The comparison of total energy and protein intake relative to estimated requirements in chronic spinal cord injury

Gary J. Farkas¹,* , Arthur S. Berg², Alicia Sneij¹, David R. Dolbow³,⁴, Ashraf S. Gorgey⁵, David R. Gater, Jr¹,6,^

¹Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
²Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
³Department of Physical Therapy, William Carey University, Hattiesburg, Mississippi
⁴College of Osteopathic Medicine, William Carey University, Hattiesburg, Mississippi
⁵Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
⁶The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida

*Corresponding Author: Gary J. Farkas, Ph.D. 1611 NW 12th AVE, Miami, FL 33136 | 305-243-4518, gif50@med.miami.edu

^ Passed away in August of 2022

This peer-reviewed article has been accepted for publication but not yet copyedited or typeset, and so may be subject to change during the production process. The article is considered published and may be cited using its DOI 10.1017/S0007114523002088

The British Journal of Nutrition is published by Cambridge University Press on behalf of The Nutrition Society
ABSTRACT

In chronic spinal cord injury (SCI), individuals experience dietary inadequacies complicated by an understudied research area. Our objectives were to assess (1) the agreement between methods of estimating energy requirement (EER) and estimated energy intake (EEI) and (2) whether dietary protein intake met SCI-specific protein guidelines. Persons with chronic SCI (n=43) completed 3-day food records to assess EEI and dietary protein intake. EER was determined with the Long and Institute of Medicine (IOM) methods and the SCI-specific Farkas method. Protein requirements were calculated as 0.8-1.0 g/kg of body weight (BW)/day. Reporting accuracy and bias were calculated and correlated to body composition. Compared to IOM and Long methods (P<0.05), the SCI-specific method did not overestimate the EEI (P=0.200). Reporting accuracy and bias were best for SCI-specific (98.9%, -1.12%) compared to Long (94.8%, -5.24%) and IOM (64.1%, -35.4%) methods. BW (r=-0.403), body mass index (r=-0.323), and total fat mass (r=-0.346) correlated with the IOM reporting bias (all, P<0.05). BW correlated with the SCI-specific and Long reporting bias (r=-0.313, P=0.041). Seven (16%) participants met BW-specific protein guidelines. The regression of protein intake on BW demonstrated no association between the variables (β=0.067, P=0.730). In contrast, for every 1 kg increase in BW, the delta between total and required protein intake decreased by 0.833 g (P=0.0001). The SCI-specific method for EER had the best agreement with the EEI. Protein intake decreased with increasing BW, contrary to protein requirements for chronic SCI.

Key words: Spinal cord injury, total energy intake, dietary protein, estimated energy requirements, obesity
INTRODUCTION

A spinal cord injury (SCI) results in permanent neurological deficits and premature aging, contributing to accelerated morbidity and mortality throughout the lifespan.\(^{(1; 2; 3)}\) After an SCI, a decrease in body weight (BW) is commonly ascribed to substantial depletion of body protein with a subsequent increase in fat mass. This phenomenon instigates a compromised musculoskeletal system\(^{(4; 5)}\) and results in diminished whole-body energy expenditure, characterized by a decline in basal metabolic rate (BMR)\(^{(6; 7; 8)}\) and physical activity,\(^{(9; 10; 11)}\) with conflicting evidence on dietary thermogenesis.\(^{(10; 12; 13; 14)}\) In individuals with chronic SCI, BMR is significantly reduced by as much as 27\%,\(^{(13)}\) mainly through the loss of fat-free mass (FFM) primarily driven by skeletal muscle denervation and atrophy below the injury level.\(^{(7; 15; 16)}\)

In persons without SCI, the loss of FFM and inadequate dietary protein intake are associated with weight gain and regain.\(^{(17; 18)}\) This weight regain is not only due to a reduced resting metabolism but also because of the triggering effect of FFM loss to stimulate an increased energy intake to restore FFM to an optimal level, a theory referred to as the “collateral fattening” concept.\(^{(19; 20)}\) This concept suggests the importance of adapting energy and protein intake to the SCI-specific needs for FFM maintenance to avoid additional loss and gains in fat mass. Consequently, while persons with SCI sustain a decrease in energy expenditure, it is seldom complemented by a similar reduction in energy intake\(^{(21)}\) despite consuming less energy than persons without SCI.\(^{(7; 10)}\)

The energy requirement of an individual is the habitual level of energy intake from food that will balance energy expenditure. Determining appropriate energy requirements relies on the assumption of energy balance, attained when total energy expenditure equals energy intake. Investigating energy intake relative to energy expenditure rests on the fundamental equation of energy balance (equation 1) and the assumption that in stable-weight adults at the group level, changes in body energy stores can be ignored in non-growing and non-lactating adults (equation 2).\(^{(22; 23)}\)

\[
\text{Energy intake} = \text{Energy expenditure} \pm \text{changes in body stores} \quad (1)
\]

\[
\text{Energy intake} = \text{Energy expenditure} \quad (2)
\]
The determination of energy expenditure, and thereby energy requirements, is based on doubly labeled water,\(^{(24; 25)}\) the reference standard method that is limited by cost, technical experience and equipment, and generalizability of findings to special populations, such as those with SCI. Surrogate energy metabolism and dietary assessment tools, such as indirect calorimetry,\(^{(26)}\) dietary food records,\(^{(21; 27)}\) and prediction equations,\(^{(21; 28; 29)}\) have been widely used to estimate energy needs and intake in persons with and without SCI. Methods of estimation to assess these requirements include regression equations from the Institute of Medicine (IOM) of the National Academies\(^{(29)}\) and the simplified factorial method.\(^{(23)}\) In the factorial method, dietary thermogenesis is ignored because of its small magnitude and minimal contribution to total energy expenditure, and physical activity is calculated or estimated as an activity factor.\(^{(23; 30)}\)

Using this principle, calculated total energy expenditure and, consequently, the associated energy requirements are derived as the product of BMR and a factor representing physical activity. While several authors have published SCI-specific equations to estimate BMR,\(^{(26)}\) most equations used to determine energy requirements have been developed in and for persons without SCI and do not factor in the metabolic changes resulting from the injury. Recently, Farkas and colleagues\(^{(21)}\) developed an SCI-specific activity coefficient. When multiplied by BMR, this coefficient yields an estimate of energy requirements.\(^{(21)}\) However, this tool has yet to be tested against estimated energy intake (EEI) in chronic SCI.

Dietary protein is essential to energy intake to maintain skeletal muscle during a sedentary lifestyle with low physical demands, like after SCI.\(^{(31)}\) Regarding nutrient deficits, injury-induced changes in body composition also increase the risk of weakness, fatigue, and vulnerability to illness and acute stress in chronic SCI, suggesting that protein intake is vital for protecting and preventing health ailments. An individual’s protein requirement is defined as the lowest amount of habitual dietary protein intake that will balance body nitrogen losses in individuals maintaining energy balance.\(^{(31)}\) Research regarding SCI-specific protein requirements is primarily limited to the acute injury phase,\(^{(32; 33; 34)}\) and only the Academy of Nutrition and Dietetics (AND) provides protein guidelines for chronic SCI in the amount of 0.8-1.0 g/kg of BW/day.\(^{(35)}\) Protein intake in chronic SCI has not been examined against guidelines regarding protein requirements by BW to determine if this population is meeting guidelines, especially in the presence of reduced energy intake\(^{(36)}\) and diminished FFM.\(^{(13)}\)
The objective of this paper was twofold. Our first objective was to assess the agreement between methods of estimating energy requirements (EER) and EEI in persons with chronic SCI. Second, we wanted to determine whether dietary protein intake was within the SCI-specific guidelines for estimated protein requirements by BW. We hypothesized (1) that non-SCI-specific methods used to estimate energy requirements will overestimate EEI and (2) that most persons with SCI would not meet protein requirements when evaluated according to BW.

MATERIAL and METHODS

Participants

This study was a secondary analysis of a larger clinical trial (NCT00957762) that aimed to evaluate different methods of measuring body composition and determine relationships between body composition and other medical problems (i.e., excessive energy intake) associated with SCI.\(^{(37)}\) In this study, we used a subset of the participants with dietary data (n = 43) and that were free of any pressure injuries. This study was conducted according to the guidelines laid down in the Declaration of Helsinki, and all procedures involving human subjects were approved by the Institutional Review Board (#01399). Written informed consent was obtained from all subjects. Each participant underwent a physical and a neurological\(^{(38)}\) examination by a physiatrist board certified in SCI medicine. Inclusion criteria were (1) men and women aged 18 to 65 years old; (2) C4 to L2 American Spinal Injury Association Impairment Scale A and B injuries\(^{(38)}\); and (3) at least 12 months post-injury.\(^{(39)}\) Exclusion criteria were as follows: (1) smokers; (2) individuals with excessive alcohol consumption (greater than 2 drinks/day); (3) those with pressure injuries, hypothyroidism, renal disease; and/or (5) recent (≤ 3 months) deep vein thrombosis or uncontrolled autonomic dysreflexia (hypertensive event following the removal of the noxious stimuli). Table 1 demonstrates participant characteristics.

Physical Characteristics and Body Composition

Before assessing height and BW, each participant was asked to void their bladder. Height was determined using an anthropometer (Holtain Anthropometry, Middlesex, UK) on the left side after aligning the head, torso, and lower extremities. Every effort was made to keep the knees in
full extension.(37) BW was quantified with a wheelchair scale (PW-630U; Tanita, Arlington Heights, Illinois, USA). Participants propelled themselves onto a wheelchair scale with total BW determined by subtracting the weight of the wheelchair from the weight of the wheelchair plus the individual.(37) Body mass index was calculated as BW divided by height squared (kg/m2). According to previously published methods, total body fat percentage, fat mass, and FFM were measured using a whole body scan on a dual-energy x-ray absorptiometry machine.(21)

\textit{Dietary Records}

Dietary records were collected according to previously published methods.(21; 27) Each participant and their caregiver (as available) were instructed to maintain a three-day dietary record to monitor the amount and types of food consumed for a week over three non-consecutive days. Participants were instructed to record their daily consumption of all food and drink for breakfast, lunch, and dinner and any food consumed as a snack between meals. No nutritional guidance was provided on meal frequency, cooking instructions, or portion sizes, but participants were instructed to provide detailed information about their food and drink intake. After completing the dietary records, they were returned to study personnel. Each day was analyzed using the Nutrition Data System for Research software (v2012-2018; University of Minnesota) under the supervision of a registered dietitian. After the dietary analysis was completed, the average EEI and the absolute (in grams) and relative (%) macronutrient intakes (dietary protein, carbohydrate, fat, and alcohol) were calculated for three days (Table 1).(21; 27)

\textit{Basal Metabolic Rate}

Participants were instructed to refrain from exercising for 24 hours and abstain from eating and drinking (besides water) 12 hours before the BMR was completed. Following an overnight stay at the local Clinical Research Center, BMR was measured at approximately 6:00 AM in a thermoneutral environment.(40; 41) Participants were in a dark room in a supine position for 20 minutes to achieve a steady resting state. During this time, BMR was measured using indirect calorimetry with a portable K4b2 (COSMED Inc., Rome, Italy) and a canopy that covered the head and neck.(42) BMR was calculated after discarding the first five minutes and averaging the
remaining 15 minutes. BMR was recorded before the study commencement to avoid the possible influence of the measurement on EEI and dietary records.\(^{(40, 41)}\)

Estimated Energy Requirements and Protein Requirements

EER were determined using the Long\(^{(28)}\) (equation 3) and SCI-specific methods\(^{(21)}\) (equation 4) by the simplified factorial method as follows:

\[
EER_{Long} = BMR \times 1.2 \\
EER_{SCI-specific} = BMR \times 1.15
\]
(3)
(4)

where EER is the estimated energy requirements in kcal, BMR is measured in kcal, and 1.2 and 1.15 are activity factors for persons without\(^{(28)}\) and with\(^{(21)}\) SCI, respectively. The activity factor of 1.2, as developed by Long et al.\(^{(28)}\) and corroborated by Black et al.,\(^{(43)}\) was utilized as the value for persons that are “confined to bed” and “chair-bound or bed-bound,” respectively. The SCI-specific activity factor of 1.15\(^{(21)}\) was established based on the SCI-specific and general (non-SCI) metabolic equivalent of task of 2.7 ml/kg/min and 3.5 ml/kg/min, respectively.\(^{(44)}\)

EER were also determined according to the IOM:\(^{(29)}\)

\[
EER_{IOM-men} = 662 - (9.53 \times age) + PA \times [(15.91 \times weight) + (539.6 \times height)] \\
EER_{IOM-women} = 354 - (6.91 \times age) + PA \times [(9.36 \times weight) + (539.6 \times height)]
\]

where EER is the estimated energy requirements in kcal, age is measured in years, weight is in kilograms, height is in meters, and PA is the physical activity coefficient. We assigned the physical activity coefficient of one (defined by the IOM as sedentary\(^{(29)}\)) to the entire sample of participants because of a largely inactive (whether adopted or imposed) sedentary lifestyle after the injury. Additionally, this coefficient was chosen because persons living with SCI are among the most physically deconditioned individuals,\(^{(45, 46)}\) as many do not achieve sufficient oxygen consumption to perform daily living activities.\(^{(47)}\)

Protein requirements were calculated according to the AND guidelines at 0.8-1.0 g/kg of BW/day (using the scale-acquired BW) to maintain protein status in the absence of infection and pressure injuries.\(^{(35)}\)
Statistical Analysis

All statistical analyses were performed using R (R Foundation for Statistical Computing, Vienna, Austria). Data were graphically evaluated using beeswarm and Bland-Altman plots to visually present the agreement. A beeswarm graphic was created using ggplot2 (v3.3.5) for R by graphing the EEI values by the EER for SCI-specific, Long, and IOM methods. Bland-Altman plots (mean of measurement difference ± 2 standard deviations) were used to measure the mean bias (MB) and level of agreement (LOA) against the methods of determining EER and EEI. The delta (difference) between each method of EER and EEI was calculated, and Wilcoxon signed-rank exact test assessed differences between the EER and EEI. The interclass correlation coefficient (ICC; one-way fixed effects, agreement, multiple measures) was also used to determine the agreement between the three estimation methods and the EEI.

Measures of error, accuracy, and bias were also assessed. Error was examined with the mean squared error (MSE). Reporting accuracy was evaluated with the following formula:

\[
\text{Reporting Accuracy} = \left(\frac{\text{Total Energy Intake}}{\text{Estimated Energy Requirements}} \right) \times 100\%
\]

where total energy intake was the EEI, and estimated energy requirements were calculated using the SCI-specific, Long, and IOM methods. Reporting bias on the dietary records was determined according to Trabulsi and Schoeller as:

\[
\text{Reporting Bias} = \left(\frac{\text{Reported Energy Intake} - \text{Total Energy Expenditure}}{\text{Total Energy Expenditure}} \right) \times 100\%
\]

where reported energy intake is the EEI and total energy expenditure was considered equivalent to EER using the SCI-specific, Long, and IOM methods. Pearson correlations were used to examine the association between reporting bias and BW, body mass index, fat mass, and total body fat percentage.

Regarding protein requirements, linear regression was used to examine the association between dietary protein intake (dependent variable) and BW (independent variable). We graphed protein intake together with the AND required range of protein by increasing BW of the study participants using ggplot2 (v3.3.5). We calculated the delta between protein intake and the midpoint of the
required range of protein and then graphed these differences by BW with a best-fit regression line. The minimum and maximum required protein intake values were also graphed by BW and included in the graphic. A BW threshold that maximized the differences in protein intake patterns (overconsumption, adequate consumption, and underconsumption) was identified before and after the threshold.

A bootstrap resampling method was used to compare the MSEs of SCI-specific, Long, and IOM methods. The observed MSE for each method is defined as the squared differences between the EER and EEI. The MSE is then calculated over a million bootstrap samples to estimate the distribution of the MSE under repeated sampling yielding 95% confidence intervals (95% CI) of the MSE for each method. To compare the relative MSE performance of the three methods, the ratio of MSE for each pair of methods was similarly bootstrapped, yielding bootstrap-based p-values under the null that the ratio of MSE values equals one.

All values were presented as mean ± standard deviation, and the significance level was set at alpha < 0.05.

Power Analysis

A power analysis was performed using R to understand the ability of our study to detect a significant effect. A hypothetical EEI estimate whose MSE relative to the MSE of the Long method was set to be \(\lambda \). This parameter \(\lambda \) represents the effect size that we are interested in detecting. Let \(\mu \) represent the MSE of the Long estimate, and let \(\sigma^2 \) represent the variance of the Long estimate. Two datasets were repeatedly jointly simulated following a multivariate normal distribution, ensuring the preservation of the underlying statistical properties observed in the real-world data. Specifically, the first dataset, representing the hypothetical estimate, has a mean value of \(\lambda \mu \) and a variance of \(\sigma^2 \), and the second dataset, representing properties of the Long estimate, has mean \(\mu \) and variance \(\sigma^2 \). The correlation between these two datasets is the sample correlation between the Long and SCI-specific methods, specifically, \(\rho = 0.977 \). We then conducted our bootstrap resampling procedure on the simulated datasets across different values of the effects size \(\lambda \), thereby producing different levels of statistical power. The specific value of
that provided a power of 80% is 0.964. With the sample size of 43 as in the analyzed dataset, the observed effect size of 0.907 has 98.4% power to identify a statistically significant improvement in MSE over the Long method.

RESULTS

Estimated Energy Intake and Estimated Energy Requirements

Figure 1a demonstrates the assessed EEI and EER. EEI was 1520.1 ± 534.9 kcal. The EER, according to the SCI-specific method, was 1673.7 ± 493.9 kcal, 1746.4 ± 515.4 kcal according to the Long method, and 2486.5 ± 346.82 kcal according to the IOM method. Figure 1b demonstrates the delta between each method of EER and EEI. The mean and standard deviation for the delta between the EER and EEI were 153.6 ± 644.6, 226.3 ± 657.3, and 896.1 ± 669.2 kcal for the SCI-specific, Long, and IOM methods, respectively (Figure 1b). Compared to the EEI, the SCI-specific method did not overestimate the EER (P = 0.200), whereas both the IOM (P < 0.0001) and Long (P=0.03) methods significantly overestimated it (Figure 1b). Bland–Altman analysis (Figure 2) demonstrated that the SCI-specific method (MB: -154, LOA: -1443, 1135) had the best agreement with EEI compared to the Long (MB: -226 LOA: -1541, 1088) and IOM (MB: -896, LOA: -2235, 442) methods. The ICC between EEI and the SCI-specific (ICC = -0.366, P = 0.078), Long (ICC = 0.173, P = 0.129), and IOM (-0.211, P = 0.999) methods were not significant.

MSE for the SCI-specific, Long, and IOM methods were 429,282.0 (95% CI: 312504.8, 553873.6), 473,226.7 (95% CI: 345439.1, 608231.4), and 1,240,426.3 (95% CI: 909718.4, 1594371.7), respectively. Table 2 demonstrates the relative MSE performance of the three methods. Reporting accuracy was 98.9% for the SCI-specific method, 94.8% for the Long method, and 64.1% for the IOM method. Reporting bias was -1.12% for the SCI-specific method, -5.24% for the Long method, and -35.4% for the IOM method.

Figure 3 illustrates scatter plots for the correlations between reporting bias and measures of body composition. BW (r = -0.403, P = 0.007), body mass index (r = -0.323, P = 0.035), and fat mass
(r = -0.346, P = 0.025) significantly correlated with the IOM reporting bias. BW significantly correlated with SCI-specific and Long reporting bias (both r = -0.313, P = 0.041). All other correlations were not significant (r = -0.286 to -0.070, P > 0.05).

Dietary Protein Intake and Requirements

Figures 4 and 5 present dietary protein intake. Seven of the 43 (16%) participants with SCI met AND protein requirements (Figure 4). The regression of protein intake on BW demonstrated no significant association between the variables (β = 0.067, P = 0.730) (Figure 5a). However, for every one-kilogram increase in BW, the delta between protein intake and protein requirements decreased by 0.833 g (P = 0.0001) (Figure 5b).

At the BW threshold of 72.4 kg, protein intake moved from within required ranges and overconsumption to underconsumption, with the degree of underconsumption increasing with BW (Figure 5b). Of the 16 individuals who weighed less than 72.4 kg, nine (56%) overconsumed protein, four (25%) consumed the required amount, and 3 (19%) underconsumed protein. In contrast, of the 27 individuals who weighed more than 72.4 kg, 23 (85%) underconsumed protein, three (11%) consumed the required amount, and one (4%) overconsumed protein (P = 0.0001) (Figure 5b).

DISCUSSION

To the authors’ knowledge, this is the first study to examine EEI assessed with food records against EER by several common prediction methods and the adequacy of protein intake in chronic SCI. The main findings indicate that relative to the Long and the IOM methods, the SCI-specific method for estimating energy requirements had the best agreement with EEI and did not significantly overestimate it. Nevertheless, despite its performance over the Long and IOM methods, the SCI-specific approach does exhibit a certain degree of variability and error. Additionally, only 16% of the participants with chronic SCI met protein guidelines, and estimated dietary protein intake decreased with increasing BW.
Estimated Energy Intake and Estimated Energy Requirements

Compared to the SCI-specific method EER, both the Long and IOM methods significantly overestimated energy needs and demonstrated poor LOA with EEI assessed using food records. While acknowledging the presence of errors and substantial variability in the LOA within the SCI-specific and Long methods, it is essential to note that the IOM method exhibited comparably less favorable performance. These present findings likely originate from differences in the use of BMR, demographic and physical characteristics, and the reporting and knowledge of physical activity estimates. While appealing owing to its simplicity, the IOM method to estimate energy requirements relies on the readily available weight, height, and age measures. These demographic and physical characteristics cannot accurately discriminate between fat mass and FFM. FFM is the largest determinant of BMR,\(^{(53)}\) such that the size of the FFM explains 70 to 80\% of the variance in BMR,\(^{(8)}\) but does not account for individual effects of different organs, tissues, and their interplay.\(^{(54; 55)}\) The IOM method also requires people to quantify their physical activity to define the appropriate PAL and physical activity coefficient. Thus, it is unsurprising that methods used to estimate energy requirements directly incorporating BMR with a low activity factor had better agreement with EEI than methods relying on a higher activity factor and demographic and physical characteristics. Nevertheless, even though the SCI-specific method performed better than the Long and IOM methods in terms of bias, accuracy, and MSE, its clinical applicability on an individual level could be hampered by the pronounced variability observed in its estimations. This tool should be used with caution in clinical practice. Subsequent investigations ought to delve into the specific factors underpinning this variability and consider supplementary strategies that can be employed to mitigate the extent of these fluctuations.

A direct comparison of our findings with those from previous reports within the SCI field is limited. Many investigators have examined EEI with various dietary assessment instruments and total energy expenditure separately,\(^{(39)}\) whereas EER after SCI have historically focused on the acute injury phase.\(^{(32; 33; 34; 56; 57)}\) In studies with acute SCI, differences in injury characteristics make comparisons dubious or inappropriate and findings non-generalizable to chronic SCI. To the authors’ knowledge, only Gorgey et al.\(^{(27)}\) compared the Long factorial method to EEI using inferential statistics in chronic SCI. The authors reported a negative energy balance in 16
participants with chronic motor complete SCI but hypothesized that participants were underreporting dietary intake on food records.\(^{(27)}\)

It is well established that dietary assessment methods underreport actual energy intake in persons without SCI,\(^{(58; 59)}\) and a similar phenomenon is probable after SCI (reviewed in Farkas et al.\(^{(39)}\))\(^{21; 27}\) While the proportion of under-, acceptable-, and over-reporters was not quantified \textit{per se}, reporting bias, a surrogate marker for underreporting, was presented. The reporting bias of -1.12\% for the SCI-specific method was less than the reporting biases of -5.24\% and -35.4\% for the Long and IOM methods, respectively. The SCI-specific and Long methods were also less than the -10 to -32\% bias reported for three-day food records (validated against doubly labeled water) in persons without SCI.\(^{(52)}\) A slight difference in the reporting bias between persons with and without SCI may stem from a reduced heteroscedastic error (an unequal variance across a range of values), an error associated with underreporting. The heteroscedasticity in dietary records may be minimized in SCI because intake is less than those without an injury.\(^{(36)}\) These findings may be deceptive, however, as underreporting and overreporting for each participant may negate their independent effects (i.e., cancel each other out). However, by using a Bland-Altman analysis, delta calculation, MSE, and reporting accuracy, we provided several alternative approaches that offered greater insight into the accuracy of the estimation methods.

In persons without SCI, prior literature has demonstrated that adiposity is strongly associated with underreporting EEI.\(^{(60; 61)}\) Individuals with obesity underreport more than individuals without obesity.\(^{(62)}\) In the present study, the reporting bias for the IOM method was related to several measures of body composition; in contrast, the reporting biases for the SCI-specific and Long methods were related to BW. Research suggests that persons with obesity that underreport typically do not report foods perceived to be unhealthy and high in fat.\(^{(63; 64)}\) Reporting of added sugars is also reduced due to the typical exclusion of snack foods.\(^{(65)}\) In persons with chronic SCI, carbohydrates comprise the greatest portion of the diet,\(^{(36)}\) and may therefore be the most underreported macronutrient, although additional research is needed. Consequently, obesity after SCI, along with the consequences of paralysis, likely instigates the underreporting of dietary intake on food records, such that their “true” intake may be closer to the SCI-specific method of
estimating energy requirements when considering the unrecorded food. This may further help improve the agreement between the SCI-specific method and EEI.

Protein Intake

At the population level, Farkas et al.\(^{(36)}\) reported in a meta-analysis that dietary protein surpassed the Dietary Guidelines for Americans recommendations in chronic SCI. However, this finding may be a consequence of Simpson’s paradox (a finding in a population emerges but disappears when subpopulations are formed). When examining protein intake by BW, we demonstrated that 40% of our participants meet current protein guidelines or overconsumed protein. At a BW threshold of 72.4 kg, protein intake moved from within required ranges and overconsumption to underconsumption such that below and above the threshold, 19% and 85% underconsumed protein, respectively. Importantly, no significant association was observed for the regression of protein intake on BW, contrary to the AND’s formula that protein intake increases with BW. In contrast, for every kg increase in BW, the delta between dietary and required protein intake significantly decreased by 0.833 g, supporting that when BW increases, protein is underconsumed by 17%.

The underconsumption of protein as a function of BW may result from persons with chronic SCI that are overweight/obese underreporting dietary intake (as described above) or consuming a diet predominantly composed of fat and carbohydrate (i.e., convenience and snack food). This dietary pattern is of concern because high-fat and sugary diets contribute to obesity and cardiovascular disease risk after SCI.\(^{(66)}\) With time, underconsumption of dietary protein may contribute to the loss of FFM and an increase in fat mass as BMR decreases. Alternatively, FFM is spared in high protein diets with energy restriction, suggesting BMR remains unaffected.\(^{(67;}\,68)\) This is evident following weight loss with bariatric surgery, as a higher preservation of lean body mass was reported when protein intake was above 60 g/d or when the protein-to-energy intake ratio was >20%.\(^{(69;}\,70)\) After SCI, protein underconsumption may be associated with obesity. Alternatively, a high protein diet may protect body composition following SCI, as recently documented by Li et al.\(^{(71)}\) High protein intake in persons with SCI with lower BW may be obesoprotective through
the satiating effect of protein.\(^{(72)}\) Thus, increased consumption of high-protein foods may help modulate energy intake, promoting weight/fat loss and BW maintenance.

We demonstrated that below a BW of 72.4 kg, 9% of persons with SCI overconsumed dietary protein, compared to 4% that overconsumed protein at a BW above 72.4 kg. Protein guidelines post-SCI hinge on BW, but given the decline in skeletal muscle mass, these guidelines could be called into question when addressing the altered body composition in chronic SCI. Consequently, these recommendations might encompass a greater proportion of fat mass versus FFM in determining protein needs, potentially resulting in an overestimation and overconsumption of protein. However, the excess is metabolized if more dietary protein is ingested than is required for metabolic purposes. In particular, the nitrogen from the amino group is excreted as urea, while the fate of the carbons hinges on whether an individual follows a gluconeogenic or ketogenic pathway. In contrast to energy, the evidence is equivocal on protein’s effects on body fat.\(^{(73)}\) but no detrimental effect has been identified with protein intake moderately above the actual guidelines. Some caution, however, is needed with diets high in dietary protein.\(^{(74)}\) High protein diets have been associated with elevated blood pressure and may harm the kidneys.\(^{(75)}\) These harmful effects are especially prevalent in persons with subclinical renal dysfunction because of metabolic syndrome or type 2 diabetes mellitus, metabolic conditions common after SCI.\(^{(66)}\) Yet, the link between dietary protein intake and renal disease lacks sufficient evidence in persons with and without SCI, implying additional research is needed.\(^{(68)}\)

Study Limitations

This study has limitations. First, because participants self-reported their dietary intake, they may have modified their eating behavior during the study period or consumed foods perceived as healthy. Second, rather than collecting dietary records every day, participants completed three days. This approach was chosen to mitigate potential misreporting, which could be intensified due to prolonged reporting periods, ultimately placing a higher demand on study participants. This phenomenon was demonstrated by Nightingale et al.\(^{(11)}\) and Gorgey et al.\(^{(27)}\) as participants with SCI recorded consuming less energy with time. Lastly, we did not measure total energy expenditure and protein requirements using the reference standard of doubly labeled water and
nitrogen balance, respectively. The expense and technical skills required for these criterion methods have generally restricted their use. Still, we EER according to several published methods. While BMR was the only component of energy expenditure that was measured, it is the most critical factor and, therefore, EEI because BMR does not drastically change on a day-to-day basis. Relative to the other methods of estimation tested in this paper, the SCI-specific method of determining energy requirements in chronic SCI has potential; however, its clinical relevance could be hampered by the variability noted in its estimations and future research will need to determine the factors contributing to its variability and strategies to mitigate it.

CONCLUSION

Our findings indicate that the SCI-specific method for estimating energy requirements had the best agreement with EEI, likely because it uses BMR with a low activity factor compared to the Long and IOM methods. Although, its clinical applicability could be impeded by the variability observed in its estimations and should be used with prudence. Additionally, persons with SCI inadequately consume dietary protein such that protein intake decreases with increasing BW, contrary to protein AND guidelines for chronic SCI. The shift from adequate- and over-consumption of protein to underconsumption occurred at a BW of 72 kg. The present study’s findings should be used to establish new energy and protein intake clinical guidelines as a prevention technique against neurogenic obesity for persons with chronic SCI.
DISCLOSURE STATEMENTS

Acknowledgment: We would like to thank the participants in this research study.

Financial Support: The project was supported by VHA RR&D (#B3918R) and the National Center for Research Resources (UL1RR031990).

Conflict of interest: The authors certify they have no financial or other conflicts of interest.

Authorship: Gary J. Farkas: Conceptualization, Methodology, Writing – Original Draft, Validation; Arthur S. Berg: Formal Analysis, Data Interpretation, Data Visualization, Writing – Reviewing and Editing; Alicia Sneij: Data Interpretation, Writing – Reviewing and Editing; David Dolbow: Investigation, Data curation, Writing – Reviewing and Editing; Ashraf Gorgey: Investigation, Data curation, Writing – Reviewing and Editing; David R. Gater: Funding Acquisition, Conceptualization, Investigation, Data Curation, Project Administration
REFERENCES

Table 1. Demographic and Injury Characteristics, Body Composition, and Dietary Intake (n = 43)

<table>
<thead>
<tr>
<th>Demographic and Injury Characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>45.7 (11.4)</td>
</tr>
<tr>
<td>Gender (% male)</td>
<td>81</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>175.0 (9.2)</td>
</tr>
<tr>
<td>Body Weight (kg)</td>
<td>82.7 (20.1)</td>
</tr>
<tr>
<td>Body Mass Index (kg/m²)</td>
<td>27.0 (6.2)</td>
</tr>
<tr>
<td>Time Since Injury (y)</td>
<td>14.9 (11.2)</td>
</tr>
<tr>
<td>Level of Injury</td>
<td>C4-L1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Body Composition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Body Fat Percentage (%)</td>
<td>39.3 (8.8)</td>
</tr>
<tr>
<td>Total Body Fat (kg)</td>
<td>32.5 (12.6)</td>
</tr>
<tr>
<td>Fat-free Mass (kg)</td>
<td>50.7 (10.7)</td>
</tr>
<tr>
<td>Basal Metabolic Rate (kcal)</td>
<td>1455.4 (429.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dietary Intake</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Protein Intake (g)</td>
<td>63.6 (24.7)</td>
</tr>
<tr>
<td>Relative Protein Intake (%)</td>
<td>17.4 (4.9)</td>
</tr>
<tr>
<td>Absolute Fat Intake (g)</td>
<td>59.3 (27.4)</td>
</tr>
<tr>
<td>Relative Fat Intake (%)</td>
<td>33.6 (6.2)</td>
</tr>
<tr>
<td>Absolute Carbohydrate Intake (g)</td>
<td>182.5 (63.0)</td>
</tr>
<tr>
<td>Relative Carbohydrate Intake (%)</td>
<td>47.5 (7.0)</td>
</tr>
<tr>
<td>Absolute Alcohol Intake (g)</td>
<td>3.3 (9.2)</td>
</tr>
<tr>
<td>Relative Alcohol Intake (%)</td>
<td>1.6 (3.8)</td>
</tr>
</tbody>
</table>

Data are presented as mean (SD)
Table 2. Comparison of the relative mean squared error (MSE) performance of the SCI-specific, Long, and Institute of Medicine methods to estimate energy requirements

<table>
<thead>
<tr>
<th></th>
<th>MSE Ratios</th>
<th>Bootstrap p-value</th>
<th>Rho Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCI-Specific/Long</td>
<td>0.907</td>
<td>0.001</td>
<td>0.977</td>
</tr>
<tr>
<td>SCI-Specific/IOM</td>
<td>0.346</td>
<td>< 0.001</td>
<td>0.228</td>
</tr>
<tr>
<td>Long/IOM</td>
<td>0.382</td>
<td>< 0.001</td>
<td>0.344</td>
</tr>
</tbody>
</table>
Figure 1. Estimated energy intake (Actual EI) and the SCI-specific (EI 15, Farkas), Long (EI 20), and Institute of Medicine (EI IOM) methods to estimate energy requirements (a). The delta between the SCI-specific, Long, and IOM methods to estimate energy requirements and estimated energy intake (b). The solid block circles represent individual study participants (n = 43). The thick solid black line is the mean of the delta between the estimated energy requirements and the estimated energy intake.
Figure 2. Bland–Altman plots measuring the level of agreement against estimated energy intake (EI) and the SCI-specific, Long, and Institute of Medicine (IOM) methods to estimate energy requirements (ER). Solid block circles represent individual study participants ($n = 43$). The solid line represents the mean difference between the two measurements, while the dashed lines represent the 95% confidence intervals (mean ± 2 standard deviations above and below the mean difference).
Figure 3. Scatter plots for the Pearson rho (r) correlations between body weight (a), body mass index (BMI) (b), fat mass (c), and percent body fat (d) and reporting bias (calculated by the SCI-specific, Long, and Institute of Medicine (IOM) methods to estimate energy requirements). The solid block circles represent individual participants (n = 43). Positive and negative values represent overreporting and underreporting, respectively. The solid black, orange, and blue lines are the average reporting bias, zero (estimated energy intake is equivalent to estimated energy requirements), and best-fit line.
Figure 4. Dietary protein intake with the Guidelines of the Academy of Nutrition and Dietetics required a range of 0.8 to 1.0 g of protein intake/kg of body weight (vertical grey lines) by the study participants (n = 43) plotted according to increasing body weight. Triangles, squares, and circles represent persons overconsuming, underconsuming, and that are within the required range of dietary protein intake, respectively.
Figure 5. The regression analysis demonstrated no significant association of dietary protein intake on body weight ($\beta = 0.067$, $P = 0.730$) (a). In contrast, for every one-kilogram increase in body weight, the delta between total and required protein intake decreased by 0.833 g ($P = 0.0001$) (b). At the body weight threshold of 72.4 kg (solid vertical grey line), protein intake moved from within required ranges and overconsumption to underconsumption, with the degree of underconsumption increasing with BW. Grey lines represent the Academy of Nutrition and Dietetics guidelines required range of 0.8 to 1.0 g of protein intake/kg of body weight. The dashed line corresponds to the best-fit line. Triangles, squares, and circles represent participants overconsuming, underconsuming, and within the required range of dietary protein consumption, respectively. Of the 16 individuals who weighed less than 72.4 kg, nine (56%) overconsumed, 3 (19%) underconsumed, and 4 (25%) consumed the required amount. Of the 27 individuals who weighed more than 72.4 kg, 1 (4%) overconsumed, 23 (85%) underconsumed, and 3 (11%) consumed the required amount ($P = 0.0001$) (b).