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Abstract A result is presented giving conditions on a set of open discs in the complex plane that ensure
that a transcendental meromorphic function with Nevanlinna deficient poles omits at most one finite
value outside the set of discs. This improves a previous result of Langley, and goes some way towards
closing a gap between Langley’s result and a theorem of Toppila in which the omitted values considered
may include ∞.
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1. Introduction

Picard’s theorem states that a non-constant function f that is meromorphic in the com-
plex plane C omits at most two values of the extended complex plane C ∪ {∞}. The
example f(z) = ez, which omits the values 0 and ∞, shows that this is best possible.

Lehto [5] introduced the concept of a Picard set. A subset E of the plane is a Picard
set for a family F of functions meromorphic in C if every transcendental f in F takes
every value in the extended complex plane, with at most two exceptions, infinitely often
in C \ E.

Thus, for example, the set E = {2inπ : n ∈ Z} is not a Picard set for the family of
entire functions, because the function f(z) = ez fails to take any of the three values 0,
1, ∞ on C \ E.

For the family of entire functions, Toppila proved [8] that a countable set of points
E = {am}∞

m=1, where the am converge to ∞, is a Picard set if there exists ε > 0 such
that the am satisfy

|am − am′ | >
ε|am|

log |am| , m �= m′. (1.1)

In the same paper he gives an example showing that this condition is sharp.
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Baker and Liverpool [1] proved further that if the set E = {am} above satisfies (1.1),
then there exists a sequence of small radii dm → 0 such that the countable union of open
discs

∞⋃
m=1

{z : |z − am| < dm}

forms a Picard set for the family of entire functions.
For the family of meromorphic functions, Toppila proved in [6] that if E = {am} is a

countable set of points converging to infinity, which satisfy

|am|2 = O(|am+1|),

then E is a Picard set. He also gave an example showing that this is essentially best
possible.

In clear contrast to the case for entire functions, Toppila showed in [7] that no countable
union of open discs tending to infinity can be a Picard set for the family of meromorphic
functions.

We recall some of the standard concepts and definitions of Nevanlinna theory, a stan-
dard reference for which is Hayman’s book [2]. For a non-constant meromorphic function
f we define n(r, f) to be the number of poles of f in |z| � r, where a pole of multiplicity
p is counted p times. We then define

N(r, f) =
∫ r

0

n(t, f)
t

dt.

We also define

m(r, f) =
1
2π

∫ 2π

0
max(log |f(reiθ)|, 0) dθ

and set
T (r, f) = m(r, f) + N(r, f).

We write N(r, a, f) = N(r, 1/(f − a)) and define m(r, a, f) similarly. We also sometimes
write N(r, ∞, f) for N(r, f).

Nevanlinna’s first fundamental theorem states that, for any fixed complex number a,
we have

T (r, f) = N(r, a, f) + m(r, a, f) + O(1).

We define the (Nevanlinna) deficiency of a value a as

δ(a, f) = lim inf
r→∞

m(r, a, f)
T (r, f)

= 1 − lim sup
r→∞

N(r, a, f)
T (r, f)

.

Nevanlinna’s second fundamental theorem states that the number of values a for which
δ(a, f) > 0 is countable and that ∑

a∈C

δ(a, f) � 2.
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(The theorem is actually stronger than this (see [2] for details) but the above result is
all that we require for our present purposes.)

We observe that the second fundamental theorem includes Picard’s theorem. If f omits
a value a, then N(r, a, f) = 0 for all r and therefore δ(a, f) = 1; the second fundamental
theorem states that this cannot happen for more than two such values. In some sense,
therefore, the deficiency of a value measures the extent to which that value is taken less
often than other values.

For the family F of meromorphic functions f that have deficient poles, i.e.

δ(∞, f) > 0,

Toppila [9] proved the following theorem.

Theorem A. Let {am}∞
m=1 be a sequence of complex numbers with

lim
m→∞

am = ∞

and |a1| > e and such that, for some

0 < α < 1, β > 2α,

we have

|am − am′ | >
|am|

(log |am|)α
(1.2)

for all m �= m′. If radii dm are given by

log 1/dm = (log |am|)2+β , (1.3)

then the set

E =
∞⋃

m=1

B(am, dm) =
∞⋃

m=1

{z : |z − am| < dm}

is a Picard set for F .

He also gives an example showing that this result is essentially best possible.
This result shows that, for any transcendental f ∈ F , the preimage of at most two

values in the extended complex plane C ∪ {∞} may be contained in the set E.
The fact that any such f has deficient poles means that at most one finite value may

be omitted in the whole plane, by Nevanlinna’s second fundamental theorem.
This suggests the following question. If two exceptional values do exist for a given

f ∈ F , may they both be finite or must one be the deficient value ∞?
In this direction, Langley [4] has proved the following theorem.

Theorem B. Let {am}∞
m=1 be a sequence of complex numbers with

lim
m→∞

am = ∞

and
|am − am′ | > ε|am|, m �= m′,
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for some 0 < ε < 1
2 . Then there exists K = K(ε) > 0 such that, if radii dm are given by

log 1/dm > K(log |am|)2

and

E =
∞⋃

m=1

B(am, dm),

then every transcendental f ∈ F takes every finite value, with at most one exception,
infinitely often in C \ E.

The points am are further apart in Langley’s result than in Toppila’s. In this paper we
go some way towards closing the gap between these two results. We prove the following
theorem.

Theorem 1.1. Let {am}∞
m=1 be a sequence of complex numbers with

lim
m→∞

am = ∞

and, for some
0 < α < 1

4 , β > 4α, (1.4)

let the am satisfy the spacing condition (1.2) and let radii dm satisfy condition (1.3). If

E =
∞⋃

m=1

B(am, dm),

then every transcendental f ∈ F takes every finite value, with at most one exception,
infinitely often in C \ E.

The tighter constraints on α and β mean that we have not closed the gap completely
between Langley’s result and Toppila’s. The question of whether both the omitted values
permitted by Toppila’s result may be finite, when 1

4 � α < 1 or when 2α < β � 4α,
remains open.

The restrictions on α and β may be relaxed when the am lie on a ray. We have the
following theorem.

Theorem 1.2. Let {am}∞
m=1 be a sequence of positive real numbers with

lim
m→∞

am = ∞.

Then Theorem 1.1 holds with condition (1.4) replaced by

0 < α < 1
2 , β > 2α.

The proof of Theorem 1.2 is omitted as the method is the same as for Theorem 1.1.
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2. Preliminaries

The following is a modification by Langley [4] of an argument of Toppila.

Lemma C. Let 0 < t < s < r and assume that

sj > 0, t < |bj | − sj < |bj | + sj < s

for j = 1, . . . , M . Set

Ω = {z : t < |z| < r} −
M⋃

j=1

Ej ,

where Ej is the closed disc {z : |z − bj | � sj}. Let u be subharmonic and non-positive
on Ω and continuous on the closure of Ω, and let v(z) be the Poisson integral

v(z) =
1
2π

∫ 2π

0
−u(reiθ)

r2 − |z|2
|reiθ − z|2 dθ

of −u in B(0, r). Then for z in Ω we have

u(z) � −v(z) + C(z)m0(r, −u) �
(

|z| − r

|z| + r
+ C(z)

)
m0(r, −u), (2.1)

in which

m0(r, −u) =
1
2π

∫ 2π

0
−u(reiθ) dθ

and

C(z) =
1 + t/r

1 − t/r

log(r/|z|)
log(r/t)

+
1 + s/r

1 − s/r

M∑
j=1

log(2r/|z − bj |)
log(2r/sj)

. (2.2)

3. Proof of Theorem 1.1

We follow Langley’s method [4]. The improvement obtained in the result stems primarily
from a refinement of the conditions applied at (3.4), (3.5) and (3.12).

Let the am, dm and α, β be as in the statement of the theorem. Suppose that there
exists an f that is transcendental and meromorphic with

δ = δ(∞, f) > 0 (3.1)

and which has (without loss of generality) all but finitely many of its zeros and 1-points
in E =

⋃∞
m=1 B(am, dm).

We set
g =

f − 1
f

= 1 − 1
f

,

so that
δ(1, g) = δ > 0 (3.2)

and all but finitely many of g’s poles and zeros lie in E. Throughout the proof, Cj will
denote positive constants.
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Lemma 3.1. Choose constants k, l with

e < k < l < e9/8.

There exists a constant c > 0 and a sequence rn → ∞ with

krn < rn+1 < lrn (3.3)

such that, for each m, n ∈ N,

B

(
am,

c|am|
(log |am|)2α

)
∩ Bn = ∅, (3.4)

where

Bn =
{

z : rn − crn

(log rn)2α
< |z| < rn +

crn

(log rn)2α

}
. (3.5)

Proof. The proof is by induction on n. Given rn, using the spacing condition (1.2)
we see that the annulus An = {z : krn < |z| < lrn} contains at most

C1(log rn)2α

of the am. We can then find rn+1 and an annulus Bn+1 of width at least

C2rn

(log rn)2α

that satisfy (3.3), (3.4) and (3.5). This concludes the proof of the lemma. �

Lemma 3.2. Let γ, ε be positive constants with ε/c and γ/ε small, where c is as in
Lemma 3.1. Then for each large n there exist Sn, S′

n with(
1 +

γ

(log rn)2α

)
rn < Sn <

(
1 +

ε

(log rn)2α

)
rn (3.6)

and
S′

n = Sn + 1/T (Sn, g) < rn +
crn

(log rn)2α

such that
T (S′

n, g) < 2T (Sn, g),

m(Sn, g′/g(g − 1)) < C3 log(SnT (Sn, g)).

}
(3.7)

Proof. Such Sn and S′
n exist, by [2, p. 38] applied to the function φ(s) = T (es, g),

and the lemma is proved. �

Lemma 3.3. There exist positive constants C4, C5 such that, for large n, we have

|g′(z)/g(z)| � C4SnT (Sn, g)3 (3.8)

for all z satisfying

C5 � |z| � Sn, z �∈
∞⋃

m=1

B(am, 1).
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Proof. We fix a large integer L and assume that n is large compared with L. We
have, using (3.6),

T (Sn, g) � n(rn, g) log(Sn/rn)

� γ

2(log rn)2α
n(rn, g) (3.9)

and similarly for n(rn, 1/g) so that (since by construction there are no zeros or poles of
g in rn < |z| < S′

n)

n(S′
n, g) + n(S′

n, 1/g) = n(rn, g) + n(rn, 1/g) < C6(log rn)2αT (Sn, g).

Now an application of the differentiated Poisson–Jensen formula (see, for example, [2,
p. 22]) in B(0, S′

n) gives
|g′(z)/g(z)| � C4SnT (Sn, g)3

as long as C5 � |z| � Sn and |z − am| � 1 for all m. The proof of the lemma is therefore
complete. �

Lemma 3.4. For large enough n we have

m(Sn, g/g′) > (δ/2)T (Sn, g). (3.10)

Proof. We have
1

g − 1
=

g′

g(g − 1)
g

g′ .

Now (3.2) and (3.7) give (3.10) for large enough n. Lemma 3.4 is proved. �

Lemma 3.5. Let ε1 be small and positive, in particular with ε1 < 1
2c, where c is as

in Lemma 3.1. There then exists C7 > 0 such that, for all large n, we have

log |g(z) − 1| < −C7δT (rn, g)

for all z satisfying

rn−1 � |z| � rn, z �∈
∞⋃

m=1

B

(
am,

ε1|am|
(log |am|)2α

)
.

Proof. We apply Lemma C to the function

u(z) = log |g′(z)/g(z)| − log[C4Sn+1T (Sn+1, g)3] (3.11)

with r = Sn+1, t = rn−L and s = rn+1 and with the B(bj , sj) those discs B(am, 1) for
which t < |am| < r.

We take z to satisfy

rn−1 � |z| � rn, |z − am| � ε1|am|
(log |am|)2α

(3.12)

for all m.
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We then have
|z| − r

|z| + r
� −(k − 1)

k + 1
≡ −τ < 0. (3.13)

Furthermore, using (3.6),

1 + s/r

1 − s/r
<

3
γ

(log rn+1)2α. (3.14)

The number of am between |z| = rn−L and |z| = rn+1 is at most

C8l
2L+2(log rn−L)2α. (3.15)

For each am with rn−1 < |am| < rn, we have, using (3.12),

log(2Sn+1/|z − am|)
log(2Sn+1)

� C9 + 2α log log rn−1

log 2Sn+1
. (3.16)

Also,
1 + rn−L/Sn+1

1 − rn−L/Sn+1

log(Sn+1/|z|)
log(Sn+1/rn−L)

<
C10

L
. (3.17)

Therefore, in (2.2) we have, using (3.14)–(3.17),

0 < C(z) � C10

L
+

C11 log log rn−1

(log Sn+1)1−4α

< 1
2τ (3.18)

for large enough L, n since α < 1
4 .

Now (3.13) and (3.18) give that

|z| − r

|z| + r
+ C(z) < − 1

2τ. (3.19)

Also, we obtain, from (3.8) and (3.11), that

m0(r, −u) � m(r, g/g′)

and this, together with (2.1) and (3.19), gives

log |g′(z)/g(z)| − log(C4Sn+1T (Sn+1, g)3) � −( 1
2τ)m(Sn+1, g/g′).

Therefore, using (3.10), we obtain

log |g′(z)/g(z)| � −C12δT (rn, g) (3.20)

for n large enough and z as in (3.12). Using (3.2) to find a point where g is close to 1,
and integrating (3.20) along a path that begins at that point and lies away from the am,
we obtain

|log g(z)| � exp[−C13δT (rn, g)],

and therefore
log |g(z) − 1| < −C7δT (rn, g). (3.21)

The proof of Lemma 3.5 is therefore complete. �
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Lemma 3.6. g has the same number of zeros as poles inside each B(am, dm), for large
enough m.

Proof. This follows from (3.21) and the ‘argument principle’, since g(z) stays close
to 1 as z traverses the circle {

z : |z − am| =
ε1|am|

(log am)2α

}

and all of g’s large zeros and poles are inside the smaller discs B(am, dm). Lemma 3.6 is
proved. �

Lemma 3.7. There exists ρ > 0 such that

T (r, g) < rρ (3.22)

for all large enough r.

Proof. For large enough n,

T (rn, g) � 1
C7δ

m

(
rn−1,

1
g − 1

)
� C14δ

−1T (rn−1, g)

from (3.21), and so we can find ρ such that (3.22) holds for all sufficiently large r. The
proof of the lemma 3.7 is complete. �

Lemma 3.8. We have g(z) = 1 + o(1) as z → ∞ outside the union of the discs
B(am,

√
dm).

Proof. Lemma 3.5 shows that this result holds outside the discs

B

(
am,

ε1|am|
(log |am|)2α

)
,

so it suffices to prove that g(z) = 1 + o(1) for

√
dm � |z − am| � ε1|am|

(log am)2α
. (3.23)

This is proved as in [4]. We factor out the zeros and poles of g in

B

(
am,

ε1|am|
(log am)2α

)
.

Since these are equal in number, from Lemma 3.6, and lie in B(am, dm), the result follows
from the maximum principle (using Lemma 3.7). Lemma 3.8 is therefore proved. �

This shows in particular that |f(z)| is large for large z outside the B(am,
√

dm).
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Lemma 3.9. T (r, f) = o((log r)2) as r → ∞.

Proof. We take n large and apply Lemma C with

r = rn, t = rn′ , r1/100 < t < r1/70, s = r − cr

2(log r)2α
, u(z) = − log |f(z)|,

where c is the constant in Lemma 3.1, and with the B(bj , sj) those B(am,
√

dm) for which
t < |am| < r.

Then
1 + s/r

1 − s/r
< C14(log r)2α. (3.24)

We have that u(z) � 0 for z outside the B(bj , sj) since f is large there, by Lemma 3.8.
For |z| = rn−1, we have

1 + t/r

1 − t/r

log r/|z|
log r/t

<
8

7 log r
(3.25)

using the fact that rn/rn−1 < e9/8, and

log
2r

|z − bj |
� C15α log log r (3.26)

using (3.5) for rn−1. Also,

log
2r

sj
� log

2r√
dn′

(3.27)

for every j, since |bj | � t.
The maximum number of am in the annulus t < |z| < r is no more than

C16(log r)1+2α. (3.28)

So, using (1.3) and (3.24)–(3.28), Lemma C gives, for |z| = rn−1,

− log |f(z)| = u(z) � −v(z) + m(r, f)
[

8
7 log r

+ C17(log r)1+4α α log log r

(log t)2+β

]

� −v(z) + m(r, f)
7

6 log r

for large enough n, using the fact that β > 4α.
But v is harmonic in B(0, r) with v(0) = m0(rn,−u) = m(rn, f), and so integrating

round |z| = rn−1 we obtain

−m(rn−1, f) � m(rn, f)
[

− 1 +
7

6 log rn

]

and therefore
m(rn, f)

m(rn−1, f)
� 1 +

6
5 log rn

� 1 +
5
4n
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for large enough n, and so

log m(rn, f) � O(1) + 3
2 log n � O(1) + 3

2 log log rn

so that, by (3.1),

T (rn, f) � 2
δ
m(rn, f) = o((log rn)2).

Now, for any large r we have rn−1 < r � rn for some n, and therefore

T (r, f) = o((log r)2).

And the proof of Lemma 3.9 is complete. �

In particular, we note that Lemma 3.9 implies that

n(r, f) + n(r, 1/f) = o(log r). (3.29)

Lemma 3.10. Let 0 < σ < ε1 and let m be large. Then f has at least as many poles
as zeros, counting multiplicity, in B(am, (σ|am|/(log |am|)2α)).

Proof. Set

h(z) = f(z)
p∏

µ=1

(z − zµ)−1
q∏

ν=1

(z − wν), (3.30)

where the zµ, 1 � µ � p, are the zeros and the wν , 1 � ν � q, are the poles of f in

B

(
am,

σ|am|
(log |am|)2α

)
.

Then h is analytic and non-zero in

B

(
am,

σ|am|
(log |am|)2α

)
.

We have

T (4|am|, h) � T (4|am|, f) + O(n(2|am|, f) + n(2|am|, 1/f)) log |am|
= o((log |am|)2), (3.31)

by Lemma 3.9 and (3.29).
We apply the Poisson–Jensen formula to h in |z| < 2|am|. This gives, using (3.31),

log |h(z)| = o((log |am|)2) (3.32)

for z ∈ B(am, 1).
We choose z with√

dm � |z − am| � 4
√

dm and |z − wν | �
√

dm/q
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for each ν. Then Lemma 3.8 and Lemma 3.9 and (3.30) and (3.32) give

0 � log |f(z)|
� log |h(z)| + p log |4

√
dm + dm| − q log

√
dm/q

� o((log |am|)2) + (p − q) log
√

dm.

Now

log
√

dm = 1
2 (log |am|)2+β

and in particular

− log
√

dm �= o((log |am|)2)

and we therefore conclude that p � q. Lemma 3.10 is proved. �

Lemma 3.11. For large n we have

N(rn, 1/f) � (1 + o(1))N(rn, f).

Proof. By Lemma 3.8, f has infinitely many zeros. If m is large and |am| < rn, then
Lemma 3.10 shows that to each zero zµ of f in B(am, dm) there corresponds a pole wν

of f with

wν = zµ(1 + o(1)), log
rn

|zµ| � log
rn

|wν | + o(1).

This gives

N(rn, 1/f) � N(rn, f) + O(log rn) + o(n(rn, 1/f)) = N(rn, f) + O(log rn)

and Lemma 3.11 follows. �

But now we can complete the proof of the theorem. Since f is large on |z| = rn, by
Lemma 3.8, we have, for large n,

T (rn, f) = N(rn, 1/f) + O(1) � (1 + o(1))N(rn, f) � (1 − δ/2)T (rn, f),

which is a contradiction. Theorem 1.1 is proved.
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