
ON ANTI-COMMUTATIVE ALGEBRAS AND 
ANALYTIC LOOPS 

ARTHUR A. SAGLE 

1. Introduction. In (4) Malcev generalizes the notion of the Lie algebra 
of a Lie group to that of an anti-commutative "tangent algebra" of an analytic 
loop. In this paper we shall discuss these concepts briefly and modify them 
to the situation where the cancellation laws in the loop are replaced by a 
unique two-sided inverse. Thus we shall have a set H with a binary operation 
xy defined on it having the algebraic properties 

(1.1) H contains a two-sided identity element e\ 
(1.2) for every x G H, there exists a unique element x~1 G H such that 

/y/y 1 —— /y* * /V* —" 0 • 
*A/»A/ *A/ «A/ C/ j 

and H also has the analytic properties that it is an ^-dimensional analytic 
manifold so that 

(1.3) H X H —> H : (x, y) —> xy is an analytic mapping; 
(1.4) H —» H : x —̂  x - 1 is an analytic mapping. 

Since any system H satisfying (1.1)—(1.4) resembles an analytic iT-space which 
is almost a loop, this system will be called an analytic hoop. 

We shall show that the tangent algebra of an analytic hoop can be defined 
using the same definition as that of a tangent algebra of an analytic loop 
(which is the same as in classical Lie group theory involving tangents to 
products and commutators of differentiable curves through the identity). 
Extending the notion of the exponential series to certain non-commutative 
Jordan algebras (6; 8) the main result is the following representation theorem. 

THEOREM. / / A is an n-dimensional anti-commutative algebra over the real 
numbers R, then there exists a power associative flexible analytic hoop K with 
tangent algebra isomorphic to A. Furthermore, there exist algebra homomorphisms 
of A if and only if there exist analytic hoop homomorphisms of K. 

In this paper it should be clear when analyticity can be replaced by weaker 
differentiability conditions. 

2. Basic concepts. In this section we shall discuss analytic loops, their 
tangent algebras (4), and the examples obtained from the split Cayley-
Dickson algebra. 

Definition. A loop (L, •) is a non-empty set L and a binary operation • on 
L having the following properties: 
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(2.1) for any a, b £ L, the equations 

a-x — b and y-a = b 

have unique solutions x and y in L; 

(2.2) there exists an element e £ L such that for all x G L; x-e = e-x = x. 

Thus, denoting x-y by xy, (2.1) states that the mappings of L onto Z, given 
by Ra : y ~^ya and La : y —> ay are bijections. From this fact and (2.2) we 
have that for any x f L , there exist xr~\ xr1 £ L such that xxT~~l = e — xrlx\ 
that is, xr~

l{xrl) is a right (left) inverse of x. In addition, xT~l need not 
equal xr1. 

We shall not consider a general theory of loops but consider an example 
of a Moufang loop (5) which is not a group. Let R denote the field of real 
numbers and let A denote the three-dimensional Lie algebra defined as follows: 

let a = (ai ,a2, a3), P = (*i, #2, 63)1 where au bt £ R, and let 

a-fi = ^ f l j #*, 

& X 0 = (#2 #3 — #3 ^2, #3 b\ — #3 CLly #1 #2 — #2 # l ) . 

Thus • and X make Rz into the usual three-dimensional Lie algebra A of 
vector analysis. Next let 

^ = {U l\:a>beR and <*>P€Af, 
and for these 2 by 2 matrices define the natural co-ordinate-wise addition and 
scalar multiplication by elements of R. Defining multiplication of two such 
matrices by 

[ a a y c 71 _ J ac + oc-b ay + da — ($ X 8 | 

0 ôJL« dj ~ U + 65 + aXT bd + /3>y J ' 
IS becomes the eight-dimensional split Cayley-Dickson algebra over R. Next 
we obtain a loop from B. Let 

and let N(x) = ab — a-fi. Then from (5) we have N(xy) = N(x)N(y) so 
that L = {x e B : N(x) 5* 0} is a Moufang loop, and AT = {x : N(x) = 1\/Z 
is actually a simple Moufang loop. Note that any element x f l has a unique 
two-sided inverse given by 

-1 l_r b ""I 
°° N(x)L-p a]' 

Next in this example if we give L the relative topology of R8, then from 
the various formulas we see that L is a topological loop', that is, L has the 
following properties: 
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(2.3) L is a topological space, 
(2.4) the following maps from the product space L X L onto L are con

tinuous: 

(x, y) —> xy, (x, y) —> xRy~
l, (x, ;y) —> xLy~

l. 

Thus in the equation x;y = z, any one of the elements x, y, or s depends 
continuously on the other two elements. Similarly, the simple Moufang loop 
Mf is a topological loop with topological space Sz X Sz X i?1. We note that 
in both cases the mapping x —> x_ 1 is a continuous operation. 

Since topological loops have been discussed at length in (2; 3) we shall 
next consider analytic loops (4). For example, considering the Cayley-Dickson 
algebra B as an eight-dimensional vector space over R, we can let Xu . . . , Xs 

be any basis of B, then the mapping X)8*=i xt Xt —» (xi, . . . , x8) is an open 
chart valid on all of B, and the resulting analytic structure is independent of 
the choice of basis. Now from the formulas, the function N : L —> R : x —• N(x) 
is continuous, and therefore L is an open submanifold of B with the induced 
analytic structure. From the formulas for xy and x~x in L, we see that the 
co-ordinate expressions for the mappings in (2.4) are analytic expressions in 
terms of the given co-ordinates used in the definition of B. Thus L is an 
analytic loop according to the following definition. 

Definition. A loop L is an n-dimensional analytic loop if L is an w-dimen-
sional analytic manifold such that in the equation xy = z any one of the 
elements x, y, or z depends analytically on the other two elements; that is, 
the co-ordinate expression for any of the x, y or z depends analytically on 
the co-ordinates of the other two elements. Thus in particular, the maps 
(x, y) —» xy, x —» x~l, and x - ^ x f 1 are analytic. 

Similar to the definition of a local Lie group (1), a local analytic loop is 
an abstraction of the concept of open neighbourhood of the identity in an 
analytic loop where it is assumed that the identity corresponds to the origin 
in Rn. We shall identify the neighbourhood of the identity with the region 
about the origin to which it corresponds. 

In (4) Malcev discusses the elementary properties of analytic loops similar 
to those of Lie group theory and makes the definition of a tangent algebra 
of an analytic loop. As stated in the Introduction, this definition is similar 
to that in classical Lie group theory. However, Malcev uses the right inverse 
in the expression for the commutator and this leads to the following modifi
cations. Using notation similar to that in (1), we let F be a local analytic 
loop which is identified with a neighbourhood of the identity e = (0, . . . , 0) 
in Rn\ the elements x G V are identified with the usual co-ordinate vectors 
(xi, . . . , xn). Let a{t) = (ai(/), . . . , an{t)) be a curve in V such that the at(t) 
are analytic at t = 0 and a(0) = e. The tangent vector to a{t) at e is 
x = (da(t)/dt)t=o; we note that every vector x G Rn is a tangent vector to 
some analytic curve in F, e.g. a(t) = xt, t small. The set of tangent vectors 
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as above is an w-dimensional vector space B\ i.e., B is the tangent space to 
V at e. As in the case of Lie groups (1), we can show that if a(t) and b(i) 
are analytic curves in V with a(0) =6(0) = e and with tangent vectors x 
and y at t = 0, then the curve a(t)b(t) is analytic and has tangent vector 
x + y at t = 0. Next multiplication is defined in B as follows: Let x, y G 5 
be tangent vectors to a(t) and &(/) at J = 0. The product (xo;y) r is defined 
to be the tangent vector to a(r)6(r) • [6(r)a(r)] r

_1 when r = /2 at r = 0. As 
in the case of Lie groups (1), B becomes an anti-commutative algebra called 
the right tangent algebra of V. The left inverse could be used in this definition 
to obtain the left tangent algebra, but we shall be interested in the tangent 
algebra which is obtained when the left and right inverses in V are equal and 
use the notation x o y for the product in the tangent algebra. In the case of 
an analytic loop, the various tangent algebras are computed from a local 
analytic loop (i.e. an open neighbourhood of the identity) just as in the case 
of a Lie group. 

Of course, owing to the lack of associativity in an analytic loop, the tangent 
algebras need not be Lie algebras. For example, consider the analytic Moufang 
loop L. Using the notation in the construction of L, we see that for t small 
enough and for any X and Y in the Cayley-Dickson algebra B, 

x(t) = I + tX and y(t) = I + tY 

are analytic curves belonging to L which have tangent vectors X and Y at 
t = 0 and pass through the identity / (we shall not recoordinatize so that / 
corresponds to the origin in Rs). A straightforward computation shows that 

x(t)y(t)-[y(t)x(f)}-1 = I + t2(XY - YX) + 0(f) 

where 

\imO(t*)/t2 = 0 

and the product Xo Y = XY — YX occurs in the algebra B. Thus we see 
that the tangent algebra to L is actually the eight-dimensional Cayley-
Dickson algebra B with multiplication X o Y = XY — YX. Let us denote 
this anti-commutative algebra by B~; it is known that it is not a Lie algebra 
and in general it is shown in (4) that the tangent algebra to an analytic 
Moufang loop will be a Malcev algebra (7). It can also be shown that the 
tangent algebra to the simple analytic Moufang loop M' is isomorphic to the 
simple Malcev algebra B~/IR, where IR is the ideal generated by the identity 
/ in B~. It is noted in (4) that these examples are special cases of analytic 
disassociative loops (2; 3) and binary Lie algebras (9). An analytic loop in 
which every two elements generate a Lie subgroup is an analytic disassocia
tive loop. In addition analytic Moufang loops have this property. The tangent 
algebra of an analytic disassociative loop is a binary Lie algebra (i.e. every 
two elements generate a Lie subalgebra). Malcev algebras also have this 
property. 
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3. Proof of the main theorem. The formulas used from (1) in deriving 
the properties of the right tangent algebra of an analytic loop L utilize only 
the following facts: 

(3.1) L is an w-dimensional analytic manifold with an analytic binary 
operation L X L —* L : (x, y) *-> xy, 

(3.2) L has a two-sided identity e such that xe = ex = x for all x G L, 
(3.3) for every x G L there exists a unique right inverse xr~

l such that 
the mapping L —> L : x —» x r

_ 1 is analytic. 
Thus we see from the definition of an analytic hoop given in the Introduction 
that a tangent algebra of an analytic hoop exists. The tangent algebra is an 
anti-commutative algebra, and we now consider the problem of representing 
a given anti-commutative algebra over R as a tangent algebra of an analytic 
hoop. 

Let A be an ^-dimensional anti-commutative algebra over R, and let 

B = 
[a a] 

\:a 
La aj 

G R and a^ A 

Thus B is an (n + 1)-dimensional vector space of 2 by 2 matrices with the 
obvious definitions of addition and scalar multiplication and we give B the 
topology of Rn+1. B becomes a non-commutative Jordan algebra (6; 8) when 
multiplication is defined by 

[ a afb 0 l T ab af$ + ba + \a$~\ 
La aJL/3 b] La/3 + ba + £a/3 ab J ' 

Since 5 is power-associative, we use induction to show that if 

k _ I ak kak~la\ 
X ~ lkak-la ak J ' 

then 

for * = 0, 1, . . . 

Next we investigate exp X by considering the partial sum 

e _ V **- - \aW «Ml 
*n tA k\ la(n) a(n)]> 

where 

w 7 fe—1 / n-1 k\ 

Thus the sequence (5W) converges in B, and from the formulas we see that 
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(3.4) 
oo -y/c 

expX = X) T\ = e" 
"l a] 
.a l j ' 

By (3.4), the mapping exp : B —» exp 5 = H C 5 has the following pro
perties: 

(3.5) exp is injective. 
(3.6) exp is continuous and open. 

Since the topology in Rn is independent of basis, we choose a fixed basis 
Xi, . . . , Xn for A (with the topology of Rn) and write a = ^xt Xt in terms 
of co-ordinates Xi, . . . , xn relative to Xi, . . . , Xn. Let 

X = X0 i" + l ] X j es, 
and let 

F = expZ = </>o(xo, . . . , a») J + ^ (^(x0, . . . , xn) I M . 

Then we see from (3.4) that 

0o(*o, • • • , xn) = ex\ 

4>J(XQ, . . . , xn) = eXoXj, 

and the results now follow. In particular, H — exp B is an open subset of B. 
(3.7) H = exp B is a hoop. 

For let X, Y Ç B\ then from the various formulas we obtain 

(3.8) 

But 

exp La + p + ia/3 1 J 

[X, Y]=XY- YX 

= r ° a^i 
La/3 0 J 

= «+* f" 1 a + 0 + h*P~\ 
La + 0 + fa0 1 J • 

Thus 

(3.9) exp X exp F = exp(X + F + |LY, F]) € if 

and I = expO £ # . Next for any V = exp X, U = exp( —X) satisfies 
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VU = UV = I. Furthermore, the two-sided inverse is unique; for if W = exp Y 

is such that WV = VW = 7, then we have from (3.8) that ea+b = 1 so that 
b = —a and 

a + 0 + £«0 = 0, p + a + tfa=0m 

Therefore using the anti-commutativity of A, a + /3 = 0 so that /3 = — a 
and 

Y = -X; i.e. W = e x p ( - X ) = £/. 

We note that from the identities in B, H is power-associative and satisfies 
the flexible identity ST-S = S-TS for all S, T g H. Also from (3.8) it is 
easy to see that H satisfies the following weak cancellation laws: If for any 
S, T G H we have 

exp tX - S = exp tX • T 

or 

5-expL^ = T-exptX 

for all t in some interval of R, then S — T. 
Next we assume the algebra A is given the usual analytic structure of Rn. 

Then addition, scalar multiplication, and multiplication are all analytic 
operations in A, since relative to a fixed basis of A the co-ordinate expressions 
are just first or second degree polynomials in the given co-ordinates. We 
next show property 

(3.10) H is an analytic hoop. 
For if B is given the usual analytic structure of Rn+l, H is an open submani-
fold with the analytic structure induced from B. Next from the various 
formulas (including (exp X ) - 1 = exp( — X)) and from the analyticity of the 
operations in A, we see that the maps H X H —> H : (S>T)—*ST and 
H —> H : S —> S~l are analytic. 

We now complete the proof of the main theorem by considering an analytic 
subhoop of the analytic hoop constructed in (3.10). Let 

- { X e B :X = 0 a 
.a 0. 

and a Ç A 

then from the computations following (3.8) we see that the map X —> a is an 
isomorphism of C~ (the vector space C with multiplication [X, Y] = XY — YX) 
onto A, Let 

K = {expX :X e C-}] 

then K is an ^-dimensional submanifold of H with the usual analytic structure 
of Rn, and from (3.8) and (3.9), we see that K is actually an analytic hoop. 

Next let X G C~, then the analytic curve x(t) = exp tX is such that 
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x(0) = I and (dx(t)/dt) t=0 = X. 

Thus since C~ is w-dimensional, C~ is the tangent space to K at / . Now let 
X, F G C~ and consider the tangent-algebra multiplication in C~. We note 
that 

z(t2) = (exptXexptY)iexptYexptX)-1 

(3.11) = exp(*X + tY + \P\X, F ] )exp(- /X - tY - \P\Y, X]) 

= exp(t*[X, Y] + mX + F, [X, F]]) 

by (3.9). Then with the change of variable r = t2, we see that 

X o F = (dz(r)/dr)T=o = [X, F]. 

Thus the tangent algebra to K is C~, which is isomorphic to A. 
For the statement concerning homomorphisms, let <t> : a —> af be a homo-

morphism of 4̂ onto an algebra A'. Then defining C'~ for the algebra A', we 
note that the mapping 

C~ - • C - : X -> X', 

where 

X 0 a 
.a 0. 

and X ' = 0 J 
is an algebra homomorphism. Next let Kr = exp C'~\ then the mapping 

77 : K -> X ' : exp X -> exp X ' 

is a homomorphism of the hoop K onto the hoop Kr. For using (3.9) and the 
homomorphism C~ —» C~ : X —> X', we have 

exp X exp F = exp(X + F + i[X, F]) 
->exp(X' + F ' + | [ X ' , F']) 
= exp X' • exp F ' . 

The mapping 77 is analytic; for if 

m r 

a = 23 yiKi+ 23 X i W j G i = i V 0 ¥ , 

where X is the kernel of <£, then as in the proof of (3.6) we see that the co
ordinate expressions for exp X' relative to the basis </>(w0> i• = 1, . . . , r, of 
^4' are just the analytic expressions xu i = 1, . . . , r. Also if <f> : 4̂ —» 4 ' is a 
proper homomorphism, so is 77 : K—>Kf. 

Conversely, let 77 be an analytic homomorphism of K = exp C~ into an 
analytic hoop Kf and let A' be the tangent algebra of Kf. We shall construct 
a homomorphism of C~ into ^4' and therefore a homomorphism of 4̂ into A'. 
Let X G C~ and let x(t) be a curve in K with X as its tangent vector, e.g. 
x(f) = exp /X. Then xf (t) = y(x(t)) defines a curve in Kf with tangent vector 
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X' which depends only on X and not on the choice of the curve x(t)\ so we 
choose x(t) = exptX. Now the map 

4> : C--+A' :X-+X' 

is an algebra homomorphism. For if X, Y G C~, then from (3.11) we have 

4>([X,Y]) ^ ( I o F ) 

= (dV(z(r))/dr)T^ 

= (dzf(r)/dr)T^ 

= x' o r, 
where s'(/2) = r)z(t2) = [*'(*) • / (*)]• [ / (*) •*' W]"1. Similarly, 

$(X+ Y) = (dv(x(f)y(t))/dt)u.o 

= (dij(x(0)-i?(y(0)/*) t-o 

= X ' + F ' 

by the remarks of Section 2 concerning the sum of tangent vectors. Also, for 
a € R, (f>(aX) = aX'. 

Next we note that 4> is a proper homomorphism if 77 is a proper homomor
phism which satisfies the following condition: 

77 : exp X -+ e' implies that 77 : exp tX —> e' for all £ G / , where / is an inter
val containing 0 and e' is the identity of K''. 
For if 77 is proper, then there exists X ^ 0 in C~ such that 77 : exp X —» e' 
and therefore 77 : exp /X —•> e' for all £ G / . Therefore we can compute the 
tangent vector X' to #'(£) = 77 (exp tX) = e' and obtain Xf = 0; i.e. 
0 \X-+X' = 0. 
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