^iq) shows that, for all q>0,

pl(q)<Cq-1 exp

Therefore,

<c""+E \xp^-iq\og[-
q — 2

since nft+1 = o(nf), and (10) follows immediately.
To complete the proof of (8), we have only to show that the contributions

to/>i(ii, •••, «*+i) from the other terms of Ank + l can be neglected. By repeated
applications of a similar argument to that employed in determining the co-
efficient of x"^...xn

k
k in cnfc+1/1(x1, ..., xk), we can show that the coefficient of
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x\l...xn
k
k in ] l c v m / i ( x i . •••> xk) is asymptotically equal to

It therefore remains to show that

- T ) m - i + •! o(r»r*);
7 1 / r = 1

and this follows in exactly the same manner as did (9). Finally, since nl = o{n\)
for 2 ^ / g j , Theorem 1 is an immediate consequence of (8).

5. Proof of Theorems 2, 3 and 4

In (1), Hardy and Ramanujan obtained the asymptotic formula

as «!->oo and we can easily deduce, by a similar method to that employed by
Nanda (5), that

»i. n2) = ^1-^iy{4.3M(n2!)}-1exp|7r^|)j|l+ " f O(r»r*)

as HJ-KJO for n2 = o(n\). The extension to the general ./-partite number can
be carried out exactly as in the proof of (8) and Theorem 3 follows immediately,
since nt = o(nf) for 2 ^ / ^ j .

We nQW prove Theorems 2 and 4. We denote by P(2jq\ni, ••-, «,) the
number of different partitions of (nu ..., nj) into exactly rij—q parts in which
no part has a zero component and we write p^J~q\nu ..., n,) for the number
of partitions of (nu ..., nj) into exactly rtj — q unequal parts in which no part
has a zero component. For any particular partition £ mvm of n} into exactly

m

rij—q parts, the parts can be arranged in (n7- — q)!/ J~[ vm! distinguishable ways.
m

nj-q

If XI nik is a n y partition of nt into n,-—q parts for 2^/^_/, then the maximum
fc = I

number of distinct partitions of («j, ..., n,) into rij—q parts in the set

V , ^
Li t W l * » m 2 f c » •••> m j W >

where, for 2^ / ^y , m a , ..., w(i nj_4 run through the distinguishable arrange-
nj-q

ments of nn, ..., «, „,_,, is obtained when V nlk is a partition of /ij into
*= I

unequal parts. It follows that

pp-'Kni, ...,nj)£{(nj-q)iy-lJfi pp-'Xnd £ IKv-O"1,
I = 1 (";. 4) m
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where the sum is taken over all partitions of tij into n}—q parts of the form

rij = £ mvm. We also have

I = 1 (nj, q) m

Since

by definition, we obtain

{(nj-qV.y-1 U Pinj-q\n,) £ II W r 1 ^ ? ' " ' ^ ! , - , ";)
1 = 1 (nj, q) m

j { j fl £ [K
I = 1 (nj, q) m

Next, we use the formula of Erdos and Lehner (2),

Pi\n)~ — I
Jfc! V*:—

as «-*oo for k = o(n*), in the form, more convenient for our present purposes,

We see that

as «->co, provided that k = o(«*). Therefore, since n,- = o(nf) for 1 ^l^j— 1,
we obtain

l)\yJ £ U^'{ ...(12)

from (11). By putting q = 0 in (12), we obtain

and, since

4 = 0

and

nj-l

4 = 0
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we can see from (12) that Theorems 2 and 4 are proved if we show that

I (n1...nJ.iy{(nJ-l)(nJ-2)...(nJ-q)y-\nJ\) £ [K^O"1 = o(l)- (13)
9 = 1 (",/, 4) m

Now, since any partition of itj into rij—q parts, where <7 <!«,-, must contain
at least rij — 2q units, we have rivm'-=Anj-24> where Anj_2, = (rij-2q)\ for

m

q<-\rij and Anj-2q — 1 for q~^.\ns. Also, P(2J~9\nj) = P2(q) for q^\n} and
p2

nj~q\nj) <p2(q) for q>\rij. Therefore, since the Hardy-Ramanujan formula
(1) for ;?2(<7) shows that, for all #>0,

the left-hand side of (13) is less than

since n,- = o(nf) for l^l^j— 1.

REFERENCES

(1) G. H. HARDY and S. RAMANUJAN, Asymptotic formulae in combinatory analysis,
Proc. London Math. Soc. (2), 17 (1918), 75-115.

(2) P. ERDOS and J. LEHNER, The distribution of the number of summands in
partitions of a positive integer, Duke Math. J., 8 (1941), 335-345.

(3) F. C. AULUCK, On partitions of bi-partite numbers, Proc. Cambridge Phil.
Soc, 49 (1953), 72-83.

(4) G. MEINARDUS, Zur additiven Zahlentheorie in mehreren Dimensionen
Teil I, Math. Annalen, 132 (1956), 333-346.

(5) V. S. NANDA, Bipartite partitions, Proc. Cambridge Phil. Soc, 53 (1957),
272-277.

(6) E. M. WRIGHT, Partitions of multi-partite numbers, Proc. American Math.
Soc, 1 (1956), 880-890.

(7) E. M. WRIGHT, The number of partitions of a large bi-partite number, Proc.
London Math. Soc (3), 7 (1957), 150-160.

(8) E. M. WRIGHT, Partitions of large bipartites, American J. Math., 80 (1958),
643-658.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ABERDEEN

https://doi.org/10.1017/S0013091500025025 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500025025

