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Abstract

A class of first-order impulsive functional differential equations with forcing terms is
considered. It is shown that, under certain assumptions, there exist positive T -periodic
solutions, and under some other assumptions, there exists no positive T -periodic
solution. Applications and examples are given to illustrate the main results.
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1. Introduction

Impulsive functional differential equations, which are functional differential equations
involving impulse effects, appear as a natural description of observed evolution
phenomena of several real-world problems subject to a short-term perturbation
whose duration is negligible in comparison with the duration of the process
[4, 6–9, 43, 46, 48, 54]. The interest of researchers in this field has grown very fast
due to applications to real-world phenomena and impulsive functional equations have
been analyzed by many authors in the literature (see [2, 14–22, 24–26, 28, 31, 33,
37, 38, 40, 44, 49–51] and references therein). The existence of periodic solutions or
positive periodic solutions of impulsive functional differential equations has become
an active research area in this field.
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In this paper, we consider the existence and nonexistence of positive periodic
solutions of the following first-order functional differential equation

x ′(t)=−a(t)x(t)− λh(t) f
(
t, x(t − τ(t, x(t)))

)
+ r(t), t ∈ R, t 6= tk, k ∈ Z

(1.1)
with the impulse effects

x(tk)= (1+ tk)x(t
−

k ), k ∈ Z , (1.2)

where:

(i) T > 0 is a constant, λ > 0 is a parameter, Z is the set of all integers and R is the
set of all real numbers;

(ii) {tk} is a sequence such that there exists l > 0 with tk + T = tk+l for all k ∈ Z ,
bk >−1 constants for all k ∈ Z ;

(iii) a : R→ R, h : R→ R and r : R→ R are T -periodic functions in the variable t ;
(iv) the functions τ : R × R→ [0,+∞) and f : R × R→ R are T -periodic in t and

continuous in x .

The purpose of this paper is to establish new existence and nonexistence criteria for
positive T -periodic solutions of (1.1) with impulse effects (1.2) (System (1.1)–(1.2)
for short). Our results are different from those in [17, 19, 22, 29, 31, 45, 50] since a
and f are allowed to change sign, and there is a forcing term in (1.1). The methods
used in this paper are based on Green’s functions and fixed point theorems in cones in
Banach spaces and the techniques are different from known versions. When the main
results are applied to some impulsive biological models, the new results, which are
different from known results in [49, 51], are derived for positive T -periodic solutions
of these models.

The study of positive T -periodic solutions of System (1.1)–(1.2) is mainly
motivated by the publications of the following interesting results.

First, (1.1) is called a state-dependent functional differential equation and has
many applications. It can be interpreted as the standard Malthus population model
x ′(t)=−a(t)x(t) subject to the perturbation −λh(t) f (t, x(t − τ(t, x(t)))) and the
forcing term r(t), τ(t, x(t)) is called a state-dependent variable which was first posed
by Hale and Lonel, see [10, 13, 14] and the references therein. The existence of
periodic solutions of state-dependent functional differential equations was studied in
[1, 23, 30, 45] and the references therein. Impulse effects (1.2) are a linear case,
which occur at a T -periodic fixed moment of time and are a simple case of impulsive
functions, see [27–29, 44] and the references therein.

System (1.1)–(1.2) contains the following well-known impulsive biological models
as special cases:{

N ′(t)=−µ(t)N (t)+ λp(t)e−r(t)N (t−τ(t)), t 6= tk, k ∈ Z ,

N (tk)= (1+ bk)N (t
−

k ), k ∈ Z ,
(1.3)
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N ′(t)=−µ(t)N (t)+ λp(t)
1

1+ r(t)N (t − τ(t))
, t 6= tk, k ∈ Z ,

N (tk)= (1+ bk)N (t
−

k ), k ∈ Z ,
(1.4)

and{
N ′(t)=−µ(t)N (t)+ λp(t)N (t − τ(t))e−r(t)N (t−τ(t)), t 6= tk, k ∈ Z ,

N (tk)= (1+ bk)N (t
−

k ), k ∈ Z ,
(1.5)

where µ, p, r and τ are positive T -periodic continuous functions, n > 0 a real number,
λ > 0 a parameter and bk >−1; N (t) denotes the size of the biological population at
time t .

Equation (1.3) is called the impulsive model of the red blood cell system; the
red blood cell model was introduced in [47] and studied in [34]. The existence and
attractivity of positive T -periodic solutions of some special cases of (1.3) were studied
in [49] and [51].

Equation (1.4) is called the impulsive hematopoiesis model; the hematopoiesis
model was posed in [48]. The authors in [32] and [41] studied the existence and
attractivity of positive T -periodic solutions of the following hematopoiesis model
without impulse effects

N ′(t)=−a(t)N (t)+
m∑

i=1

pi (t)
bi (t)

1+ N n(t − τi (t))
.

Equation (1.5) is called the impulsive Nicholson’s blowfly model; Nicholson’s
blowfly model was introduced in [9, 39]. Recently, the authors in [42] studied the
oscillatory and global attractivity in a periodic Nicholson’s blowfly model without
impulse effects. Li and Wang [21] investigated the existence and global attractivity
of positive periodic solutions for a class of impulsive delay Nicholson’s blowfly
models. We note that in all of the above-mentioned papers, µ, p, r are assumed to be
nonnegative, but µ, p, r may change sign by their biological significance. A problem
appears naturally.

P1. What conditions guarantee the existence of positive T -periodic solutions
of (1.3), (1.4) and (1.5), respectively, when µ and r change sign?

Second, for impulsive functional differential equations, in [16], Li and Huo obtained
sufficient and realistic conditions for the existence and global attractivity of positive
T -periodic solutions of the delay differential system with impulses{

y′(t)= y(t) f (t, y(t − τ1(t)), . . . , y(t − τm(t))), t ∈ R, t 6= tk, k ∈ Z ,

y(t+k )= (1+ bk)y(tk), k ∈ Z .

The method used in [16] involves applying Gaines and Mawhin’s coincidence degree
theory, constructing suitable Lyapunov functionals and estimating uniform upper
bounds on solutions. The results in [16] are applied to some special delay population
models.
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Consider the impulse effects. Recently, the authors of [26] studied the system{
x ′(t)+ a(t)x(t)= λh(t) f (x(t − τ(t))), t ∈ R, t 6= tk, k ∈ Z ,

x(t+k )= (1+ bk)x(tk), k ∈ Z .
(1.6)

where bk >−1 for all k ∈ Z , λ > 0, a, h are T -periodic functions. It was proved
that System (1.6) has at least one positive T -periodic solution under the following
assumptions:

(H1) f is nonnegative and continuous with f (0) > 0, h is continuous and
T -periodic and there exists a constant k > 1 such that∫ t+T

t
G(t, s)h+(s) ds ≥

∫ t+T

t
G(t, s)h−(s) ds for all t ∈ R,

where h+(t)=max{h(t), 0} and h−(t)=min{0, h − h(t)} and

G(t, s)=
exp(

∫ s
t a(u) du)

∏
s<tk≤t+T (1+ bk)

exp(
∫ T

0 a(u) du)−
∏

0<tk≤T (1+ bk)
;

(H2) a is continuous and T -periodic and satisfies

exp
( ∫ T

0
a(s) ds

)
>

∏
0<tk≤T

(1+ bk).

In [19], Li and Shen proved existence results for positive T -periodic solutions of
(1.6) by using a fixed-point theorem on cones in Banach spaces. In [31], the authors
studied the System (1.6) and established the existence and nonexistence of positive
periodic solutions of (1.6). The results show us that impulses may cause the existence
of positive periodic solutions. The methods employed in [31] are a fixed-point index
theorem, Leray–Schauder degree and upper and lower solutions.

In [50], Yan employed a fixed-point index theorem to study the existence and
nonexistence of positive periodic solutions for the periodic impulsive functional
differential equations with two parameters similar to (1.6). Several existence and
nonexistence results are established.

In [22], Li et al. were concerned with the existence of positive periodic solutions
to (1.6). The approach is based on the fixed-point theorem in cones. In [34], the
nonnegativity of the nonlinear function f is assumed.

In [17], Li et al. discussed the existence of single and multiple positive periodic
solutions to nonautonomous functional differential equations with impulse actions at
fixed moments similar to (1.6). By employing a fixed-point theorem in cones, based
on the nonnegativity of the nonlinear function f , the authors established multiple
existence results.
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In [29], Liu and Ge studied the existence of positive T -periodic solutions of the
equation{

x ′(t)=−a(t)x(t)+ λh(t) f (t, x(t − τ(t, x(t))))+ r(t), t 6= tk, k ∈ Z ,

x(t+k )= (1+ bk)x(tk), k ∈ Z
(1.7)

under the assumptions

exp
( ∫ T

0
a(s) ds

)
>

∏
0<tk≤T

(1+ bk)

or

exp
( ∫ T

0
a(s) ds

)
=

∏
0<tk≤T

(1+ bk).

P2. What conditions govern the existence of positive T -periodic solutions of (1.7)
with a, h or f changing sign or exp(

∫ T
0 a(s) ds) <

∏
0<tk≤T (1+ bk)?

There has been a large number of papers concerned with the existence of solutions
of periodic boundary-value problems for first-order functional differential equations
with impulse effects. For example, the solvability of the system

x ′(t)+ a(t)x(t)= f (t, x(t)), t ∈ [0, T ] \ {t1, . . . , tp},

x(t+k )− x(tk)= Ik(x(tk)), k = 1, 2, . . . , tp,

x(0)= x(T ),

was studied in [2, 5, 18, 35] and the references therein. The methods used in these
papers are based on the Shaeffer’s fixed-point theorem.

In [5, 11, 18, 24, 36, 38], using lower and upper solution methods, the authors
studied the solvability of periodic boundary value problems of first-order functional
differential equations with impulses effects. Existence results for solutions are
established.

Recently, by using Mawhin’s continuation theorem and Shaeffer’s fixed-point
theorem, the authors of [25] studied the existence of solutions of the periodic boundary
value problem for the impulsive functional differential equation

x ′(t)+ a(t)x(t)= f (t, x(t), x(α1(t)), . . . , x(αn(t))), t ∈ [0, T ] \ {t1, . . . , tp},

x(t+k )− x(tk)= Ik(x(tk)), k = 1, 2, . . . , tp,

x(0)= x(T ),

in the cases
∫ T

0 a(s) ds = 0,
∫ T

0 a(s) ds 6= 0.
Li and Shen [20] studied the existence and approximation of solutions for an

impulsive delay differential equation with periodic boundary value conditions by

https://doi.org/10.1017/S1446181108000230 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000230


518 Y. Liu [6]

using comparison principles and monotone iterative techniques. Li and Huo [15]
investigated the existence and global attractivity of positive periodic solutions of a
class of functional differential equations with impulses.

In this paper we present solutions to problems P1 and P2. Our theorems also
generalize and improve known results. The methods used in this paper can be
applied to establish existence and nonexistence results of positive solutions of periodic
boundary value problems of impulsive functional differential equations.

The remainder of this paper is organized as follows. In Section 2, we give the main
results. In Section 3, we apply the main theorems to biological models (1.3), (1.4)
and (1.5). Two examples are presented to illustrate the main theorems at the end of
this paper.

2. Main results

In this section, we present the main results. Choose

X =


x : R→ R : x is T -periodic, continuous on [tk, tk+1)

there exists the limit limt→t−k
x(t)= x(t−k ) for all k ∈ Z

and x(tk)= (1+ bk)x(t
−

k ) for all k ∈ Z

 .
For x ∈ X , let ‖x‖ = supt∈[0;T ] |x(t)|. It is easy to show that X is a Banach space.

For a ∈ X , we use the notation a+(t)=max{0, a(t)} and a−(t)=max{−a(t), 0}.
For bk ∈ R, we use the notation b+k =max{0, bk} and b−k =max{−bk, 0}.

Let us list some assumptions:

(H3) f : R × [0,+∞)→ R satisfies f (·, x) ∈ X and f (t, ·) is continuous and
there exists M > 0 such that f (t, x) >−M for (t, x) ∈ R × R.

(H3)′ f : R × [0,+∞)→ [0,+∞) satisfies f (·, x) ∈ X and f (t, ·) is continuous.

(H4) a : R→ R, r : R→ R, h : R→ R+ with a, r, h ∈ X , τ(·, x) : R→ R are
T -periodic functions with τ(·, x) ∈ X , and

∫ T
0 h(s) ds > 0, τ(t, ·) is continuous.

(H5) λ > 0 is a parameter and T > 0 is a constant.

(H6) f (t; 0) > 0 for all t ∈ R.

(H7) limx→+∞( f (t, x)/x)= N ∈ (0; +∞] uniformly on [0, T ].

(H8) {tk} is a sequence for which there exists l > 0 such that tk + T = tk+l for
all k ∈ Z , bk >−1 constants for all k ∈ Z with

∏
t<tk≤t+T (1+ bk)= constant for all

t ∈ R.

(H9) exp(
∫ T

0 a(s) ds) <
∏

0<tk≤T (1+ bk).

(H10) r(t)≡ 0 for t ∈ R.

(H11) L and l are defined by

lim
x→+∞

sup
t∈[0,T ]

f (t, x)

x
= L ∈ (0,+∞], lim

x→0
inf

t∈[0,T ]

f (t, x)

x
= l ∈ [0,+∞).
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(H11)′ L ′ and l ′ are defined by

lim
x→+∞

inf
t∈[0,T ]

f (t, x)

x
= L ′ ∈ [0,+∞), lim

x→0
sup

t∈[0,T ]

f (t, x)

x
= l ′ ∈ (0,+∞].

To help with the presentation of the main results, we give some lemmas.

LEMMA 2.1. Suppose that a, σ1 ∈ X and (H8), (H9) hold. If x ∈ X is a solution of
the equation {

x ′(t)=−a(t)x(t)− σ1(t), t 6= tk, k ∈ Z ,

x(tk)= (1+ bk)x(t
−

k ), k ∈ Z ,
(2.1)

then

x(t)=−
∫ t+T

t
G(t, s)σ1(s) ds, t ∈ R, t 6= tk,

where G(t, s) is defined as in (H1).

PROOF. Since x ∈ X is a solution of (2.1), we obtain(
x(t)e

∫ t
0 a(u) du)′

=−σ1(t)e
∫ t

0 a(u) du, t ∈ R, t 6= tk, k ∈ Z .

Suppose that t ∈ [tk−1, tk). One finds that t + T ∈ [tk−1 + T, tk + T )= [tk−1+l , tk+l).
Then

x(t−k )e
∫ tk

0 a(u) du
− x(t)e

∫ t
0 a(u) du

=−

∫ tk

t
σ1(s)e

∫ s
0 a(u) du ds,

x(t−i )e
∫ ti

0 a(u) du
− x(ti−1)e

∫ ti−1
0 a(u) du

=−

∫ ti

ti−1

σ1(s)e
∫ s

0 φ(x(u))a(u) du ds

for all i = k, k + 1, . . . , k − 1+ l, and

x(t + T )e
∫ t+T

0 a(u) du
− x(tk−1+l)e

∫ tk−1+l
0 a(u) du

=−

∫ t+T

tk−1+l

σ1(s)e
∫ s

0 a(u) du ds.

Since x(ti )= (1+ bi )x(t
−

i ) and x(t)= x(t + T ), by deleting x(t−i ) and x(ti ) we
obtain

x(t)e
∫ t+T

0 a(u) du
−

∏
t<tk≤t+T

(1+ bk)x(t)e
∫ t

0 a(u) du

=−

∫ t+T

t
σ1(s)

∏
s<tk≤t+T

(1+ bk)e
∫ s

0 a(u) du ds.

It follows that

x(t)=
∫ t+T

t
Dσ1(s)

∏
s<tk≤t+T

(1+ bk)e
∫ s

t a(u) du ds
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where

D =

[
−exp

(∫ T

0
a(u) du

)
+

∏
0<tk≤T

(1+ bk)

]−1

.

The proof is complete. 2

LEMMA 2.2. Suppose that (H8) and (H9) hold, a, σ1 ∈ X, σ1 is nonnegative and
x ∈ X is a solution of (2.1). Then x(t)≥ σ‖x‖ for all t ∈ R, t 6= tk, k ∈ Z, where

σ =

∏
0<tk≤T (1− b−k )∏
0<tk≤T (1+ b+k )

e−
∫ T

0 |a(u)| du .

PROOF. Let I t
= [t, t + T ], and I t

1 = {t ∈ I t
| a(t)≥ 0}, I t

2 = {t ∈ I t
| a(t) < 0}.

Then (H8) and (H9) imply that

−G(t, s) = D exp
(∫ s

t
a(u) du

) ∏
s<tk≤t+T

(1+ bk)

≤ D exp
(∫
[t,s]∩I t

1

a(u) du +
∫
[t,s]∩I t

2

a(u) du

) ∏
s<tk≤t+T

(1+ b+k )

≤ D exp
(∫
[t,t+T ]∩I t

1

a(u) du

) ∏
t<tk≤t+T

(1+ b+k )

≤ D exp
(∫ T

0
a+(u) du

) ∏
0<tk≤T

(1+ b+k )= M1,

and

−G(t, s) ≥ D

[
exp

(∫
[t,s]∩I t

1

a(u) du +
∫
[t,s]∩I t

2

a(u) du

) ∏
s<tk≤t+T

(1− b−k )

]
≥ D exp

(∫
[t,t+T ]∩I t

2

a(u) du

) ∏
t<tk≤t+T

(1− b−k )

≥ D exp
(
−

∫ T

0
a−(u) du

) ∏
0<tk≤T

(1− b−k )= N1.

It is easy to see from Lemma 2.1 that

x(t)=−
∫ t+T

t
G(t, s)σ1(s) ds ≥ N1

∫ t+T

t
σ1(s) ds = N1

∫ T

0
σ1(s) ds,

and

x(t)=−
∫ t+T

t
G(t, s)σ1(s) ds ≤ M1

∫ t+T

t
σ1(s) ds = M1

∫ T

0
σ1(s) ds.
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Then

‖x‖ ≤ M1

∫ T

0
σ1(s) ds ≤

M1

N1
x(t).

It follows that

x(t)≥
N1

M1
‖x‖ = σ‖x‖, t ∈ R.

The proof is complete. 2

LEMMA 2.3. Let X be a Banach space and P ⊂ X a cone of X, with 0 ∈�1 ⊂

�2 ⊂ X open and bounded nonempty subsets. Suppose that T : P ∩ (�2 \�1)→ P
is completely continuous. If:

(i) ‖Tx‖ ≤ ‖x‖ for all x ∈ P∂�1, ‖Tx‖ ≥ ‖x‖ for all x ∈ P ∩ ∂�2; or
(ii) ‖Tx‖ ≥ ‖x‖ for all x ∈ P∂�1, ‖Tx‖ ≤ ‖x‖ for all x ∈ P ∩ ∂�2;

then T has at least one fixed point x ∈ P ∩ (�2 \�1).

Choose

P = {x ∈ X : x(tk)= (1+ bk)x(t
−

k ) for all k ∈ Z and x(t)≥ σ‖x‖ for all t ∈ R}.

It is easy to see that P is a cone in the space X . Now, we present main results.

THEOREM 2.4. Suppose that (H3)′, (H4), (H5), (H7)–(H9) hold. Then System (1.1)–
(1.2) has at least one positive T -periodic solution if λ ∈ (A, B], where A and B are
defined by

A = 2
[

DNσ
∏

0<tk≤T

(1− b−k ) exp
(
−

∫ T

0
a−(u) du

) ∫ T

0
h(s) ds

]−1

,

B = R0

[
DM2σ

∏
0<tk≤T

(1+ b+k ) exp
(∫ T

0
a+(u) du

) ∫ T

0
h(s) ds

]−1

,

and

R(t) =
∫ t+T

t
G(t, s)r(s) ds, R0 = ‖R‖,

g(t, x) =

 f (t, x), t ∈ R, x ≥ 0, M2 = max
t∈[0,T ],x∈[0,R0(1+σ)/σ ]

g(t, x).

f (t, 0), t ∈ R, x < 0,

PROOF. It is easy to see from (H8) and (H9) that R(t) satisfies{
x ′(t)=−a(t)x(t)+ r(t), t 6= tk, k ∈ Z ,

x(tk)= (1+ bk)x(t
−

k ), k ∈ Z .
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Now, let y(t)= y(t)+ R(t), consider
y′(t)=−a(t)y(t)− λh(t) f

(
t, y(t − τ(t, y(t)))

+ R(t − τ(t, y(t)))
)
, t 6= tk, k ∈ Z ,

y(tk)= (1+ bk)y(t
−

k ), k ∈ Z .

(2.2)

Then System (1.1)–(1.2) has a positive T -periodic solution x ∈ X if and only if
y(t)= x(t)− R(t) is a T -periodic solution of (2.2) and y(t)+ R(t) > 0 for all t ∈
[0, T ]. Let T be defined by

Ty(t)=
∫ t+T

t
G(t, s)h(s)g

(
s, y(s − τ(s, y(s)))+ R(s − τ(s, y(s)))

)
ds (2.3)

for y ∈ X . It is easy to see, from (H3)′, (H4), (H8), (H9), that T is completely
continuous and TP ⊂ P by the same methods used in Lemma 2.2.

Let λ ∈ (A, B] be fixed. To obtain a positive T -periodic solution of System (1.1)–
(1.2), we perform two steps.

Step 1. Set �1 = {x ∈ X : ‖x‖< R0/σ }. Then one finds, for y ∈ P ∩ ∂�1, that

y(t)+ R(t)≤ ‖y‖ + ‖R‖ = R + 0(σ + 1)/σ

and
y(t)+ R(t)≥ σ‖y‖ − ‖R‖ = 0.

Then

Ty(t) ≤ −λM2

∫ t+T

t
G(t, s)h(s) ds

≤ λM2 D+E+ (using λ≤ B)

≤
R0

σ
= ‖y‖,

where

D+ =

[
−exp

(∫ T

0
a+(u)du

) ∏
0<tk≤T

(1+ bk)

]−1

and

E+ =
∏

0<tk≤T

(1+ b+k ) exp
(∫ T

0
a+(u) du

) ∫ T

0
h(s) ds.

Then ‖Ty‖ ≤ ‖y‖ for all y ∈ P ∩ ∂�1.

Step 2. Since λ > A, we choose ε > 0 such that

D+
2
λ(N − ε)E− >

1
σ
,

where

E− =
∏

0<tk≤T

(1− b−k ) exp
(
−

∫ T

0
a−(u) du

) ∫ T

0
h(s) ds.

https://doi.org/10.1017/S1446181108000230 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000230


[11] Positive periodic solutions of impulsive functional differential equations 523

By (H7), one can choose H > R0/σ > R0 such that

g(t, y)

y
=

f (t, y)

y
> N − ε for t ∈ [0, T ], y ≥ H.

Set �2 = {x ∈ X : ‖x‖< (H + R0)/σ }. We find, for y ∈ P ∩ ∂�2, that

y(t)+ R(t)≥ σ‖y‖ − R0 ≥ σ
H + R0

σ
− R0 = H.

Then

Ty(t) ≥ −λ
∫ t+T

t
G(t, s)h(s)(N − ε)

[
y(s − τ(s, y(s)))+ R(s,−τ(s, y(s)))

]
ds

≥ −λ(N − ε)
∫ t+T

t
G(t, s)h(s)(σ‖y‖ − R0) ds

≥ λH(N − ε)D+E− ≥ λ
H + R0

2
(N − ε)D+E− ≥

H + R0

σ
= ‖y‖.

Then ‖Ty‖ ≥ ‖y‖ for y ∈ P ∩ ∂�2. Hence, T has at least one fixed point y such that
R0/σ ≤ ‖y‖ ≤ (H + R0)/σ . So y(t) is a positive T -periodic solution of (2.2).

On the other hand,

y(t)+ R(t) > σ‖y‖ − R0 > σ
R0

σ
− R0 = 0.

Hence x(t)= y(t)+ R(t) is a positive T -periodic solution of System (1.1)–(1.2). The
proof is complete. 2

REMARK 2.5. In papers [1, 12, 20, 23, 30, 39, 45, 50], the existence of positive
T -periodic solutions of the system{

x ′(t)=−a(t)x(t)− λh(t) f (t, x(t − τ(t, x(t)))), t ∈ R \ {tk | k ∈ Z},

x(tk)= (1+ tk)x(t
−

k ), k ∈ Z ,
(2.4)

was studied under the assumptions (H3)′ and (H5). Hence, Theorem 2.4 generalizes
the assumptions in [1, 12, 20, 23, 30, 39, 45, 50] since there is a forcing term in System
(1.1)–(1.2).

THEOREM 2.6. Assume that (H3)–(H5) and (H7)–(H10) hold. Then System (1.1)–
(1.2) has at least one positive T -periodic solution if λ ∈ (A, B], where A and B are
defined by

A =
2
σN

1
DE−

, B =
1

DE+
min

{
1

M2
,
σ

2M

}
,

M2 = max
(t,x)∈[0,T ]×[0,1]

g(t, x), g(t, x)=

{
f (t, x), t ∈ R, x ≥ 0,

f (t, 0), t ∈ R, x < 0.
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PROOF. Set w(t)=
∫ t+T

t G(t, s)h(s) ds, t ∈ R, z(t)= λMw(t).
Then

w(t)≤ ‖w‖ ≤ DE+.

We see z(t)≥ 0 for all t ≥ R and{
x ′(t)=−a(t)x(t)− λMh(t), t 6= tk, k ∈ Z ,

x(tk)= (1+ bk)x(t
−

k ), k ∈ Z .

Assumption (H10) implies that System (1.1)–(1.2) has a positive T -periodic solution
x ∈ X if and only if x + z = y is a T -periodic solution of

y′(t)=−a(t)y(t)− λh(t)g
(
t, y(t − τ(t, ỹ(t)))

− z(t − τ(t, ỹ(t)))
)
, t 6= tk, k ∈ Z ,

y(tk)= (1+ bk)y(t
−

k ), k ∈ Z ,

and ỹ(t)= y(t)− z(t) > 0 for all t ∈ R. Define an operator T by

Ty(t)=−λ
∫ t+T

t
G(t, s)h(s)g

(
s, y(s − τ(s, ỹ(s)))− z(s − τ(s, ỹ(s)))

)
ds

for y ∈ X . We know, from (H3), (H4), (H5), (H8) and (H9), that T is completely
continuous and TP ⊂ P .

Let λ be fixed with A < λ≤ B. To obtain a positive T -periodic solution of System
(1.1)–(1.2), we perform two steps.

Step 1. Choose �1 = {x ∈ X : ‖x‖< 1}; one has, from (H4), that

y(t − τ(t, ỹ(t)))− z(t − τ(t, ỹ(t)))≤ y(t − τ(t, ỹ(t)))≤ ‖y‖ = 1

for y ∈ P ∩ ∂�1. Then

Ty(t) ≤ λM2

∫ t+T

t
G(t, s)h(s) ds

≤ λM2 DE+ (using λ≤ B)

≤ 1= ‖y‖.

Then ‖Ty‖ ≤ ‖y‖ for all y ∈ P ∩ ∂�1.

Step 2. Since λ > A, we can choose ε > 0 such that

λ(N − ε)σDE− > 1.

Since λ≤ B, we obtain

σ − λM DE+ ≥
σ

2
.
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For ε > 0, use (H7) and choose R > 1 sufficiently large that

g(t, x)

x
=

f (t, x)

x
≥ N − ε for (t, x) ∈ [0, T ] ×

[
σ R

2
,+∞

)
.

Set �2 = {x ∈ X : ‖x‖< R}. We find, for y ∈ P ∩ ∂�2, that

y(t)− z(t) ≥ σ‖y‖ − λMw(t)

≥ σ R − λM DE+ ≥ R(σ − λM DE+)≥
σ R

2
.

Hence,

Ty(t) ≥ −λ(N − ε)
∫ t+T

t
G(t, s)h(s)

(
y(t − τ(t, ỹ(t)))− z(t − τ(t, ỹ(t)))

)
ds

≥ −
λσ R(N − ε)

2

∫ t+T

t
G(t, s)h(s) ds ≥

λσ R(N − ε)

2
DE− ≥ R = ‖y‖.

Then ‖Ty‖ ≤ ‖y‖ for y ∈ P ∩ ∂�2. Hence, T has at least one fixed point y such that
1≤ ‖y‖ ≤ R. On the other hand,

y(t)≥ σ‖y‖ ≥ σ > 2λM DE+ and w(t)≤ DE+ < 2DE+

imply that y(t) > λMw(t)= z(t), t ∈ R.
Hence, x(t)= y(t)− z(t) is a positive T -periodic solution of System (1.1)–(1.2).

The proof is complete. 2

REMARK 2.7. In [1, 12, 20, 23, 30, 39, 45, 50], the existence of positive T -periodic
solutions of System (2.4) was studied under the assumptions (H3)′ and (H5).
Theorem 2.6 generalizes the assumptions seen in the literature as we allow f to change
sign.

THEOREM 2.8. Assume that (H3)′, (H4), (H5) and (H8)–(H11) hold. Then System
(1.1)–(1.2) has at least one positive T -periodic solution if λ ∈ (A, B), where A and B
are defined by

A =
1

σ l DE−
, B =

1
L DE+

.

PROOF. Define an operator T by

Ty(t)=−λ
∫ t+T

t
G(t, s)h(s) f

(
s, y(s − τ(s, y(s)))

)
ds, y ∈ X.

We see that T is completely continuous and TP ⊂ P because of (H4), (H5), (H8)
and (H9).

Let λ ∈ (A, B) be fixed. From (H11) and λ < B, we choose ε > 0 and R2 > 0 such
that

λ(L + ε)DE+ ≤ 1
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and
f (t, x)

x
≤ L + ε, t ∈ [0, T ], x ≥ R2.

We perform two steps.

Step 1. Set �1 = {x ∈ X : ‖x‖< R2/σ }. If y ∈ P ∩ ∂�1, then y(t)≥ σ‖y‖ = R2 and

Ty(t) ≤ −λ(L + ε)
∫ t+T

t
G(t, s)h(s)y(s, τ (s, y(s))) ds

≤ −λ(L + ε)‖y‖
∫ t+T

t
G(t, s)h(s) ds ≤ λ(L + ε)‖y‖DE+ ≤ ‖y‖.

Then ‖Ty‖ ≤ ‖y‖ for all y ∈ P ∩ ∂�1.

Step 2. Since λ > A, choose ε > 0 such that

σ(l − ε)DE− ≥ 1.

From (H11), choose 0< R1 < R2 such that

f (t, x)

x
> l − ε, t ∈ [0, T ], x ∈ [0, R1].

Let �2 = {x ∈ X : ‖x‖< R1}. For y ∈ P ∩ ∂�2, we find 0≤ y(t)≤ ‖y‖ = R1, and

Ty(t) ≥ −λ(l − ε)
∫ t+T

t
G(t, s)h(s)y(s, τ (s, y(s))) ds

≥ −λ(l − ε)
∫ t+T

t
G(t, s)h(s)σ‖y‖ ds

≥ λσ(l − ε)‖y‖DE− ≥ ‖y‖.

Then ‖Ty‖ ≥ ‖y‖ for all y ∈ P ∩ ∂�2. Hence, T has at least one fixed point y such
that R1 ≤ ‖y‖ ≤ R2 that is a positive T -periodic solution of System (1.1)–(1.2). The
proof is complete. 2

THEOREM 2.9. Assume that (H3)′, (H4), (H5), (H8)–(H10) and (H11)′ hold. Then
System (1.1)–(1.2) has at least one positive T -periodic solution if λ ∈ (A, B), where
A and B are defined as follows:

A =
1

σ L ′DE−
, B =

1
l ′DE+

.

The proof is similar to that of Theorem 2.8 and is omitted.

REMARK 2.10. In [1, 12, 20, 23, 30, 39, 45, 50], the existence of positive T -periodic
solutions of System (2.4) were studied under the assumptions that (H3)′ and (H5)
hold and a, h are nonnegative. Theorems 2.8 and 2.9 generalize these assumptions by
allowing a and h to change sign and using φ(x)= 1 in these theorems reproduces the
results seen in the literature.
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THEOREM 2.11. If (H3)′, (H4), (H5), (H8)–(H10) hold and

λDE+ f (t, x) <

(
1− max

0<tk≤T
b−k

)
x,

then System (1.1)–(1.2) has no positive T -periodic solution.

PROOF. Assume to the contrary that y(t) is a positive T -periodic solution of System
(1.1)–(1.2). We consider two cases.

CASE 1. There is t0 ∈ [0, T ] such that ‖y‖ = y(t0).

For this case,

‖y‖ = y(t0)=−λ
∫ t0+T

t0
G(t0, s)h(s) f

(
s, y(s − τ(s, y(s)))

)
ds

< −
1

DE+

∫ t0+T

t0
G(t0, s)h(s)

(
1− max

0<tk≤T
b−k

)
y(s − τ(s, y(s))) ds

≤
1

DE+
· DE+‖y‖ = ‖y‖,

which is a contradiction.

CASE 2. We have ‖y‖ 6= y(t) for each t ∈ [0, T ].

Then there exists tk ∈ [0, T ] (an impulsive point) such that ‖y‖ = y(t−k k). In this
case, we have y(tk) < y(t−k k). It follows from (H8) that −1< bk < 0. So

0<
1−max0<tk≤T b−k

1+ bk
≤ 1.

Since

y(tk)=−λ
∫ tk+T

tk
G(tk, s)h(s) f

(
s, y(s − τ(s, y(s)))

)
ds,

we obtain

‖y‖ = y(tkk)=
1

1+ bk
y(tk)

≤ −λ
1

1+ bk

∫ tk+T

tk
G(tk, s)h(s) f

(
s, y(s − τ(s, y(s)))

)
ds

< −
1

DE+

∫ t0+T

t0
G(t0, s)h(s)

(
1− max

0<tk≤T
b−k

)
y(s − τ(s, y(s))) ds

≤
1

DE+
· DE+‖y‖ = ‖y‖,

which is a contradiction. From Cases 1 and 2, we have that System (1.1)–(1.2) has no
positive T -periodic solution. The proof is complete. 2
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THEOREM 2.12. If (H3)′, (H4), (H5), (H8), (H9) and (H10) hold and

λσDE− f (t, x) >

(
1+ max

0<tk≤T
b+k

)
x,

then System (1.1)–(1.2) has no positive T -periodic solution.

The proof is similar to that of Theorem 2.11 and is omitted.

3. Applications and examples

In this section, we apply our main results to (1.3), (1.4) and (1.5) and two examples
to illustrate the main results.

THEOREM 3.1. Assume that

µ, p, r ∈ X with p(t) being negative and

exp
( ∫ T

0
a(u) du

)
<

∏
0<tk≤T

(1+ bk), bk >−1 for all k ∈ Z∏
t<tk≤t+T

(1+ bk)≡ constant for all t ∈ R.

(3.1)

Then (1.3) has at least one positive T -periodic solution for all λ > 0.

PROOF. By choosing f (t, x)= e−r(t)x in System (1.1)–(1.2), we obtain (1.3). Then
the proof of Theorem 3.1 follows directly from Theorem 2.8. 2

THEOREM 3.2. Suppose that (3.1) holds. Then (1.4) has at least one positive
T -periodic solution for all λ > 0.

PROOF. By choosing f (t, x)= 1/(1+ r(t)xn) in System (1.1)–(1.2), we obtain (1.4).
Then the proof of Theorem 3.2 follows directly from Theorem 2.8. 2

THEOREM 3.3. Suppose that (3.1) holds. Then there exists λ∗ > 0 such that (1.5)
has at least one positive T -periodic solution if λ > λ∗ and has no positive T -periodic
solution if 0< λ < λ∗.

PROOF. Choose f (t, x)= xe−r(t)x in System (1.1)–(1.2). Then l = 1 and L = 0, as
defined in (H11).

First, by Theorem 2.8, we know that there are A > 0 such that (1.5) has at least one
positive T -periodic solution if λ > A.
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Second, if (1.5) has a positive T -periodic solution N (t), then

N (t) = −λ
∫ t+T

t
G(t, s)p(s)N (s − τ(s))e−r(s)N (s−τ(s)) ds

< −λ

∫ t+T

t
G(t, s)p(s)N (s − τ(s)) ds

≤ −λ‖N‖
∫ t+T

t
G(t, s)p(s) ds

≤ λ‖N‖D
∏

0<tk≤T

(1+ b+k ) exp
(∫ T

0
a+(u) du

) ∫ T

0
p(s) ds.

It follows that

‖N‖ ≤ λ‖N‖D
∏

0<tk≤T

(1+ b+k ) exp
(∫ T

0
a+(u) du

) ∫ T

0
p(s) ds.

Thus,

λ >
1

D
∏

0<tk≤T (1+ b+k ) exp(
∫ T

0 a+(u) du)
∫ T

0 p(s) ds
.

Hence, there exists B > 0 such that (1.5) has no positive T -periodic solution if λ≤ B.
Finally, it is easy to show that if λ0 > 0 satisfies{

N ′(t)=−µ(t)N (t)+ λ0 p(t)N (t − τ(t))e−r(t)N (t−τ(t)), t 6= tk, k ∈ Z ,

N (tk)= (1+ bk)N (t
−

k ), k ∈ Z ,

has positive T -periodic solution, then{
N ′(t)=−µ(t)N (t)+ λp(t)N (t − τ(t))e−r(t)N (t−τ(t)), t 6= tk, k ∈ Z ,

N (tk)= (1+ bk)N (t
−

k ), k ∈ Z

has at least one positive T -periodic solution for all λ > λ0.
Together with above discussions, this completes the proof. 2

OPEN PROBLEM. Under the assumptions in Theorem 3.3, does (1.5) posses a positive
T -periodic solution if λ= λ∗?

Now, we present two examples to illustrate the main results.

EXAMPLE 3.4. Consider the following impulsive differential equation{
x ′(t)+ [sin 2π t + 2]x(t)=−λ[1+ cos 2π t][|x(t)| − 2], t 6= tk, k ∈ Z ,

x(tk)= (1+ bk)x(t
−

k ), k ∈ Z
(3.2)

where λ > 0 is a parameter, bk >−1 for all k ∈ Z satisfying (H8).
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Returning to System (1.1)–(1.2), let f (x)= |x | − 2, h(t)= 1+ cos(2π t),
a(t)= 2+ sin(2π t). Choose M = 2 and the period T = 1. It is easy to see that N = 1
and the assumptions (H3)–(H5) and (H7)–(H10) hold.

One can find that M2 = 1; g(t, x)= x2 and

A =
2

e−2

−e−2 ∏
0<tk≤1(1+ bk)∏

0<tk≤1(1− b−k )
and B =

−e−2 ∏
0<tk≤1(1+ bk)∏

0<tk≤1(1+ b+k )
min

{
1

e2 ,
e−2

4e2

}
.

It follows from Theorem 2.6 that (3.2) has at least one positive periodic solution if
λ ∈ (A, B].

REMARK 3.5. Since the nonlinearity in (3.2) is f (t, x)= |x | − 2 that changes sign on
[0,+∞), the results in [1, 12, 20, 23, 30, 39, 45, 50, 53] cannot be applied on (3.2).

EXAMPLE 3.6. Consider the delay differential equation without impulse effects

x ′(t)+ a(t)x(t)=−λh(t)x(t − τ)+ r(t), t ∈ R, (3.3)

where a, h and r are T -periodic continuous functions with
∫ T

0 a(s) ds < 0, λ > 0 a
constant.

Returning to System (1.1)–(1.2), choose f (t, x)= x , bk = 0 for all k ∈ Z .
In (3.3), we find that N = 1, as defined in (H7), and

A =
2− 2e

∫ T
0 a(s) ds

e−
∫ T

0 |a(s)| ds ∫ T
0 h(s) ds

, R(t)=
∫ t+T

t

e
∫ s

t a(u) du

1− e
∫ T

0 a(u) du
r(s) ds,

R0 = ‖R‖, M2 =
R0(σ + 1)

σ
and B =

σ − σe
∫ T

0 a(u) du

(σ + 1)e−
∫ T

0 a−(u) du ∫ T
0 h(s) ds

.

It is easy to see that assumptions (H3)′, (H4), (H5) and (H7) hold. It follows from
Theorem 2.4 that (3.3) has at least one positive T -periodic solution for all λ ∈ (A, B].

REMARK 3.7. The authors in [3, 13, 52] studied the existence of positive T -periodic
solutions of the following functional differential equation

y′(t)=−a(t)y(t)+ λh(t) f (y(t − τ(t))),

where a = a(t), h = h(t) and τ = τ(t) are continuous T -periodic functions, T > 0,
λ > 0, that a = a(t), f = f (t) and h = h(t) are nonnegative, and that a(t0) > 0 for
some t0 ∈ [0, T ]. One can see that the results in [12, 14, 32, 52] cannot be applied
to (3.3).
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