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Unigueness for a Competing Species Model

Leonid Mytnik

Abstract. We show that a martingale problem associated with a competing species model has a unique solu-
tion. The proof of uniqueness of the solution for the martingale problem is based on duality technique. It
requires the construction of dual probability measures.

1 Introduction

Measure-valued branching Markov processes (or superprocesses) arise as limits of branch-
ing particle systems undergoing random migration and critical (or asymptotically critical)
branching.

Recently, there has been interest in the study of populations with interactions. The
uniqueness of a solution for the martingale problems for these models has always been
an important and often difficult question. For some models, the Dawson-Girsanov theo-
rem [6] in its various versions helped to solve the problem of uniqueness (see e.g. Theo-
rem 3.10 [12]). Many cases of interactions were treated in [19] with the help of a historical
calculus.

The competing species model is a model with the most natural kind of interaction—
“point interaction”, in which an interaction only occurs if particles collide. This process was
introduced in [12] as a solution for the martingale problem M* which will be formulated
in Section 2. The existence of the competing species model in dimensionsd = 1,2,3
and non-existence in d > 3 was proved in [12]. The uniqueness for M* was derived via
Dawson-Girsanov theorem for dimension d = 1. The question of unigueness was open for
dimensions d = 2, 3. Moreover, it was proved that for d = 3 solutions to M* are singular
(in law) w.r.t. the pair of independent super-Brownian motions, which indicates that it is
impossible to use the usual Dawson-Girsanov arguments. However, Evans and Perkins [13]
recently proved the uniqueness for the historical martingale problem associated with the
competing species model.

In this paper we prove uniqueness for the “non-historical” martingale problem M* in
d = 1, 2,3 using duality arguments already used in [17], [18]. If it is not stated otherwise,
we will always assume thatd < 3.

Notation and Organization of the Paper If E is a completely regular topological space,
B(E) denotes its Borel o-algebra together with Borel measurable functions on E. Let M (E)
(resp. My ¢(E)) denote the space of probability measures on (E, B(E)) (resp. with compact

Received by the editors May 21, 1998; revised November 13, 1998.

Research supported in part by a Collaborative Projects Grant from NSERC of Canada.
AMS subject classification: Primary: 60H15; secondary: 35R60.

Keywords: stochastic partial differential equation, martingale problem, duality.
(©Canadian Mathematical Society 1999.

372

https://doi.org/10.4153/CJM-1999-019-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1999-019-x

Uniqueness for a Competing Species Model 373

support) equipped with the topology of weak convergence. Let = stand for weak conver-
gence.

Let Ce[0, oo) (respectively, Dg[0, 00)) denote the space of continuous (respectively, cad-
lag) E-valued paths with the compact-open (respectively, Skhorohod) topology. (For the
Skhorohod topology in Dg[0, co) with E completely regular, see [15].) Let B(E) (respec-
tively, C(E), C(E), C.(E)) denote the set of bounded (respectively, continuous, bounded
continuous, continuous with compact support) complex-valued functions onE. || - || =
|| - [|oo. Will be supremum norm on B(E), C(E), C(E). We will often suppress the sub-
script E if there is no ambiguity over what space functions are used. Set Bg(E) (respec-
tively, Cr(E), Cr(E), C.r(E)) to be the subset of real-valued valued functions in B(E)
(respectively, C(E), C(E), C.(E)). In general, if F is a set of complex-valued (resp. real-
valued) functions write F.. for the subset of functions with non-negative real parts, that is,
{f = fi+if, € F:infyee f1(X) > 0} (resp. {f € F : infyee f(X) > 0}).

We will abbreviate “boundedly pointwise” by bp.

The paper is organized as follows. The precise formulation of the competing species
model martingale problem M* along with our main uniqueness result is given in Section 2.
The important properties of solutions to M* are described in Section 3. Section 4 is devoted
to a duality technique and provides a motivation for our construction of dual probability
measures. In Section 5 we introduce solutions for some evolution equations and in Sec-
tion 6 a certain measure and distribution valued process is defined; these are the two main
components for our construction of an approximating sequence of dual measures described
in Section 7. Here we also establish the existence of a system of dual probability measures
as a limit point of the approximating dual measures in an appropriate space. \We prove that
these dual measures satisfy a certain equation; the latter plays a key role in the proof of our
main uniqueness result in Section 8. The Appendix is devoted to the existence, uniqueness
and the properties of the equations introduced in Section 5.

2 Competing Species Model and the Main Result

Let M, be the space of finite measures on RY with the weak topology. For u € Mg, and
f e BRY) let u(f) = (u, f) = (f,u) = [fdu. Let pi(x) be the standard Brownian
density and {S;} be the semigroup with generator %A and

D (%A) = {qb e C(RY): %Aqﬁ S C(Rd)}

be domain of %A. Let (2, F, P) be a probability space which is sufficiently rich to con-
tain all the processes defined below, and for any process X defined on (2, F,P) let F¥ =
Neso 7(Xs,8 <t +€).

We will use the following definition of the collision local time and the collision measure
for two continuous Mg,-valued processes.

Definition 2.1 Let X! and X2 be continuous Mrw-valued stochastic processes defined on
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(,F,P). If e > 0and ¢ € B(RY) let

t
L X! 8@ = [ XD XE90) dxdu

t
- / / / pe(1 — X)P.0z — X)(X) X2(dx1) X2(dxz) dx du.
0 JRIJRIJRI

The collision local time of (X!, X?) is a continuous non-decreasing Mg,-valued process

Le(XY, X2) such that L (S.Xt, SX2)(¢) 5> Le(XE, X2)(¢) as e | 0 for each ¢ € C(RY) and
t>0.

Remark 2.2 In [5] and [12] other approximating sequences are used. It can be checked
directly that all the definitions are equivalent for the processes considered in this paper.

Definition 2.3  Let X! and X2 be continuous Mg w-valued stochastic processes with a colli-
sion local time Ly (X*, X?). Suppose there exists a progressively measurable measure-valued
process K¢ (X*, X?) such that

t
1) LK, X3)(9) = /0 KX, X2)() ds

forall $ € B(RY) andt > 0 a.s. Then K; is called the collision measure of X* and X2,
The martingale problem M* for the competing species model is stated as follows. Let
A > 0. We say that an Mgy, x Mgy,-valued process X = (X1, X?) solves M* if

Forall ¢1, ¢, € D (%A)
t
X (1) = Xj(en) + /0 Xs (%Am) ds+ M (é1) — AL(X", X) (@),
t
M* § XE(62) = X3(61) + /0 XS (%Aﬂﬁz) ds+ M{(¢2) — AL(X", X)(@2),

where M (¢;) are continuous martingales such that
t t
(MY(p0))e = / Xs(¢D)ds,  (M*(¢2)) = / X2 (¢3) ds,
0 0
(M?(¢2), M*(¢1))r = 0.

Remark 2.4 All the processes (in particular martingales) are supposed to be complex-
valued if it is not stated otherwise. It is a simple exercise to check that the above martingale
problem is equivalent to the martingale problem introduced in [12] with real-valued test
functions.

Remark 2.5 Since D(%A) is bp-dense in B(RY), a standard construction allows us to ex-
tend M{ (j = 1,2) to an orthogonal martingale measure {M{(¢) : t > 0,9 € B(RY)]}.
That is, for each v € B(RY), M{(¢) is a continuous square integrable martingale such that

2.2) (Mi(@)) = /0 (X4, ) ds.
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Let us denote by L2(X1, P) the following set of functions:

{qb: Q x Ry x RY — R which is predictable (see p. 292 of [20]) and

t . 2v | :l }
P[/r/RdW’Say) Xi(y)dyds| < oo, Vt>r}.

L2(XJ, P) stands for L3(X/, P). Proceeding as in [20], for each ¢ € L?(X], P) one can define
the stochastic integral

(2.3)

. t )
24) M) = [ [ o.nyamic.y)

where Mtj (¢) is a continuous square integrable martingale with quadratic variation

/0‘ /Rd‘ﬁ(sv y)? XJ(dy) ds.

L2(XJ,P) (j = 1,2) is a complete space (see e.g. Exercise 2.5 in [20]).

Our concern is with the proof of the uniqueness of the solution for the martingale prob-
lem M*. Let us define the function f: Mgy, x Mgy — [0, o] by

Flut, 12) = (D)2 p2(1)? + pn(Wp2(1) (1) + r2(2))

(2.5) 1
Lm0 @y s

and
M (M M) = {1 € MutMe x M) [ TG, ) o0, ) < o0 |

Now we are ready to present our main result.

Theorem 2.6  Letd < 3 and assume that v = P(X3, X3)~! € M; (Mgy x Mgy). Then any
two solutions for the martingale problem M* with Mew x Mgy-valued paths have the same
finite dimensional distributions, which means that the law of any solution to M* is unique (on

CMe xMey ([0, 00))).

3 Properties of Solutions to M*

In this section we assume that X = (X%, X?) is any solution of the martingale problem for
M and P(X§, X2) ™! € M7 (Mrw X Mgy).

Let us derive some simple properties of (X1, X?). As it follows from Theorem 5.1 of [5],
we may assume the existence of dominating independent super-Brownian motions (Y1, Y ?)
starting at (X3, X3) (X* < Y1, X? < Y?) enlarging the probability space if necessary. This
assumption and the notation Y1, Y2 for the dominating pair will be valid throughout the
whole paper.
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Lemma3.l  Let X be any solution of the martlngale problem for M*, P(X},X3)~! €
M;(Mgw X Mey), and f is as in (2.5). Then P(X}, X2)™1 € M;(Mew X Mgy,) for each
t>0.

Proof Immediately follows from the definition of M{(Mgy x Mgy) and the fact that
PLf(X}, X2)] < oo forallt > 0. (The domination of (X!, X2) by the pair of independent

superprocesses (Y1, Y ?) reduces the proof to the calculation of the moments of superpro-
cesses; these calculations are standard (see e.g. [8]).) ]

Remark 3.2 In fact, one can prove stronger result:

Pisup f(XE, X3)] < 00, VT >0,
t<T

which in turn will allow to prove the strong Markov property of the (unique) solution.
However strong Markov property follows easily from uniqueness of the solution for M*
given by Theorem 2.6 and Theorem 8.2 in [13]. Therefore we decided to not to include the
self-contained proof of the strong Markov property into the paper, while mentioning that
it is possible.

Lemma3.3  There exists a version Ki(X,X2) of Ky(X!, X?) such that Ky(X!, X?) <
Ks(Y1,Y?) foreachs > 0.

Proof Forall0 <s <t, ¢ € Cr(RY):,

t
L0 0@ =lim [ [ X0 KE0000 dxcl

@D < lim / t /R (YD) dxdu

= Lae(Y1,Y2)(9).

On the other hand (see [5, Remark 5.12(4)]) it is known that
t

(32) La Y0 = [ KL Y@,
t

(33) Lt X(@) = [ KX XE(@) du.

The relations (3.1), (3.2), (3.3) hold for all s < t, ¢ € Cr(RY)., therefore there exists a
version K(X*, X2) of measure valued process Ks(X*, X2) such that K (X!, X2) < K(Y1,Y )
for each s.

In the remainder of this work, we denote by Ks(X*, X?) any version whose existence was
proved in the previous lemma.
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Lemma3.4 Forally, ¢, ¢1, $2 € Cr(RY),

(34) PIK:(X", X)(@)] < P [ | 508008, dx] ,

@5)
PIX{ (9)Ks(XE, X)) ()]

<p { /R XSS 0B 00 ) d

: j . k
o [ ]| 50h0s- @0 - iy s xe000e o

=12,

(3.6)
PIXE(d1)X2(92)Ks (X, X2) ()]

<p { /R d (x(%(ssm)ssxé(x)
s /0 / S, OB YS- (6)(31)Ps, (6 — 1) Oy dvl)
x (XS(ss¢z)ssx§(x>

# [ Su0B025 620w - v e de)w(x) dx} .
0 JRd

Proof We outline a proof of (3.6); the inequalities (3.4), (3.5) are established similarly.
Lemma 3.3, the representation

KO w) = lim [ b= vy (6o y)/2) Vi@ Viay)
and the Fatou lemma imply that
PIX (60X (62)Ks (X2, XB) ()]
< liminfP [Y&(m)vf(asz) / d / Pl =) ((x +Y)/2) @) Y(dy) |-

The remainder of the proof rests on a standard calculation of the moments of the pair of
superprocesses (Y1, Y 2). [

Lemma35 Foreach0< (3 <T,

limsup sup E[Ks(S.Y?,S.Y?)(1)?] < oo.
€l0  B<s<T
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Proof The proof involves a calculation of the second moments of superprocesses. ]

The previous lemma yields the following corollary.

Corollary 3.6
(3.7) limsup sup E[Ks(S.X!,SXH)(1)?] < o,
el0  B<s<T
(38) sup E[Ks(Y*,Y?)(1)’] < o0,
B<s<T
(3.9) sup E[Ks(X1, X?)(1)?] < .
B<s<T

Proof The estimate (3.7) is a consequence of Lemma 3.5 and the domination property:
XL<ylX2<y2
Further, in Section 4 of [11] it is proved that for every s > 0

Ko(YL, Y1) = Iim/ / p2c(x — V) Y2(dx) Y2(dy) = limK(S. Y1, S.Y?)(1), as.
€l0 Rd.JRd €l0

Now (3.8) is a consequence of Lemma 3.5 and the Fatou lemma.
Further, (3.9) follows from (3.8) and Lemma 3.3. ]

4 Duality Tools

Our goal is to prove that any two solutions to M* have the same finite-dimensional distri-
butions. It is known from Theorem 4.4.2 of [10] that it suffices to verify uniqueness of the
one-dimensional distributions. But attempts to use Theorem 4.4.2 of [10] directly meet
some technical difficulties (see discussion after Lemma 2.1 in [18]). The following lemma
is just a reformulation of Theorem 4.4.2 for our case:

Lemmad4.l  Suppose that for each initial distribution v = P(X3,X3)™! € M;{(Mgy x

Me.w) any two solutions (X*, X2), (X!, X2) of the martingale problem M* have the same one-
dimensional distributions, that is, for eacht > 0,

(4.1) P{Xt, X)) €T} = P{(X},X®) €T}, T € B((Mew X Mew)).

Then any two solutions of the martingale problem M* have the same finite-dimensional dis-
tributions. (That is, uniqueness holds.)

Proof The proof is completely analogous to the proof of Theorem 4.4.2 of [10]. However
at some stage of the proof we need the following fact: if P(X§, X2)~! € Mj(Mew x Mgy)
then P(X{, X2)~tisalso in M; (Mg, x Mgy) foreacht > 0. But Lemma 3.1 assures us that
this is indeed the case. ]

Let us introduce the following notation. Denote by S(RY) the (Schwartz) space of rapidly
decreasing real-valued functions on RY and by S’ the topological dual of S(RY), the space
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of tempered distributions. We endow S’ with the strong topology. Let Mg be the space of
finite measures on RY. We consider M as a subspace of S’ with the relative topology. Note
that M differs from Mg, by the topology induced on it. Let S(RY) (resp. S’) be the space of
complex valued rapidly decreasing functions on R with positive real part (resp. the space
of complex valued tempered distributions with measure-valued real part), that is

SRY ={f:f="f+if, fy € SRY, f, € SRY)},
S ={pu:p=p+ipg,m €M s}

Now we can define a class of functions on Mg, x Mg that separates the measures in
M; (Mew % MEgy,). Let

L = linearspan {F € C(Mgw x Mgy) : Fy(p1, p2)
= exp{—(u1, ¢) +i(u2, 4)}, ¢ € SR}
Lemma4.2  The set of functions L is separating on M1 (Mrw X Mrw).

Proof Let fiy = pg +ipg, fig = p1 — ipg. Since the transformation (uq, p2) — (i, fi2) is
one-to-one, it suffices to show that the set of functions

L = linear span {Fy, 4, (i1, fiz) = exp{—(fi1, ¢1) +i{fiz, $2) },
¢1 € SRY)+, ¢2 € S(RY)}

is separating on M1 (Mg x S’). But this follows from Corollary 1.9 of [2]. ]

If {Ist,t > 0} is a set of probability measures in My (Mg x §"), then for any function
fe B(MF X S/) we denote Pt[f(xt7Yt)] = fMFXS' f(/j/17/~1'2)Pt (d:u’l7d,U/2)

Lemmad.3 Let f. € B(Mg x S’) for each € > 0. Suppose that for each initial distribution
v=PX§ X1 e M (M X Mey) and each ¢ = ¢y +i¢, € S(RY), there exists a set of
probability measures {P¢,t > 0} in M1(Mg x S’) such that Py = d(y, 4,y and
(4.2) Ple= X0 —0D] = lim P x B[~ %0 fRe+if) =061 (R —i¥0)

el0
for each t > 0 and each solution (X!, X?) to M*. Then for each initial distribution v =

P(X3,X3)~t € M} (Mrw x Mgy) uniqueness holds for the martingale problem M.

Proof With Lemma 4.1 and Lemma 4.2 in mind the proof is completely analogous to that
of Theorem 4.4.7 of [10] (see also Theorem 1.3 in [17]). ]

To prove our main theorem we construct such a set of probability measures {F"},t > 0};
henceforth this set will be called the set of dual probability measures. We use tightness
arguments. We are motivated by the following considerations. Let us rewrite the martingale

https://doi.org/10.4153/CJM-1999-019-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1999-019-x

380 Leonid Mytnik

problem M* in an exponential form. 1td’s formula implies that, for all ¢ = ¢; +i¢, €

S(RY,
L)X O X2(F 1 1,.-
X O-X@) _/e—xsw)—xsw) <_Xsl (§A¢> _x2 <§A¢)
0

(43) + <Xsl + sta d)% - ¢§> + |<X51 - stv ¢1¢2>

N -

+ AKX, xz)(m)) ds

is a martingale.
Suppose that there exists a pair of Mg x S’-valued processes (X, Y) which is defined on
some probability space (2, F, P) and satisfies the following martingale problem:

Forall 41,4, € D (%A)
- ~ to /1
Re(th1) = Rolan) + /0 %, <§A¢1) ds + M (¢1)
t
—%/ Ko (K — ¥, (K + 7)) (1) ds,

~ ~ t, /1 too

T = ot + [ (3802) dor M)~ [ K@ D)5
) 0 0

where MI(z);) are martingales such that

t
(M (), MI(467))c = B A /0 () ds, VK, j=1,2.

(4.4)

Here K(X,Y), K¢ (X — Y, X +Y) are supposed to be the “collisions distributions” between
corresponding S’-valued processes. (The “collision distribution” between S’-valued pro-
cesses can be defined similarly to the collision measure between measure-valued processes;
here we use an intuitive concept of collision distribution for motivational purposes only
and omit precise definitions.)

Let {P,t > 0} be the set of one-dimensional distributions of (X,Y). Now define H =
X +iY,H = X —iY and use 1t&’s formula to show that

(4.5)
By o~ v~ {42 )

_ |5'0[e—<¢'17 Xo+iY~o>—<wz7 io—i\?o>]

t 3 y
+/ P {exs(wmws(wz) <—HS <1A¢1> —H; <1sz> + 2>\>~(s(¢l¢2)>} ds
A 2 2

t - .
N / 5, [e—xswlﬁ”*w) (%Kso? SR AT+ b2+ KR ) — w)] ds.
0
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Let (X,Y) be as in (4.4), independent of (X,Y) with Xo = ¢1, Yo = ¢, and ¢ = ¢1 + i¢y.
Let us imagine for a moment that we can consider the collision distribution as a multi-
plicative operator (that is, K;(X,Y) “ = " X¥;). Then applying the duality arguments from
Chapter 4.4 of [10], one can conjecture that

(4.6) ple=(X:0) = (X)) = P x By [e= (46 Reri¥e) = (XE. X=i%) ]

)

and this implies that the original martingale problem has a unique solution. The “only”
problem is the existence of such a process (X, Y). We will avoid this problem by construct-
ing a sequence of processes that “should” approximate solution to (4.4). This sequence
of processes determines the sequence of one-dimensional distributions {5{”),t > 0} on
Mg x S” which we will call approximating sequence of dual (probability) measures. For the
sequence {P{™,t > 0} we will establish the existence of a “limit point"—a set of limiting
one dimensional distributions {P;,t > 0} which satisfies the conditions of Lemma 4.3.
This will complete the proof of Theorem 2.6.

Remark 4.4 We will not prove the existence of (X, Y) which solves (4.4), though such a
process is likely to exist.

The next two sections are crucial for our construction of the approximating sequence of
dual measures.

5 Basic Evolution Equation

Given1 < p < oo and B € B(RY), we define the space LP(B) = LP(B, dx) as the normed
space of equivalent classes of measurable complex-valued functions with the finite norm

WMEHWWZAUWWW,1SD<m

[flloc = l[fllccs = esssup | f].

We will suppress the subscript B in the notation of the norm if there is no ambiguity. Lg (B)
stands for real-valued functions in LP(B). LetC&’%(Rd) be the space of real-valued infinitely-

differentiable functions with compact support in RY,
For each ¢ € S’ define

SU@)(X) = (¢, pe(x —)), Vt>0,x R

This extends the domain of the semigroup S; to the set of tempered distributions.
Foreach ¢ = ¢1 +igp € S, 1 <tand k € L ([r,00)),, let Vii(p, k) = Vi +iVE
denote a function-valued solution (if exists) of the following non-linear evolution equation

t
51) o)) = S1(9) — [ ROSi(o() s, <t
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where V! = Re(V) and V2 = Im(V) are, respectively, the real and imaginary parts of V.
We say that V,((¢, x) is a strong solution to (5.1) if it satisfies

ot

) ou(t) _ %Av(t) — ko), r<t,
( ) ) I:JTU(t):¢1+I¢2 in§/.

We adopt the convention that V:(¢, k) = ¢ forallt > 0.
The equation (5.1) can be rewritten as a system of equations

t
1) = Ser(dr) — / RO)Ses (vnS) — va() &5, T <t

(5.3) t
0o = Sie(02) — [ 2698 (1) 5, T <t

with V! = v, V2 = v, Itis easy to check that
. 1 . .
(5.4) Vi (d1 +ig, k) = 2 (Ve (@1 + i, k) + Vie(d1 — idha, ),

(55) VA +ionR) = iy (Vi1 + 62, 8) ~ Vit (61— i62,9)).

The existence and uniqueness of a solution to (5.1) for smooth initial conditions was
proved in Lemma Al of [2] (the coefficients there do not depend on t but the required
extension to non-smooth coefficients is straightforward). The case of real measure-valued
initial conditions (¢, = 0 in our setting) has been investigated by several authors (e.g. [14],
[4]), whereas equation (5.1) with complex S’-valued initial conditions does not seem to
have been previously investigated.

We will need the following auxiliary lemmas.

Lemma5.1
ISt @)lg < I9llg, Yo € LYRY), ¥1<g<oo, t=>0,
IS:(@)llg < lIpe—rll 2 ¢ll2; Vo €LPRY), 2<q<oo, Vi>r
where py is the Brownian density.

Proof The result follows immediately from Young’s inequality (see e.g. [1, 1.1.7]). ]
Lemma5.2  Foreach ¢ € D(2A)s and k € L ([r, 00)), we have

(5.6) Vit (o, K)X)] < Si—r(Jo)(X), t=>r

and, therefore,

(5.7 Ve (@, £)O)lg < [[Bllg, V1<g<oo, t=>r,
(5.8) IVee(@, K)o < [IPe—rllz [ @], 2<a<00, Vi>r

where p; is the Brownian density.
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Proof The Feynman-Kac formula is used to get (5.6). The estimates (5.7), (5.8) follow
from (5.6) and Lemma 5.1. ]

Let (¢, %) € §” x Mg, and let U (V. (¢, k), %) be a solution (if exists) of the following
linear equation

t
(5.9) tﬂ)zaqwo—/éagaﬂwmew@»m,t>n

We will adopt the convention that Uy (vt,.(qs, m),w) = ¢ forallt > 0. For the spe-
cific case when ¢ = Jy, the corresponding solution to (5.9) (if exists) will be denoted by
Urt (Vi (¢, £),X). That is, Uy (V. (9, K), X) solves

t
6N)UQW:mqa—w—/Zﬁﬁ4WM¢@MWWN&t>n y € R,

r

One can consider Uy (Vrﬁi(gb, K), x) as a “fundamental solution” to the equation (5.9). We
set

Ut (Vi (9, 5),X) (v) = /RdU,_,t (Vr. (¢, 6),X) () v(dy), Vv € M.
It is easy to check that, for each (¢, ) € $" x M,
Uit (Vi (0, 5), ) = U (Vi(o,K),9), Vr<t<T.
We will establish the existence, uniqueness and properties of solutions for (5.1) and (5.9)

under certain regularity assumptions on the distribution valued boundary conditions. Let
p > 0. We set

wis, ) = 8l = [ [Gm@ED Ys>0, peS,
R

W,(6, p) =sups’w(s,pu), Vd>0, pe s,
s<d

S
W, (s, 1) = p/ utw(u, p)du, Vs>0, peS.
0

In order to study V and Uy we need to introduce the following subsets of the spaces Mg,
S’and S’

7 = {ues: limw, (s, u) = 0},
0—0
ME = {p € Mg : limw, (4, ) = 0},
6—0
S’ ={p=p+ip €Sy € M, pp € 8"}

We would like to introduce the following definition.
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Definition5.3 Let {f™} € §”, f™ — fin$ asn — oo, and

lim lim sup W, (h, fMy = 0.

n—o0

Then we say that f™ — f in $"” asn — oo. Let 77 be the corresponding topology on s,

Sometimes it will be convenient for us to consider S’ as a subspace of $” with relative
topology 7 induced on it. In this case we will use the notation (S", #*) to emphasize the
fact of using of topology induced by S’. But if it is not stated otherwise we assume that
topology on §"” is 7.

It should be also pointed out that the notation 7, and 7, will have a double meaning
throughout this paper. They will denote not only topologies on $’”, but on ME x S'7 as
well. The correct meaning will be always obvious from the context.

Lemma5.4 Forany ¢ € S there exists {¢™} in S(RY) such that limy_,oc 6™ = ¢ in
s

Proof The proof is elementary. Take a function ) € S(RY). such that
Y(x) =1, for|x] <1

Define ¢ (x) = S1/n(#)(x)1>(x/n). Then it is easy to check that ¢ € S(RY), o™ — ¢in
S’ and
lim lim supW,,(h, o) = 0. u
hi0 nooo

Foreach yu = pg +ipy € $ such that w(s, 1) < oo, one can easily check, using the
definition of the heat kernel and integration by parts formula, that w(s, 1) is differentiable

in s and that
’ _ OW(s, 1)
wi(s, 1) = s
2
B
=3 [ G0y dy

k=1 Rd S

(5.11)

2 1
-y /R 2(80()5 AS)(y) dy
k=1

o 2
== Z/Rd Z (3—yj(5suk)(Y)> dy <0, Vs>0.

The following lemma will be frequently used.
Lemmab5 Letp >0, € S’ Suppose

(5.12) W,(T,p) < oo, VT>O0.
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Then

(513) SpW(57 ,u') S WP(Sa iu’)a \V/S > 07
and

(5.14) limw, (8, 1) = 0,

that is, u € S'”.

Proof (5.14) follows immediately from (5.13). Let us show that limso s’w(s, 1) = 0. Since
w(s, u) is differentiable in s, for any T > s we have

T T
WG, 1) = TW(T, 1) — p / ttw(t, o) dt — / W/, 1) dit,
S S

where w(t, i) > 0, w’(t, u) < 0; therefore, both integrals at the right side are monotone in

s. Monotonicity of the integrals combined with the boundedness of fOT tP~tw(t, ) dt imply
existence of the limit on the left hand side, so there exists a such that limg o s"w(s, u) = a.
Moreover, a = 0 since otherwise

T T
/tﬂ*lw(t,u)dt:/ (t*w(t, p))t~tds = oo,
0 0

which contradicts (5.12).
Thus, limg o s’w(s, 1) = 0 and, hence,

S S
WS, 1) = p / W, o) dt + / tow(, ) dt
0 0

S
<p /0 7 w(t, ) dt. -

Forany p > 0and A C MZ x S’ let us define two relative topologies:
'r;f‘ ={BNABeT,}
~AA ~
> ={BNABeT,}.

Corollary5.6  Let A = {(u1,2) € Mg x S’ : lezl fo‘;tp‘lw(t,m) dt < k} for some
p,0,k > 0.

(@) Then A C ME x S’”and A'is closed in Mg x S'.
(b) Suppose that in addition A is compact in Mg x S’. Then, for any p’ > p, A is compact in

4 ’ / ~
(Mg x 8’7" r7") and TPA, = TpA/.
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Proof (a) The factthat A C MZ x S’? isan immediate consequence of the previous lemma.
Let us check that A is closed. Let (1™, 1) — (11, 2) in M xS’ such that (u{™, u{V) € A
for all n. Then

k) 2 k) 2
1N " wit, ) dt = / 13 " w(t, lim ™) dt
kY 2
<liminf [ 72y “w(t, ") dt <k
0 I=1

where the first inequality follows from Fatou’s lemma. Therefore, (u1, 12) € A and we are
done.

(b) Let {f™} be any sequence in A. Since A is compact in Mg x S’, there exists subse-
quence {n’} such that { ()} converges in Mg x S’ to some f. Let us check that { ™)}

actually convergesin ME x s’ forany p’ > p. Without loss of generality we may assume
that e < ¢ and then we have

W, (e, ) = p/ / ¢ ~lw(s, ™) ds
0

€
= p’/ s? P~ LsPw(s, F ™) ds
0
€ ’ ’
<o / s PN, (s, T ™)) ds
0

< p’/ ' ~P~lkds
0
—0,asel 0,

uniformly in n’. The first inequality follows from Lemma 5.5 and the second inequality
follows by our assumptions on A. Therefore f() converges in M2 x S’ and hence A is
compact in Mé/ x §'7". The same arguments will readily show that subsets of A which are
closed in (Mé/ X S’f”,%,]/) concise with with the subsets of A which are closed in (M,’:’/ X
§',7,) and therefore 74, = 74, n

We will assume, unless stated otherwise, that p is a fixed number satisfying the condition:

d 3 d
With this fixed p in mind, we define another constant p which satisfies the following con-
dition

0<p< (3—;—2p)/\(l—p).
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The measures in MZ that we have previously defined, satisfy some conditions in terms
of capacities, that we introduce here. Following [1] we define

D(ds, dy) = s”p1(dy)1(0 < s < 1) dsdy,

1
§100= [ [ 1(6.y)p:0c— ) (e ).

For any function f € L?(R? x R, #(ds, dy)) we denote

1
1113, = / / 1£(5,y)%5 (ds, dy).
0 Rd

Now we are ready to introduce the capacity
C(B) = inf{| fll2s: Gf(x) > 1, Vx € B}, VB e BRY).
A property that holds true for all x except those belonging to a set B with ¢(B) = 0 is said
to be true quasi-everywhere, abbreviated g.e.
Lemma 5.7

(i) 1fd < 2, then there are no non-empty sets of capacity zero.
(i) If u € ME, then 1 does not charge sets of capacity zero.

Proof The result is an easy consequence of Theorem 2.5.1 and Proposition 2.6.1 of [1] and
their proofs.

Now we are ready to present the theorems which are important for further proofs. They
will be proved in the Appendix.
Theorem 5.8

(a) Foreachpu € S’ andk € Lg"([r, oo))+, there exists a unique solution V¢ (i, ) for (5.1)
such that

Ve(u, k) € L2(RYx (, T NC(RY x (r, T1),, VYT >r,
Vier(u,6) EC(RY X [, T]),, VT >r1 >0,
Vie(u, k) € LYRY),, VE>r, q>2,
Vi(u, k) € LkRY)y, Vt>r.

If x € C([r,00)),, then V1 (1, &) is a strong solution for (5.1), that is, it satisfies (5.2).

(b) LetT > 0, and let A, B be any compact subsets of S x [0, T) x R? and §"” x [0, T)
respectively. Let k™ — x weakly* in L3 (R+)+. Then

(5.16) lim sup [Ver(u ™)) — Ver(u, ))X)] =0,

N0 (utx)EA
and

(5.17) sup  [Ver(u, s§M)(X)| < oo.
(u,t,x)EBXRA
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(©) LetT > 0,¢ € S(RY), and let A be any compact subset of S and k(™ — x weakly* in
L (R+)+. Then

lim sup |<1/),V51t(,u, H(n)» - <,l/}’u>| =0

el0 [t—s|<es<t<T,u€A

uniformly in n.
(d) LetT > 0. The mapping

(t7 My R, X) = Vt,T(ﬂw K)(X)

of [0, T) x §”” x L (R+)+ x R¥into C is continuous on [0, T) x §"” x L (R+)+ x RY
(where we induce the weak* topology on Lg°(R+)+).

Theorem 5.9

(@) Foreachpu € §°,r > 0,k € LgO([r, oo))+ and g.e. x there exists a unique solution
Ut (Vi (1, £), X) for (5.10) such that

Ur. (Ve (1, 5),X) € C((r,00) x RY) ,
Urt (Ve (1, 6),X) € CRY), Vt>r.

Foreach T > rand y € RY the function Ut (Vr,.(u, K), -)(y) is quasicontinuous. For
each 0 < r < T there exists N ¢ RY with C(\) = 0 such that

(18)  |Unr (Ve (1. 6),X) ()] < pr—e(x —y), ¥ (¥,%) € R? x (RY\ ).
(b) Foreachv € ME,
Ur_,.(Vr_,.(u, Ii),l/) = /RdUry.(Vry.(u,l-@),x) v(dx),

that is, the solution for (5.9) is given as an integral of the fundamental solution with
respect to the initial condition. _
(c) LetT > 0andy, e, € Cg‘,;(Rd)+. Forany p € S let 1 = Re(w). Then the mapping

(ta My FL) = /RdUt,T (V'[.,-(/Jfa 5)7 X) (wl)ut,T (Vt,-(ﬁa 5)7 X) (¢2) Ml(dx)

of [0, T) x §"” x L (R+)+ into C is continuous on [0, T) x §"” x L2 (R+)+.
(d) LetT > 0and € S(RY).. Then the mapping

(t7 oy Koy X) — Ut,T (Vt,-(y') H)v 1/") (X)

of [0, T) x § x Lg(R+)+ x R¥into C is continuous on [0, T) x $" x L¥(R+)+ x RY.
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6 A Certain Mg x S’-Valued Process and Its Regularity Properties

Let (2, F, P) be a probability space which is sufficiently rich to contain all the processes
and random variables defined below. For any process {X;,t > 0} defined on (2, F, P), let
F = Nago{Xs 1 s <t + e} Let P(F;) denote the predictable o-algebra for the filtration
(F1).

We start this section with a reformulation of the result of [2] which establishes the exis-
tence and uniqueness of a solution for a certain martingale problem.

Lemma6.1 Foreachr > 0and v = P(X/,W/)~! € My (Mg x S’), there exists a unique
solution (X', W’) € Cwm. xs[r, 00) of the following martingale problem

Forall ¢1,¢, € D %A) ,

t
X0 =X+ [ X (ja0) sz, t=r

,JW{(82) =W/ () +ZE(¢2), t=>r,
rv:A ) where Z(¢;) are continuous square integrable F¢-martingales
such that

Zig) =0, j=1,2,
t
(Z(), Z* ()t =6,-k2A/ X/(¢3)ds, j,k=1,2

with F, = F&XW,

Proof A direct application of 1td’s formula implies that each solution of the martingale
problem Mr”%A is a solution of the martingale problem for (A, v/) on the time interval [r, c0)
where

A {exp{—ul(aﬁl) + (o)},
6.0) exp{—pa(n) + a(e)} - (~ Ay + 206 — 206)
oreDe(34) ones®)

By Lemmas 4.10, 4.13, 4.18 from [2], each solution for (A, v) is also a solution of Mr’_’,,_’A
and the two martingale problems are equivalent. The existence and uniqueness for (A, v)
established in Theorem 3.3 of [2] completes the proof. ]

One can extend Zi, (j = 1,2) to an orthogonal martingale measure {th(¢) :
¢ € B(RY),t > r} and for each ¢ < LZ(X’,P) the stochastic integral Z{(¢) =

t
/ / o(s, w, X) Z!(ds, dx) is well defined (see Remark 2.5).
r JR
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Corollary 6.2 Foreachr > 0and v = P(X{,Y{) ™! € Myc(Mg x S'), there exists a unique
solution (X’,Y ') € Cw,xs-[F, 00) of the following martingale problem

Forall ¢1,¢, € D <%A>
t 1
X{(¢1) = X{(¢1) + / X{ (§A¢1) ds+Zl(¢1), t>r,
rt
L AV@) =G+ [V (j00) szt

where Z1(¢;) are continuous square integrable martingales such that

t
A CHFACHES 6jk2A/ X/ (¢D)ds, j k=12

Proof Let (X', W) be as in the previous lemma with W/ = Y/. Defining the S’-valued
process Y ' by

t
Y/(6) = W/ (Strd) + / /R (D02 (@509, t>,

one can easily check that (X’,Y /) satisfies Mé’m (seee.g. Theorem 5.1 [20]). For uniqueness
one can check that

E[e*(xt/=¢l>*i<ytlv¢2>] = E[ef(Xr’,u[,,>7i(Yr’,S‘,,(@))]’

Vi, ¢1GD<%A>, ¢262)<%A>,

where u; solves the following equation:

t
u®) = $ion) — [ A8 (0 - (00)”) e, >0,
0
and uniqueness will follow by standard arguments (see Theorems 4.4.2,4.4.7 of [10]). =

Remark 6.3  In the sequel, the law of the process (X’,Y’) which starts at r > 0 and

satisfies M, , will be denoted by Q; , ,. With a slight abuse of notation, we set

1 — Nl
Qr.,(,ul,pz),)\ = Qr,(i(ul,uz),)n V(ﬂl,ﬂz) € Mg x Slv

12 — 12 !
I',(,ul,,u.z),/\ - Mr,é(uliuz),)\a v(/‘LJJIU‘Z) € MF X S .

We will need the following equivalent representation of the martingale problem M/} ;:
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Lemma6.4  Suppose (X’,Y’) solves M/, | for somer > 0, v € My (Mr x §’). Then
(X’,Y ') satisfies the following .

Forall g, pup € ME, T >0,
X{(Stotpia) = X/(Sorm) + Z¢ (1), r<t<T,
Y{(Stot2) = Y/(Storpi) + 2 (), T<t<T,
NT | where ZJT(11;) are continuous square integrable martingales on [r, T]
- such that
ZP () =0, j=1,2, t
r

@) 24 = 520 [ X (e b5, [k =1,2

where M£ and p are defined in Section 5.

Proof We identify L (RY), with Mg by the mapping ¢(x) — ¢(X)dx. For ug, pup €
@(%A) N L,%{(Rd)h the result follows from 1t&’s formula. For general u1, u, € ME, one

can choose sequences of smooth functions {4}, {¢:{"} in D(3A) N LE(RY). such that
" = pj and

lim Sy =Sy LG (O, TIxRY),, =12,

forall T > 0. The latter condition can be easily satisfied since Sy € L2 ((O,T] X Rd)+
for uj € ME, j = 1,2. Further, L3((0, T] x RY), C L2(X’,P) and L2(X’,P) is complete,
hence, the result follows immediately. ]

Given a bounded stopping time 7 > r, we will say that a pair of Mg x §’-valued processes
(X,Y) satisfies the stopped martingale problem M” forr <u<Tif

u,v,A

P(Xy,Yu) ' = v € My(Mg x §'),
Xe=Xi,Ye =Yy, foru<t<T, 7<u
Forall ug, up € ME,

Ut > U)Xe(St—anp) = 107 > UXy(SToupin) + 27 (my), U<t<T,
NTT 1T > WYGTanp) = 1T > WY u(Sroui) + 2677 (), USEST,
" | where ZJ7T (u;) are continuous square integrable martingales on [u, T]

such that
Zi ) =0, j=12,

t
(27T (), 27T u))e = 5jk2/\/ 17 > 9Xs((St—spj)?) ds, j,k=1,2.
u

For any bounded stopping time = > r the optional stopping theorem implies that if
(X’,Y) satisfy MIM on [r, T] then (X/..,Y,,) satisfies Mlﬁm, foranyr < u < T with
W= P(xl;/\‘ﬂYlj/\T)_l'
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In order to simplify the exposition, in the remainder of this section we will deal with the
martingale problem Mg’ ;. (All the results hold in the general case r > 0 as well.)
Let us indicate several simple properties of (X', Y ). In what follows we will assume that

(Xg,Yo) = (u1, p12) = (1(x)dx, p2(x)dx),
1 € Li(R)+ NLARY+,  ¢2 € LA(RY).
Some simple calculations give us the second moment formulae for X’ and Y ’;

(6.2)
P[<Xt/a ¢1> <thv 1/)2>]

= (01, Stpn) (01, Stvpe)
t
20| [ [ Sums semEemdyd). i € SE),
0 JRd

(6.3)
P[<Yt/7 ¢1> <Yt/7 ¢2>]

= (¢2, St¥1) (P2, Stef2)
t
20| [ SudmSeiemEemdyd), i € SE.
0 JRd

The next lemma establishes regularity properties of (X’,Y /) at a fixed time.
Lemma6.5 Forallt >0, P-as. (X/,Y/) € MFB x S'8 for any g > % -1

Proof By Lemma 5.5, it suffices to prove that

T T
P {/ 7 tw(s, X/) ds] < o0, P[/ "~ tw(s, Y,) ds] <oo, Vt>0, T>0.
0 0

We will prove only the assertion about Y/'; for X/ the proof is the same. Since w(s, Y,") > 0,
by Fubini’s theorem and (6.3) we obtain

)
P[/O sﬁ‘lw(s,Yt’)ds]
T
— / / S7=1P[S:(Y/)(09)?] dx s
0 Rd
T
_ 65—1 2
- /0 / S Suusn) (7 O
T t
B—1 Y
20 [0 [ Bty Suen) () dy duds

T T t
< H¢2||§/0 Sﬁ‘lds+2>\Cd||¢1|\1/o Sﬁ_l/o (t+s—u)~9?duds,
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where the constant C4 depends on d. Both integrals are finite forany T,t > 0,3 > d/2—1,
therefore we are done. ]

7 Dual Probability Measures

In this section we will construct the approximating sequence of dual probability measures.
(The motivation for our construction was discussed in Section 4.) We will also establish
the existence of limiting dual probability measures satisfying some equation.

7.1 Construction of Approximating Sequence of Dual Measures

Let Q = Cp, xs [0, 00) denote the space of continuous M (R?) x S’(R?)-valued paths with
the compact-open topology, and let I denote its Borel o-algebra. Let (J¢):>o denote the
canonical right-continuous filtration on (€2, ). Xi(w) = w(t) will denote the coordinate
mappings on €. Let Iy = qy()?~u i r < u <'t). We wish to construct some sequence of
probability measures P™ on (Q, F). Fixn > 1.

Let Q! be the probability law of the process (X’,Y ') defined in Remark 6.3. Before

()
determining the probability law Qf’(W), we need to introduce further notation. Let
2k 2k +1
. 1, —<t< k=0,1,2,...,
iP=<{" n - = n
0, otherwise

and

Vie(p +ipg, j0), i (u1, 12) € ME(R?) x 8"(RY),

V] +iu) =
i *in2) {0, otherwise,

where V, is defined as in Section 5. Put V1" = Re(V"), V2" = Im(V"). For given

r > 0and (u1, #2) € Me(RY) x S/(RY) let Q2 . be the law of the deterministic process

1,n 2.n - H)
i Vi s starting at (r, (i, 12)).

Now we are ready to construct P™ on 5—"|/n by induction on | as follows. Fix arbitrary
(61, ¢2) € S(RY)+ x S(RY). Let
pm |:¥1/n = Qg,(qsl,@) |§”1/n‘
since (¢1, ¢2) € S(RY)+ x S(RY) € ME(RY) x S"?(RY), we have
(7.1) (%, Y0) = (Vor (61 +12),Voi (41 +i¢2)), 0<t<1/n.

Let Qi/n G |52 D€ the regular conditional distribution of F~>(”)|§W m JiveN f;rl/n.
) /ns n nNn - n2/n
By Theorem 5.8(a) (Xi/n, Y1/n) € (LY(RY) NL2(RY)), x L2(RY).. Therefore by Lemma 6.5

(7.2) (Xa/n, Y2n) € MER?) x S”(RY), PM-as.
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2 -
Let Qz/ns(xz/nsYZ/n) |§[z,/n.3/n]

By (7.2) we get

be the regular conditional distribution of IS(”)\:;r[z/n‘s/n] given Ty /.

(Ke, Vo) = (Vo Bayn + 1¥2/0), Vi  Koyn + 1¥2/n))

(7.3) B L ~ L
= (Vzl/n,t(XZ/n + IYZ/na J(n))vv22/n,t(x2/n + IYZ/na J(n)))) 2/” <t< 3/n,

P(M_a.s. Continuing in this way, we define P™ on 7.

Roughly speaking, we defined the alternating Mg x S’-valued process (X, Y) which starts
at (¢1, ¢2), and evolves as (Vé;t”(@ + i¢2),V§7}”(¢1 +i¢z)) until time t = 1/n. In the
interval [1/n, 2/n] the process follows the paths of the (X', Y /) processes constructed in the

Section 6, starting at ((Véﬁ’{‘/n(qﬁl +ig), Vol +idy)), 1/n). In the interval [2/n, 3/n]

(X,Y) evolves again as a solution to (5.3) starting at ((Xzn, Y2/n), 2/n), and the pattern of
alternating deterministic and stochastic processes continues.

Let
PM(B) = PM((X;,¥:) €B), VBe& B(MxS'), t>0.
Let
jt)y=1/2, vt>0.
Define

Vi = JVorlu D), i € TR,
= 0, otherwise,

U (VR ),-), ifpeS"(RY),
0, otherwise,

Ul?t(/j,7 ) = {

Ue(y, ) = Uog (V.(w), "), ifueS’RY,
= 0, otherwise.

In order to simplify our notation, it is useful to define $’”-valued processes (Ho)t>o and

(Ht)t>0 by setting o o
He = X +iYy, Hi=X;—iYy, t>0.

The rest of this section is devoted to the proof of the following two results.
Proposition 7.1  Forall T > 0and (¢1,12) € S(RY)+ x S(RY)s,

exp{—(¢1, Vi (H)) — (¥, Vir (H)

t
(7.4) _/0 eXp{_Wl’Vsr}r(Hs)) - <¢2;Vsr,]1-(ﬁs)>}
xMW%H£>/U&WMmeHEMMMK@n%
n Rd ’

isa P™-martingaleon 0 <t < T.
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Theorem 7.2 There exists P; € Cm.me xs7)[0, 00) which satisfies the following equation:

(7.5)
Pelexp{—(v1, V1 _t(He)) — (12, V1 _t(H))}]

= exp{—(v1,V1(Ho)) — (12,V1(Ho))}
t
+ 8ol Ve - v i)
0
% 2 [ Ur s 000U (L )eR(@0 | d, 0<t<T,
Rd
forall T > 0and (v1,2) € ME x ME. Moreover P (ME x §’7) = 1,forallt > 0.
The above theorem is the key to proving our main uniqueness result in Section 8.

Remark 7.3 By our construction,
(7.6) %, V1) € ME x 8"

and, as a consequence, Hy, Hy € S PM_as. forallt > 0. Therefore, everywhere

throughout this section, we will treat V't (He) (resp. Uf'r(Ht,-)) as Ve r(Hy, i™) (resp.
Ut,T (th, (Ht)v ))

7.2 Proof of Proposition 7.1

We will prove Proposition 7.1 via a series of lemmas. We start with two technical lemmas
that will be extensively used in the proof.

Lemma7.4 Forany T > 0, u € M there exists a superprocess X defined on [0, T] such

that
(7.7) Xo=p
(7.8) Ple~ Kr-19)] = g~ V@) v € §RY).

For each ¢ € $" and for each t such that 22 v 0 < T —t < ™2 A T, we also have
(7.9) Ple~K1-1:9)] = g=(1Vir (@)
(7.10) Ble~ o9 Ry (] = e~ Vi@ (1, UM (¢,%)),  forge. x € RY.

Proof The existence of a superprocess X which satisfies (7.7)—(7.8) for ¢ € S(RY). follows
from [9, Theorem 1.1] and then the extension to ¢ € §(Rd) is straightforward. Let us
mention some simple properties of X. Take any m such that 0 < m < Tn/2. Then X
evolves as a super-Brownian motion on the time interval [T — % vo,T-— sz] starting
at Xr_anea. ON the time interval [T — 222 v 0, T — 211] X solves the heat equation
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starting at )A(Tf LY In particular, this implies that X is function-valued on the time interval
[T- % Vo, T— 2”:'1] and, so, we can give the rigorous meaning to the left sides of (7.9)
and (7.10).

For ¢ € S let {¢®1 be a sequence in S(RY) such that limy_,. 6® = ¢ in §"’
(such sequence exists by Lemma 5.4). By (7.8) we have that P[exp —(X7_¢, p®)] =
exp —(u, V{1 (¢))) for each k. Let k — oo and apply Theorem 5.8 (d) to get (7.9).

Turning to (7.10), note that, for each ¢ € S(R?) and ¢ € S(RY).,

Ble= %19 (Ry_y, )] = — lim SP[e~Rr-tovet) _ g=(Xro0)]
el0 €

= —Ilim l(e_<"‘1Vtro(¢+€¢‘)> _ e_<ﬂavtr.lT(¢)>)
el0 €

— e V@) (1 U (6,0))

(see Section 6.3 of [7] for a similar result). For a general ¢ € S”” choose {¢®} in S(RY)
such that lim_,.o ® = ¢ in $”” and use Theorem 5.9(b), (d) to get

Jim UPr(0%,0) = UPr(0.0) = [ U0r(6.0069 o

By Theorem 5.9 U+ (¢, -) is quasicontinuous. Therefore Proposition 6.1.3 of [1] implies

that AdUtTT(¢, x)ip(y)dy — Uit (4, X) asp — dy, for g.e. x, and (7.10) follows. [ |
Lemma75 Forall0 <s<T,uv,v € Mg,
02 (e 00U (e )02 e (0
< [ Sr-s00sT 0% @0, FO-as

Proof By Theorem 5.9 |UQT()?S + Y5, X)(v)] < Sr_s(v)(x) forall v € Mg and g.e. x € R,
By (7.6), X; € Mg PM-as. forall's > 0. Therefore, by Lemma 5.7, X; does not charge sets
of nil capacity P(M-a.s., and the desired result follows. [ ]

In our proof of Proposition 7.1 we will use localization arguments. Let us define the
stopped version of the canonical process (X, Y). Let {By, k > 1} be a sequence of open sets
in MZ x S, such that limy_, o By = ME x S’?. We also assume that for each k there exists
I'y—a compact set in M£ x S such that By C Tx.

Let

v = inf{t > 0: (X, Yy) ¢ By},

T(k)(t) =7 At
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Then 7 is an ?t—stopping time. Define

X =X wg, Y =Y.0g,
— (K —
HY = Hw, Ht( )= Hroq)-
The construction of PM, and the fact that v, = I5(">_1(X(‘§2+1,Y&) € My (Mg x S')

for all m > 0, and the optional stopping theorem imply that for each m > 0 the process
(X®, ¥ 9) satisfies Mfﬂf)/ " on the interval [22*L 2127 (see Section 6 for the definition

of M%ﬂl‘fi)/ Ty,

Let us introduce further notation. For all Ty, T, > 0 and (¥1,%2) € S(RY) x S(RY),
define

Nir 7, (W1, 92) = (1, Vi (H)) + (v2, Vi, (H)), 0<t<TiATy,
Ntz,Tl,Tz(d]]n wZ) = <¢1a tr:Tl(Ht)> + <¢27 troz(Ht)> ) 0 <t< Tl A T2-

Lemma7.6 Forall Ty, T, > 0and (¢1,42) € S(RY)+ x S(RY+,

(k)(’[)
exp{— Ni(k)(t),Tl,Tz W1, 92)} — /0 exp{— Nsl,Tl,Tz (¥1,2)}

(7.11)

<A (s 1) [ Ul (Ho0(U, (Rl (a)R, 00 5
and
(7.12) eXp{—Nz(k)(t)Jl T (b1, 92) }

are PM-martingaleson 0 <t < T,where T = T; A T,.

Proof We will prove the assertion only for (7.11) since the proof for (7.12) is t~he same.
Lett € [2m/n, (2m + 1)/n] for some m > 0. Then the construction of P(M and X®

implies that X® £ iV = Vo @m. T(k,(t)(XZm/n |Y2(fg/n) Therefore, by the semigroup

property of V[ (ViV{, = V{y fors <r <t), we obtain that

S L oK (K K
Vo R £ 198 = Vi amjmr Kin £ 1750 0), 1=1,2,
isaconstanton 22 < t < 201 The fact that

(7-13) exp{— {1,V gy, (HE)) = (12 V gy 7, (FLN))

is a martingale on [22, 217 follows immediately.
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Lett € [2m 2™2] for some m > 0. Let (X', X?) be a pair of independent superpro-
cesses defined on [0, T1] and [0, T] respectively, such that for all fi € S(RY)

P'lexp{— (X} _i, i)} = exp{— (v, V{r(F))}, 0<t<T, I=12

As we explained in Lemma 7.4, X' (I = 1,2) solves the heat equation on the intervals
[T, — 222 v 0, T) — 227 starting at XlT._M' By the way, this also implies that, for each

m < (T\n —1)/2,

- - 2m+1 2m+ 2
(7.14) Xty = Smez 7 Ko7, _amez, —St< —

AT, 1=1,2.

t e[l 2”{‘1—”] and, in order to simplify the exposition, we will assume that 22 < T
(the case 221 < T < 2M*2 can be treated in the same manner). Then we get

—(K
exp{— (41, Vo 7, (H)) = (002, V Ry 7, (L))}

(7.15) A A A ’ . w0
= P! x PZ[eXp{—<X%rT<k>(t)a HY) — <X$'277-(k)(t)7 He ) -
Sjnce f(t' € ~I\/I£ Pl-as. forall 0 <t < T, therefore all the variables above are well defined
Pl x P2 x PM-gs,
By (7.14) we have that, for each t € [221 22

n

<>A<11-1_T(k>(t) + X%Z_T(k)(t)v X®)
(7.16) =1(r%() < @m+1)/n) (X}, _ w0 + X3, _ng X0
+1(rO0) = @M+ 1)/n)(Smez 00K, _amz +XF,_ma), XY,
<>A('|l'1_7(k)(t) - >A($'2_T(k)(t)» Vt(k)>
(7.17) =1(r%(t) < @m+1)/n) (X} _ o — XE, 0 V)

+1(r®(t) > (2m + 1)/n) <s¥_ﬂk)mo¢1_¥ - Xi_m_;z),\?t‘k’%
Since (X®,Y ®) satisfies the martingale problem Mﬂ‘”?/”“, the last terms in (7.16),
(7.17) may be rewritten as

1(r®O@) > @M+ 1)/n) Sz w0y (KY, _amez + X3, 1), X()
(7.18) L
= 1(7M() > @M+ 1)/n)(S1 (X7 _ma + X3 ), KR) + 2™,

1(r9(t) > @M +1)/n) Sz ) (KF, _amez — X3, _an), V)
(7.19) o
=1(rM() > @M+ 1)/n)(S1 (X}, _amez — XE, o), Y ) + 217,
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where Z™, Z™2 are continuous square integrable martingales on [ 227 sych that
1 2

Zime = Zoma = 0,(Z™,Z™?); = 0 and
n n

t
(Z™) = 2) /( 1(r® > 5)((Seme (R, o + X, )", RO) 5

(7 20) 2m+1)/n
' ) 51 52 2 Z(K)
=2\ 1(r > s)<(xT1—s + xTz—s) ;X5 ) ds,
(2m+1)/n
t
(Z™2) = 2) / 1(r® > §)((Samz (RE_mmer — X2, ) ”, XE) s
(7.21) (2m+1)/n " n

t
=2 1(T(k) > S)«)Z'Il'l—s - )Z%z—s)za )Zs(k)> ds,
(2m+1)/n

where for the second equalities in (7.20), (7.21) we use (7.14). Using (7.14) again and
combining (7.16-7.19) we get

71 7 2 7 (K 1 7 2 7 (K 1
(X3, — 00y * X, —roy X0 = (RE, _oameny + XE, g amn, (2m#> i

Y. v G (K v G (K 2
<X%1_T(k)(t) - X-f-z_T(k)(t)»Yt( )> = <x%1_r(k)(@) - X%2_7<k)(2m7;1)»Y%> +Z{"M.

We apply 1t6’s formula and obtain that

v
e <XT177(k)(t)’

Ky _ /w2 ()
H) = (X5, g H)

t e ®y_ /w2 7K ~ ~ ~
_/ 1(s < T(k)(t))e Xy 0 H ) = X, Hs >4)\<X%175X%275,Xs> ds
2m+1

n

is a martingale on [(2m + 1)/n, (2m + 2) /n] for P! x P2-as (X!, X2). Now by checking the
conditions of the stochastic Fubini theorem (e.g. [20, Theorem 2.6]) we may conclude that

~ A (Xt ®y_ /g2 (k)

P! x P2[e Gy a0 M) =05, oo He >]
2m+1 (k)
2y E(t) . - .

~ N n 1 (k) 2 () ~ ~ ~
1 2 —(X _ K H?)— (X _ K He ) 1 2
—PLxP { e - 0o AN (RE K2 K) ds

n

isa martingale on [(2m +1)/n, (2m+2)/n]. By (7.15) and by the ordinary Fubini theorem
we obtain that

(K
e*<1/11-,V:(k)(1)’T1 (Hl(k))>7<w25\/:(k)([)7-r2 (GIO))
K
ZmT”VT”(t) A Ay (R )
— Pt x P [e T, -7 )

2m+1
n

®y_ /w2 Tk A A ~
w0 AN, K8, K] ds
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is a martingale on [(2m + 1)/n, (2m + 2)/n]. By Lemma 7.4 it is easy to integrate with
respect to Pt x P2 inside the integral and to obtain that

K 7
e_ (Y1 7V:(k) ®.T (Ht( ))> —(¥2 7V:(k) ©.T (H:7))

a0 (1) _
(722) _ ef<wlvvs,T1 (HS)>7<7/}2=V5,T2 (HS)>

% 4) / " (Hey X)(@)U, (Fl X) (1) () ds
Rd

is a martingale on [(2m + 1)/n, (2m + 2)/n]. (7.11) follows by (7.13), (7.22) and the fact
that m was arbitrary. ]

Lemma7.7  Foreach s, v, € CZR(RY):+ x CR(RY)s, N w1, 7, (%1, ¥2) is amartingale
on [0, T; A T,] with quadratic variation given by '

0(t) 1 . 5
[ o0 (s+3) [ Ut (i, Fuoowa @ods
0 Rd

and N2

SOM) ToTs (11, 12) isamartingale on [0, T; A T,] with quadratic variation equal to 0.

Proof Since by truncation the process (X, Y ®) “lives” on a compact subset of M£ x S’?
it is easy to check that

. 1
lim (exp{—eNLw 7,7, (¥1, ¥2)} — 1) = Nl 1,7, (%1, ¥2),

®(t)
lim —/ exp{—eNgr, 1, (11, ¥2)}
0

el0 €

< 0 (s+2) [ 0T (MU (L) R s = O,
RO '

PM.as. and in L' for | = 1,2. This together with Lemma 7.6 implies that

NL(k)(t),Tl,Tz(q/’lvl/’Z) is a continuous martingale for | = 1,2. Applying Itd’s formula, we

obtain that for 1 = 1,2

N ICIE 1
e om0 / e nr (2 d(N! (g, ¢2)s
0

is a martingale and the result follows from Lemma 7.6. ]

Lemma 7.7 yields the following corollary.
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Corollary 7.8 For each (i1, v2) € Cr(R%)+ x S(RY)+, T > 0,

PO[(y1, VT (H)) = (41, Vo R (Ho))
< (¥1,S1(Hol)), VO<t<T,

(7.23)

PO (41, VT (H))]
(724) S <¢1,ST(|H0|)>2

t
« [0 (s+2) [ s o, vost<T,

(7.25) POy, Y)1 = (v2, Vel (Ho)), t >0,
PO [z, V)21 < (b2, St(|Ho)))?

(7.26) o . 1
o [0 (1) [ smrs(rod s, >0

(7.27)
PO (41, ViR (H)) ]
< (¢, St(|Hol))?

t
¢ [220 <s+%) [ st rb@axss, 1=12, 0<t<T.
0 Rd

Moreover, for each 11,1, € S(RY)+, T1,To > 0,0 <t < Ty AT,and | = 1,2 we have

PO, Vi, (H) (2, VL (H))]
(7.28) < (1, Sty ([Ho|)) (42, S, (|Hol))

t
« [on(s+ 1) [ Sneston0sn (s (o) xas,

Remark 7.9 The analogues of (7.25), (7.26) for X are immediate from (7.23), (7.24).

Proof By (5.4), (5.5) and the definition of Ntlﬁ_(~, -) we get
n 1 n n M
(1, Vi (H)) = 5 (01, Vi (HO) + (v, ViR (FD))
1 1
= Ntl,T,T <§¢1, §¢1> )
n H 1 n n Ma
(P2, VI (Hy)) = —'§(<¢2,Vt,T(Ht)> — (¢2,V{1(Hy)))

. 1 1
= 'Ntl,T,T <§w2, —51/)2) .
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Abit of calculation based on Lemma 7.7 yields (iN; 1 (342, —3¢2))t = (N1r 1 (332, 592t
for each ¢, € CSR(RY)+. Hence, for each (¢1,17) € CSR(RY)+ x CSR(RY)., the corollary
follows easily from Lemma 7.7 by passing to the limit as k — oo and using bounds from
Lemma 7.5 and Lemma 5.2. For (i1,1,) € Cr(R%)+ x S(RY). the result follows by an
approximation of (11, ¢,) with functions from C2g(R%)+ x Co%(R%)s. (]

Proof of Proposition 7.1 Take Ty = T, = T in (7.11) and let k — co. (X®,¥®) —
(X,Y) and 7®(t) — t PM-as. By Corollary 7.8 all the random variables in (7.11) are
uniformly integrable. This immediately yields the result. ]

7.3 Regularity Properties of the Approximating Dual Measures

Lemma7.10 Foreacht > 0, > 0, there exist constants C1(p, t,d),Ca(p,t, d) such that
vn>1

)
|5(n) |:/ sp_1W(S, Xt) d5:| S Cl(pvtv 5)’
0

§
ﬁ(n) |:/ 5p71W(S,’Y~t) d5:| S CZ(pata 5)7
0

where

Igwm(p,t,é) =0, 1=12
uniformlyon0 <t <T,n>1,forall T > 0.

Proof By the Fubini theorem and (7.26) we get

d
p™ [ / "~ w(s, Vi) ds]

0

1
_ / B [s~tw(s, )] ds
0
1
< o715, (u(HoD) (9 cxds
0
§ t
e [t [2ai (1w 1) [ prscate y7SuHa) dy dudeas
0 0 Rd

p d t

< ||H0||oo||Ho||16— +CdHHo||1/ S”_l/ (t —u+s)"92duds
P 0 0

ECZ(p7t76)7

and the result for C,(p,t,d) follows immediately for our choice of p. The proof for
Ci(p,t,0) is the same. ]
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Lemma7.11 For each e > 0, there exists A. C ME x S’? such that A, is a closed subset of
Mg x S" and

sup P{U[AN] < e
0<t<T

foralln > 1.

Proof By the previous lemma we can always find a sequence dx | 0 such that

~ O ~ ~ €
(7.29) sup sup P {/ s~ (w(s, Xe) +w(s, Vo)) ds| < T
noo<t<T 0

Define

<l =

Ok
Ae = {(ﬂlHU'Z) € MF X S/(Rd) : / Sp_l (W(Sa /lfl) +W(S,ﬂ2)) ds < ’ vk > 0}
0

By Corollary 5.6(a) A, is closed in Mg x S, and by (7.29) PW(A®) < eforalln>1. m

7.4 Proof of Theorem 7.2

In this subsection we will prove Theorem 7.2 and investigate the properties of the limiting
dual measures.

In a moment we will formulate the lemma which gives the tightness of the measures
{PMW 0 <t<T,n>1}forany T > 0 (which sometimes is called the compact con-
tainment condition), where by tightness we mean the tightness of probability measures
on Mg x S’. However, we also need the compact containment condition (in the following
we abbreviate it by CCC) on M£ x S7 for this set of probability measures. Therefore the
following definition is in order.

Definition 7.12  Let {;{",t € Ry,n > 1} C My(Mg x S). Then we say that {{",t €
R+, n > 1} satisfies CCC on M£ x S’ if, for each e > 0, T > 0, there exists a compact set
B.1 in (M x S’?, 7°) such that

(7.30) sup sup M (B%) <.
n>10<t<T

Recall that 7# denotes the topology, corresponding to the convergence introduced in
Definition 5.3.

Lemma7.13 Foreach T > 0, the set of probability measures {F7t("),0 <t<T,n>1}is
tight in Ml(MF X S/)

Proof By (7.24), and (7.26) we get

sup POV [R ()2 < 0o, VT >0, Vi €Cr(RY)s
t<T,n>1

sup POV[Yi(42)?] < o0, VT >0, Vb € S(RY;.
t<T,n>1
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This yields the tightness of {(Xi(¢1), Yt(¥2)) : 0 < t < T,n > 1} for each (¢1,%) €
Cr(RY)+ x S(RY).. By Mitoma’s theorem [16] we get the tightness of our set of measures in
M3 (S x S’). (Our case is even simpler than the one covered by Mitoma’s theorem which
deals with probability measures on Ds/ [0, co), while our concern is about the probability
measures on S’.) Since SUPt<T n>1 Ist(") [X:(1)?] < oo, then, in fact, this set of measures is
tight in My (Mg x S’) and we are done. [

Corollary 7.14  The set of probability measures {I5t(”),t > 0,n > 1} satisfies CCC on
ME x S'°.

Proof Fix arbitrary e > 0 and p such that (% —1v0) < p < p. (Recall (5.15)—the
condition on p.) By Lemma 7.11, we can choose A, C MF5 x S’7 which is a closed subset
in Mg x 8" and info<r<1 P™W[A.] > 1 — ¢/2 for all n. By the previous lemma there exists
B., a compact subset of Mg x S, such that infy< <7 P [B.] > 1 — ¢/2 for all n. Then
E. = A. N B, is also a compact set in Mg x S/, and by Corollary 5.6(b), E. is a compact set
in MZ x S’ since p > 7. By our construction infy<i<t PM[E.] > 1 — € for all n, and we
are done. ]

Remark 7.15 Let E, be as in the above proof. By Corollary 5.6(b), TE‘ = %E(. Hence,
any function f on E, which is continuous on (E, 75) (i.e., f € C((E., 75))) will be also

€9 P € P
continuous on (E, 75) (i.e., f € C((Ec,7E))), and we may just write f € C(E.) without
explicitly mentioning the topology on E..

Lemma7.16  For each 1,4, € S(RY)., the sequence of mappings
t = PO exp{— (v, X +i¥e) — (12, X — i¥0)}]
of R+ into C is relatively compact in C¢ [0, 00).

Proof PM™[exp{— (1, H:) — (12, H;)}] is bounded uniformly in n and t. As the proof
relies on the Arzela-Ascoli theorem, we need to check that, foreach T > 0,

limlimsup ~ sup [P [exp{—(v1He) — (12, H)}]

0 noo [t—s|<es<t<T
— PO [exp{— (41, Hs) — (42, Hi) Y| = 0.

Foreachn > lands <t <T,

P [exp{—(tb1, He) — (2Hu) 1] — PO Texp{— (1, Hs) — (462, Ho) 11|
< [P [exp{— (31, He) — (12, He)}]
(7.31) — PO [exp{— (1, VI (Hs)) — (2, V& (H)) |
+ [P Texp{ — (1, VI (Hs)) — (4b2, VI (H)) Y]
— PO Texp{— (1, Hs) — (32, Ho) |-
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The first term is bounded by

t
[P0 et (0.2 ) — (e VL)

< AN <s+3) [ Vs 00U Fu R, (dx)] du
n Rd ’

(7.32)
< AX||[Y1][ oo [|202]1 sup [|Ss([Ho ) || oo [t — S|
s<T

< A [[Y1 ]| ool192]|1]Holl oo [t — S[,

where the first expression follows from Proposition 7.1, and the latter inequalities follow
from Lemma 7.5, inequality (7.23) and Lemma 5.1. From (7.32) we obtain that the first
term in (7.31) approaches 0 as ¢ — 0 uniformly in n.

Let us treat the second term in (7.31). Corollary 7.14 implies that for each § > 0 there
exists a compact set Bs 1 C $'* such that

sup sup P{V[BS 1] < .

n>10<t<T

By Theorem 5.8
lim sup (¥, V() — (¥, )| =0

€l0 [t—s|<es<t<T,u€Bst

uniformly in n. § was arbitrary, therefore the second term in (7.31) converges to 0 uni-
formly in n and this finishes the proof of the lemma. [ |

Lemma 7.16 and Lemma 7.13 yield

Lemma7.17  There exist {nc} and P € CmyMe xs1[0, 00) such that, for each f €

6(MF X S/), . N

PM(f) — Py(f) in Cc[0,00) as ng — oo
and
(7.33) Pe(ME x S7) =1, Vt>0.

Proof (7.33) is immediate from Corollary 7.14.
Let {(®{™,%{™)m > 1} be a dense subset of (S(R)+,S(RY).). For any (¢1,1,) €
(S(R%)+, S(R)+), let us define the function ey, ,, € C(Mg x S) by
€y (1, 112) = e~ (¥, ) =1 (Y1 —o,2)
Now use Lemma 7.16 and the Cantor diagonalization procedure to construct a subsequence
I5t(”k) such that I5t("k)(e wgm)‘wgm)) converges in C¢[0, co) for each m > 1. The reader can easily
check that the set of functions

F = linear span {e m,M > 1}

C
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is bp-dense in L (for the definition of L see the proof of Lemma 4.2) and therefore is sepa-
rating on My (Mg x S’). This together with the relative compactness of {P™, n > 1} (for
eacht > 0) implies that, for eacht > 0, there exists P; € M; (Mg x ') such that B{™ = B,.
Therefore, foreacht > 0and f € C(Mg x S), F7t("k)(f) — Py(f) (pointwise convergence).
The fact that Ist(”k)(f) converges to P;(f) in Cc[0, oo) (uniformly on compact intervals in
R..) follows immediately from an appropriate approximation of f by functionsfromF. =

In the following we assume that Ist("k) and P; are as in Lemma 7.17. The following corol-
lary is immediate.

Corollary 7.18  Let f € C(R+ x Mg x §’). Then P™ (f(t,-)) — P(f(t,-)) inCc[0, 0).

Lemma7.19 Let | be any interval in R.. Let {f(™M} bein B(I x Mg x S’). Assume that
f =0 |1 x ME x S € C(I x M£ x S'?) is bounded uniformly in n and

fM 5 fO a5 n— oo

uniformly on compact subsets of I x MZ x S’?. Define

fOs, p, i), i, pa, p2) € 1 x ME x S,
0, otherwise.

f(O)(S7 /1117/1’2) = {
Then - ~
PUI(™) — Bu(f?) in Cc(l) as n— oo,

Before giving the proof we derive the following consequence.

Corollary 7.20  Let {f™} bein B(I x Mg x S’) and assume that f® = O | | x M£ x
§” € C(I x M x S’?), n > 1. Suppose that

fM 5 fO a5 n— oo
uniformly on compact subsets of 1 x M£ x S’7. Define f© as in the previous lemma.
(a) Assume the uniform integrability condition

(7.34) limlimsupsup sup POV[IfM1(|£0| > e ] =0, VT >o0.
el0 nooo k>00<t<T

Then
POI(£M™) 5 B (), in Cc(l) as n— oo.

(b) 1f fM e Br(l x Mg x S'). for each n, then

P () < Iirrr11ian7t("k)(ft("k)), vtel.
k
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Proof of Corollary 7.20 (a) The proof is immediate by the uniform integrability tech-
nigue.

(b) Recall one of the properties of weak convergence (see e.g. the proof of Theorem 2.4.1
of [3]). If u(™ = 1, then for any nonnegative lower semicontinuous function h

(7.35) p(h) < liminf 1M (h).

. . ~ -1
By Lemma 7.19 we obtain that the sequence of probability measures {P{™ £ n, >

1} (which is in M1 (C)) converges weakly to B, £ for any t € 1. Therefore (b) follows
immediately from (7.35).

Proof of Lemma 7.19 Fix any compact T C | and choose T such that T [0, T]. Fix
arbitrary e > 0. By Corollary 7.14 there exists a closed compact set B.t € M x S’” such
that

(7.36) sup sup PM[Bl;] <e.
n>10<t<T

For each k we have
POV = PR = PV — 19) + P () — P(H7)
- _ |5t(nk) (( ft(nk) _ ft(O))lBe‘T) + |5t(nk)((ft(nk) _ ft(O))lBi.T)
7.37
+ (M (11s,) - Pu(f015,,))
+ (P (101 ) - P (101 ).
The first term in (7.37) approaches 0 uniformly int € T and lim,, o, f™ = f uniformly
on | x B, 1. Hence by the compact containment condition (7.36) the second and the fourth
terms may be made arbitrarily small uniformly ont € T by fixing e sufficiently small. Let

us treat the third term P{™ (£®15 ) — P(f@1s ,). T x B.7 is a closed compact set in
I x MZ x S’? and by our assumptions (see also Remark 7.15)

fO 1 TxBr=fO]TxB.reC(TxB.1).
By Tietze extension theorem there is a function fe C (I x Mg x S') such that

F(ta ula,U'Z) = f(O)(t7M17u2)a v(tvﬂlyl‘['Z) eTx Be,Ta
(7.38)

£ llooasmexs' = 1 f Qoo rxer < 1FPllocxmexs = [TO].

By Corollary 7.18 we obtain

lim sup [P (f) — P (f)| = 0.
T

k— o0 te
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Therefore
lim sup [F™ (@15, ;) — Pi(O1s,,)|
k=00 teT ' '
< lim sup [P (101, — f) - P15, — )|
k— o0 teT
+ lim sup [PM(F) — By ()|
k—oo teT
= lim sup [F™ (fils:) — Pi(file:,)|
k— o0 teT o7 o7
< 2¢| 1O
where the last inequality follows by the choice of B, and (7.38). So, it is clear that by
first choosing e sufficiently small and then ny sufficiently large we can make the third term
in (7.37) arbitrarily small uniformly in t and the proof is complete. ]
_In what follows, given an interval I C R, and a function h € B(l x Mg x §), set
h=hllxMZxS?.
The next lemma establishes the simple properties of the limiting measures.
Lemma7.21 Foreach € Cr(RY)+, T >0,
(7.39) Pel(,V1_((HO)] < (4, St([Hol)), 0<t<T,
PeL(¥, %)% < (9, Si(|Hol))?

(‘ -40) t
+ St s S H d d 5 P

PLL(¥, V1 _¢(H))?]
(7.41) < (¥, S7(|Hol))?

t
2 _
¥ /O A/RdsT_s(w)w S(Ho)()dxds, =12, 0<t<T.

Moreover, for each ¢1,10, € Cr(R%)+, T1 #T> > 0,0 <t < T; AT, and | = 1,2 we have

Bl(v1, VE _ (HO) (82, V3, (H))]
(7.42) < (%1, St ([Ho ) (12, St,(|Hol))

t
# [0 ] Sriea(n) 008+ (20008 (Hol) ) s,
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Proof First we will prove the lemma for ¢, 1,1, € ng,‘;(Rd)+. We pass to the limit in
the corresponding inequalities in Corollary 7.8. The right sides of (7.39)-(7.42) follow
immediately since

(7.43) j© - %

weakly* in L3°(R+) as n — oco. Let us treat the left sides of (7.39)-(7.42). (7.40) follows
from (7.35). By Theorem 5.8, for each function ¢ € Cf%: RY), and each T > 0,

(7.44) W) = (V1)) a n— oo

uniformly on compact subsets of [0, T) x §"”. Recall that P{" (M2 x §’?) = 1 foralln > 1,
t > 0 and therefore Corollary 7.20(b) yields the result for ¢, 11,1, € Cg%(Rd)+. For

arbitrary 1, 91,9, € Cr(RY).+ just approximate them by functions from Cgf‘F;(Rd)+ and
use Fatou’s lemma. ]

Corollary 7.22 Forall0 <s < T, vy, v, € Mg,

[0+ 000U = 1720 02)] %)

(7.45)
< / Sr_s () ()St_s(2)(X) Ke(dx), Pe-as.,
Rd
and
5 { [0 100U (5 — 7 90 K
(7.46) Re

< / Sr_o(2) (0S5 (v2)(X)S:(|Hol)(X) dx.
Rd

Proof By (7.39), (7.46) is immediate from (7.45).
By Lemma 7.17 X; € ME Ps-a.s. for each s > 0 and the proof of (7.45) goes in the same
way as the proof of Lemma 7.5. ]

Corollary 7.23  Foreach T > 0,

sup P[(1,VI(H))A < .
€>0,0<t<T

Proof By (7.41)
Pe[(v, VE(H))T < [[Hol[Z + tA|[Ho1.

and we are done by the assumptions on (X, Yo).
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Proof of Theorem 7.2 Fix T > 0. For fixed (1, v2) € ME x ME let us define the functions
1™ g, 19, 4O, e B([0,T) x Mg x S') by

B2 gV1 V2?7 W,V v,
1/(1n)z/2(t /1'17/112) - exp{ <Vl7vtro(/1’l + IM2)> - <V27th,T(/J‘l - |M2)>}7

gg;,uz(tv M1, .UJZ) = EXp{—<I/1,Vtro(,u,1 + i,U'Z)> - <V27Vtro(:u’1 - I:u'2)>}
< U2+ 000U i — iz (02) (@),
R
£ (t, i1, p2) = exp{—(v1, Vr_t(ua + ip2)) — (w2, Vr—t(pa — ip2)) },
O (¢, 1, p2) = exp{— (v, Vr_t(ua +ip2)) — (v2, Vr_t(u1 — ip2))}

X 4)\/RdUT—t(M1 +ipg, X))UT_t(u1 — 2, X) () pa(dx).

Fix arbitrary 41,9, € CfR RY), and let us first get (7.5) for (1, 1) = (Y1dX, ¥pdX).

Recall that for any function h € B([0, T) x Mg x S’) we seth=h | [0,T) x M£ x S.
By Theorems 5.8, 5.9 it is easy to see that

f0 40, €C([0,T) x Mg x §), Vn,
and
o O g0 50 a5 n—s oo

P12 g¢1 v 7 gdn 2
uniformly on compact subsets of [0, T) x ME x S’7. The functions {f(”¢ ,n > 1} are
2

bounded; by Corollary 7.8 and Lemma 7.5 functions {g(”) n > 1} are uniformly inte-
grable (in the sense of (7.34)). Fixanyt < T. By Corollary 7 20 we obtain that

(7.47) P(nk)(fll(:%z (ta 5 )) - Pt( P12 (t’ ’)) as N — oo,
(748) (nk) (gl(/)rlkzl)z(sa ) )) - lSS (gfl))l,d)z(sa ) ))’ in CC([O’t]) & Nh=r oo

(7.43), (7.47), (7.48) give (7.5) for any (v1, v2) = (Y1dX, 20X) with 11, ¢, € CR (Rd)+
For arbitrary (v1, ) € ME x M take the sequence (", ¥:{") = (11, 1,) in Mﬁ x M
with 9", " € C2%(RY). for each n. It is easy to check that

0) 0)

(749) w(n) (lj’17 NZ) — fyhyz (lj’l7 NZ)a gl(p(n) w(n) (lj’la ,U'Z) — gV1 I (ula ,U'Z)

w(")

for every (u1, p2) € ME x MZ. Lemma 7.5 and the uniform integrability condition (7.40)
give (7.5) for any (v1, v,) € ME x ME and we are done.

8 Uniqueness

In this section we will finish the proof of Theorem 2.6 and the proof will rely on checking
the conditions of Lemma 4.3. Fix arbitrary v € M;(Mgy x Mgy). Throughout this sec-
tion we assume that (X!, X?) is an arbitrary solution of the martingale problem M* with
PO XR) = v,
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First, we define the martingales that arise from the martingale problem M* for the pro-
cess (X1, X2).

Lemma8.1 Suppose € " and T > 0. Then
@

o= (XEVT (1) — (X VT (1))

— e_<Xé;VT(N)>_<XS~,VT(ﬁ)>

t

+/e <X51’VT—5(I‘)>_<X52=VT—s(ﬁ)>2>\KS(X1’xz)(v%_s(’u)) ds
0

t
+ / / o= (K s() = VT o)
0 JRd

x (Vr—s()(x) M*(ds, dx) + V7 _s(m)(x) M?(ds, dx)), 0 <t<T,

where M'(ds, dx) (I = 1, 2) are the martingale measures defined in Remark 2.5.
(b) Foreachx € RY, Ty, T, >0,

e KV 00 08V @) (X ()57, - O) ()

t
_ / o= XV () — (K2, o)
0

X {2)‘<Ku(xlaXZ))V'Il'1—u(ﬂ’))STz—u(X&)(X)STz—u(Xlzj)(x)
+ A(ST,u (XD () + St,—u (XD (X)) S1—u (Ku (X, X)) ()

([ vrsimpn -y @) )50

+ ( [ Ve y)xﬁ(dy)> sm(x&)<x>} du
R
isa martingale on [0, T) where T =Ty A Ta.

Proof By routine arguments (see e.g. Exercise 5.1 in [20], or calculations around (4.14)
in [12] for similar results) we get that for each ¢ € 61’2(R+ x R%)

_ _ - t
Xl = x4+ [ X (380 Zu) dsa [ Lo a9

t
k .
+ /O /Rdws(x)lvl (@x,0), =12

By choosing functions ¢ = Vr_y(s), ¥ = V(%) in (a) and o = Vr, (1), ¥ =
Vr1,-t(m), ¢ = pr,—t(x — ), ¢ = pr,—t(x — -) in (b), and then applying 1t6’s formula on
the interval [0, T) one can readily complete the proof of the lemma. ]
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In the following two lemmas we establish some simple properties of the process (X*, X?)
that we will use later. Let L(X*, X?) denote the random measure on B(R: x RY) given by
L(XH, X2)([0, 1] x B) = Li(X*, X?)(B).

Lemma8.2 Let ¢ be any bounded random function which is in C(R+ x RY) P-a.s. Then
foreachs < t

t t
6D [ [ s.0es. 0w [ oL X e
s JRd s JRd
andinL'ase ] 0.
Proof Our definition of Ly (X', X?) and L(X®, X?) implies that
S (XH(x)S.(X?)(x) dx du = L(X*, X?) (du, dx)

in probability and therefore convergence in probability in (8.1) is immediate. The L* con-
vergence follows from uniform integrability condition which one can check easily. ]

Lemma8.3 Foreacht > 0, P-as. (X!, X?) € ME x ME.

Proof By the domination property, it suffices to prove that for each t > 0 the dominating
superprocesses Y{ (I = 1,2) are in M£ P-a.s. But this follows immediately from Lemma 6.5
(X" in Lemma 6.5 is a superprocess). ]

In the following let P, be as in Lemma 7.17.

Lemma8.4 Foranyt,e >0

P x lSO[eXp{_<Xt17VE(HO)> - <Xt27ve(ﬁ0)}]
—Px Ist[exp{_<xévve(Ht)> - <x(2)7vf(ﬁt)>}]

= ZA/OtP x Py [exp{—(Xsl,VE(Ht_s» — (X2 V. (Hi_9))}
x {<Ks(x1,x2>,vj<Ht_s)>
— [ UH00EU R OO, (dx)H ds.
Rd

Proof Fixany T > 0 and define three functions: hy, h,, f by
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f(t,s) =P x ISS[EXp{_<thaVT—t—s(Hs)> - <Xt27VT—t—s(ﬁs)>}]
hi(t,s) = 2AP x ISs[e>(p{_<xtlaVT—t—s(Hs)> - <Xt2,VT—t—s(ﬁs)>}
x (Ke(XE, X2), Vi _o(HO))]

ha(t,s) = 2P x P; {eXp{_O(tl?VT—t—s(Hs» — (X, Vroes(H9)}
<[ Ur s 00U 0 06D R
R
for0 <s+t < T.ByLemma8.1 we have
t
f(t,s) = f(0,5)+/ hi(u,s)du, Vt,s>0:t+s<T.
0
By Lemma 8.3 and Theorem 7.2 we obtain
S
f(t,s) = f(t,0) + / ho(t,u)du, Vt,s>0:t+s<T.
0
From Lemma 4.4.10 of [10] (see e.g. [17, Lemma 4.17]) it follows that
t
(8.2) f(t,0) — f(0,t) = / hi(s,t —s) — hy(s,t —s)ds
0

for almost every t, 0 <t < T. We leave to the reader to check that the right side of (8.2)
is continuous on [0, T) (this requires only continuity of P;, X, X2,Vy and Uy). Using the
continuity of the right side of (8.2) we show that the equality in (8.2) is satisfied for each
0 <t < T.Take T =t + eand the proof is complete. ]

Our main goal now is to prove the following lemma.

Lemma 8.5

lim{P Pelexp{—(X{,Ve(Ho)) — (X2, V(Ho)) ]

—Px Ist[eXp{_<xéave(Ht)> - <X(2)7V€(ﬁt)>}]} =0.
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The rest of this section is devoted to the proof of this lemma. The main idea of the proof
is based on applying 1td’s formula to functions of X!, X2 while considering X;_s and Y;_s
to be fixed.

Let P be any probability measure on Mg. If the measure &1 € Mg defined by i(A) =
fMF 1(A)P (du) has a density, this density, with a slight abuse of notation, will be denoted

by P[u(X)]-
Fix 6’ such that 0 < ¢’ < t/2. Now rewrite the result of the previous lemma in the
following way:

(83)
‘P X 5t [exp{—(th,Vg(Ho» - <xt27vf(ﬁ0)>}]

— P x Plexp{—(X§, V(H)) — (X3,V.(H)) H|
y
< ‘zx /0 By x P [exp{—<x§,vf(Ht_s>> XV (A}

x {<Ks(x1,x2),V3(Hts)>

- ug(Ht_s,x)(xsl)ue(ﬁt_s,x)(x§>>?t_s<dx>H ds
Rd

t

+2)\ Ii/rgg/ Pi_s X P[exp{—(Xsl,Ve(Ht_s» — (X2 V (H:_9))}
€ 5/

X {<se/(xsl)se/(XE),vj(Ht_s»

- [ 5.06)005.0 th(dx)}] ds
Rd

+ 2\ /;ISI_S x P [exp{—(Xsl,VE(Ht_s» _ <X527V6(ﬁt—s)>}

A ] sulvhen) xos.

X (Se—u(Uu(Hr—s, X)Vu(He—s)), Xs) duXes(dx)
€ 1
+/Rd/0 Sg—u(Uu(Ht—S’X))(XS)

X (Se—y (Uu(ﬁt—s; X)Vu(ﬁt—s)) ) X52> du Xt—s(dx)}] ‘

= Ie,(i’ + ”e.,(?’ + |||5,5’7

where for the inequality we use Lemma 8.2, the definition of U, as a solution of the evolu-
tion equation and integration by parts formula.
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We have to show that I 5 approach 0as 4’ | O uniformlyine, and Il 5., I11. 5- approach
Oase ] Oforeachd’ > 0.
We start with 11, 5.. Foreach e, e’ > 0,¢’’ > 0,6 < ¢’, we define
Msl(6’ 67 6’7 6//)

s
= 2)\/ e_<XL1uVs+e—u(Ht—5)>_<X57Vs+e—u(ﬁt—s)>
s—0

X <KU(X17 XZ)’ 2V517u+€(Ht,5)><33+6/,U(X&)SS+€/,U(X5),Vel,,(Ht75)> du
M52(67 67 6/7 6”)

S
= )\/ e_<X37V5+F—U(HI—S)>_<XS-,VS+F—U(HI—S)>
s—4d

X ((Ssver—u(X3) + Serer—u(X2)) Ssrer—u (Ku(X*, X3), VE, (Hi—s)) du
Mss((sa 67 6/3 6N)

S J—
/ o= (XEVase () = (X Vsseu(Fl—s))
s—4

Vareu(Hi—s)(y) Pster—u(X — ) X5 (d )
(] Ve~ ) X
% Ssrer—u(XQ OV L/ (He—s)(x) dx du,

Mé(57 €, 617 6I/)

S
/ R VAV (S O RV )
s—4d

<[ ( RO xﬁ(dy))

X Ss+e'—u(xj)(x)vel"(Ht—s)(x) dx du.
From Lemma 8.1(b) it follows that

”5,5’

t
=2\ Iim/ Pi_s x P {EXp{_<Xs157Ve+5(Hts)> - <X52757Ve+5(ﬁtfs)>}

€’10 Js/

X {<sef+5(x51_5)ssf+5(><§_5),v:(Ht_s)> - / dsew(x&_g)(x)sms(xf_g)(x) it_s(dx)}
R
+ M;l(57 67 6/7 6) + M52(57 67 6/7 6) + M53(57 67 6/7 6)

+ M?((S, €, 6,7 E) - Msl((sa €, € O) - Msz((s, €, €, 0) - Ms3(5’ €, € 0) - M?((ga €, € 0):| ds
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Recall that if ;1 = 1 +ipp € $”, then by Theorem 5.8 V.(1)(-) € C([6,T] x RY) for
each0 < 6 < T,and V() = p as e | 0. Therefore

im tim exp{— (X5, Vers(He2)) = (X2 5, Vors(Fe))

(8.4) x {<s€/+5(xsl_5)sef+5(xsz_a),VQ(Ht_s»

= [ 30 09808 D89 | =0

P,_ x P-as. foreach 6’ < s < t. Furthermore,

Pros X PL[(Sers (XL 5)Sees (X2_5), VE (He—s)) ]

8.5
¢ < Ps(0)?Pe—slI{(L, V5 (He—o)) T x PIX_s(1PXE_5(2)21, € > 0.

By (8.5), Lemma 3.1 and Corollary 7.23 the second moment of (Sc.s(X2 5)Scrs(XZ 5),
V%, (Hi—s)) is bounded uniformly in ¢, ¢’ and 6’ < s < t. This gives the uniform in-
tegrability condition for {(Scrs(X2_5)Se+s(X2_5), VL, (Hi—s)), € > 0,€’" > 0,8’ <s <t},
which together with (8.4) shows that

(8.6)

limll, s = 2Xlim
el €,0

t
i Iim/ Pr_s x P[M2(8, ¢, €', €) + M2(5, ¢, €, €)

e'10 J5

+ Ms?)((sa €, 6/7 6) + Ms4(67 €, 6/, 6) - Msl((sa €€, O)

- M52(67 €€, O) - MS(67 €, €, 0) - MS(éa €, €, 0)] ds|.

To prove that lim. o 11, 5+ = 0 it suffices to show that for each k = 1,2, 3,4 lims o P x
PIMX(d,€,€’,€'")] = Ouniformlyine, ¢’, ¢’" and s € [6’,t]. Without loss of generality, we
will, henceforth, assume that

0<e+e +e<1.

We introduce several functions and constants which will be frequently used throughout the
remainder of this section.

¢ = P[Xg(D)XZ(1) + Xg(1)°X3(1)* + XF(LXF (L) (X5 (1) + X5(1)) ],
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¢t = sup(ps(0) + ps(0)?) = pe(0) + pe(0)?, V't >0,

s>t
¢? = |[Holloo *+ [IHol1%

¢t = |[Hollz + [Holl3,

t pt
Cf = / / (V1 + Vz)_d/2 dVl de,
0 J0

ut2. d=3
ka(U) =< —In(u), d=2,
ut/?, d=1,

and let € be a constant that does not depend on s, t, d, &/, ¢, €', ¢/’ and may change from
line to line.

Lemma 8.6
limP x Py_s[M? €] =
(gﬂ)] X Ft S[ 5(6,676,6 )] 0

uniformly ine, €/, ¢’ and s € [6’,1].
Proof It is easy to check that
[P x Ps[M{ (8, ¢, €', €]
(®.7) < [ P06, 2V ()
X (Serer—u(X)Ssrer—u(X2), VL, (H—s))] du.
By (7.42) (Lemma 7.21)

Prs [Vsl_u+5(Ht—s)(X)Vel'/ (He—)(x1)]
< St—ure([Ho[)(X¥)St—s+e+ ([Ho ) (X0)

t—s
2 / / s (X V)P v — VSO () dy
0 R

8.8 - t=s
( ) < HHOHio + C”HO”oo pZt—u—s+e+e”—2v(X - Xl) dv
0

t—s
< c2<1+6/ (2t —u —s—2v)d/2dv>
0

<c? (1 +C(|k(s —u)| + K2t —u— s)|)>, a.e.-(X, X1).
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XI <Yl j=1,2 where (Y Y?) is a dominating pair of superprocesses. Therefore we
have

PIX}(0Ssrer—u(X ) (x0)]
< PIY{(0)Serer—u(Y D (x0)]

_p [su(xg)(x)swf(x(’;)(xl)

u .
A T e L E Y P e
R
Recall that

8.9) Sup [ISu(i)l|oo < H(D)SUPCE < p(l)cl, VueMs, 650,
o<u o<u
Therefore by (3.6) (Lemma 3.4) we get
p { /. / KO XD00Sse0r o XA 00)Sorer-oK2)0) iy
RIJR
<p { / / (su(xéxx)sw(xé)(xl)
RdJRd
u
[ 5 000mIPie 1~ v - v s
0 R
‘ <su<><§)(x)ss+f/(><é)<xl)

u
+ / / S, OB Perer 1,01 — Y2)Pui (6~ ¥2) s dV2> dx, dx}
0 R
< ¢l PR

bl P [X3(1>x5(1> / XL vy + XEWXEC) / X dVZ}

u peu
+ P |:/ / / / SV1 (xé)(yl) p25+25/_vl_v2 (yl _ Y2)
0 J0o JRIJRI

% Sy () (¥2)P2uvs s (V2 — y2) dys dyz vy de]

R ()

u u
+P [c”/ / (25 +2¢" — vy —vp) 92
o Jo

[ SO0 08P 31~ v2) byl v e
RAJR
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where the second inequality follows from (8.9). The last term is bounded by

S pS
P {6/ / (2s —v1 — Vz)*d/Z/ / Pau(z1 — 22)X3(dz1)X3(dz,) dv; dv,
0J0 RdJRd

S S

< ¢y LPDAWXEW] / / (V1 +v2) /2 dvy v,
0 JO

< 5505’0 < €550,

where, again, the first inequality follows from (8.9) and the last inequality follows from
monotonicity of c¢t. This yields

P[ / / Ka O, XE)(0)Ssrer o (X2 (1) Soreru (X2 (1) X g | < b, _c(1 +t + )
RdJRd

foralls — 0 < u < s <t. Combining the last bound with (8.7) and (8.8) we get
[P Pes[M{ (3, €, €', €]
< [ P06,V ()
X (Syrer—u(X)Ssrer—u(X]), V& (He—s)) 1 du

S
<l O+t cf)/ (15(s — U)] + (2t —u—5)]) du — 0,
s—J

as d | Ouniformly ins € [§’,t]. The last bound does not depend on ¢, €’, ¢’, and the
lemma follows. ]

Lemma 8.7
|5iﬂ;. P x Py_s[M2(d,¢,€',€")] =0

uniformly ine, €/, ¢’ and s € [6',t].
Proof As in the previous lemma, we have
[P x Pe_s[MZ(6, €, €', €]
(8.10) < /s SﬁP % P [ (Serer—u(XE) + Serer—u(X0))
x Serer—u (Ku (X1, X%)), VL, (Hi—s))] du.
By (7.39) we have

Pe_sIVE, (He_s)(x) dx] < [|Holloo dx < cZdx.
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Combining this with (3.5) (Lemma 3.4) we obtain

P x Pr—s [(SseeuXD)Ssrer—u (Ku(X1, X)), VL, (Hi—s))]

< c2p [/Rd /RdSs+e’—u(SuX(J;)(X1) Pster—u(X1 — X)Su(Xé)(X)SU (X(Z))(X) dx dx,

(5.11) e[ 8 e~ ydpums = 1)

X Psrer—u(X1 — X)Su(XE)(X) dx dx; dyy dvl]
=c?(1 + 11),

where j =1,k =2or j =2,k = 1. Consider I first.

<P { /R Sasvze 20403 0G) RSO X) dX}

@12 < b P WX [ Smen a0 B

< ¢k _sPDEOXALXW < ks

Now consider Il in (8.11). Integrating with respect to x; and proceeding with simple cal-
culations, we obtain

=P [ /R d /R d /O Sy, (X (Y1) Passaer v, (X — Y1) Pu—v, (X — y1)Su(XE) () dx dys, dvl]
<P [/o (25 +2¢' —u— vl)—d/z/Rd /RdSvl(X(%)(yl)pu—vl(X — y1)Su(XE)(x) dx dyy, dvl}
< 6/0 (2s—u-— vl)*d/zp {/Rdsu(xg)(x)su(xg)(x) dx dvl}

< &(|r(2s — 2u)| + |K(2s — u)[)P [/Rd/Rd pau(z1 — 22) X (dzy) X(z,(dzz)]

< €(|m(2s — 2u)| + [w(2s — u)| ) PDXG (X5 (D)] . P2u(0)

r<ou<2t

< &j,_ s (|(2s — 2u)| + |K(2s — u)]).

The last bound and equations (8.10)—(8.12) imply that

S
IP x P_s[M2(d, ¢, €', €")]| < czc(%,_(;co/ 1+€(|r(2s — 2u)| + |k(2s — u)|) du — O,
4

5—

as d | 0 uniformlyins € [§’,t]. The last bound does not depend on e, €', €'’ and the
lemma follows. ]
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Lemma8.8 Define

S
M55(67 € ela ell) = / Pt—s l:/d ‘Vs+e—u(Ht—S)(y)|SS+e’—u (Vel”(Ht—S)) (y) dy du.
§s—d R
Then

S
(8.13) M3(8, ¢, €', €'") < 221 1+¢(|s(s —u)| + st —u)|)du, Ve €' €,
N

s—4

and
(8.14) '}[Q M3(3,€,€',¢"”) =0
uniformlyins € [0’,t]and ¢, €', €”'.

Proof (8.14) is immediate from (8.13). Now consider (8.13). Use Holder inequality to
bound M3(6, ¢, €, €’") by

(8.15)

s ) s 1 :
\/‘/s_épt—s |:/Rd Vre—u(Hi—s)(¥)] dY] du \//s_épt—s [/RGSHG/_U(VE,,(Ht_S))(y) dy| du.

Recall that ¢! = [|[Ho||; + ||Hol[3. Use (7.41) (take ¢ = 4,) to see that

/Rd ’I5t—5[‘V5+€—u(Ht_5)(y)|2] dy
+e—U 2 d
= 2/Rd5r (IHoD(y)* dy
t—s
+2A /0 /R d /R Prre—uu(x — ¥)Su(Hol) (<) dx dy dv

(8.16) -
<2Holf+E [ Holut+ e~ u—v) oy
0

t—s
< 2¢%4! (1 + E/ (t —u—v)92 dv)
0

< 2¢21 (1 + €|k — )| + st — u)|)).

Turning to Py [ fra Sseer—u (V3 (He—s)) (y)? dy], we may use (7.41) again to bound it by

/ Sevcr(Stsrer (o) (1) dy
R

t—s
2 / / / eserer—uv(X — YY’Su(Hol)(0) dx dy dv.
0 RdJRd
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Argue as in (8.16) to bound the above by
(8.17) ¢l (1 +E(|k(s — )| + |a(t — u)|)).
Combining (8.15), (8.16) and (8.17) we are done. [ |
Lemma8.9 Fork =3, 4,
limP Pr_s[ME@S, €, €', €)1 =0
uniformly ine, ¢/, ¢’ and s € [67,1].
Proof We will only prove the assertion about M3(d, €, €', €’’) since the proof of the asser-

tion about M2 (6, ¢, €', €’) is the same. Routine arguments similar to those used in the
proof of Lemma 8.6 and Lemma 8.7 show that

‘P X ISI—S[Mg((Sﬂ €, 617 6”)]l

< [ B[ ] Vo) paerutx = )
LA

< PIXAAY)Serer - ROV (Hr_) () dx] du

/J’ [ /R /R Vareul(He—) ()| Psser—ulx — ¥)

< P8O (1)Serer 0 (Su0XD) 0] X V2 (He_s)() dy dx] du

IN

S

< PO | Fs| [ [ Vo)l pinr-atx - )
s—0 RIJR
x VL, (He_s)(x) dy dx] du
S
<ebe s [ Beca] [ MonersP S (V2 () 1) 8y
s—0 R
=} ;°M2(0,€,€,€").
Now we are done by Lemma 8.8. ]

Lemma8.10 Foreach ¢’ > 0, lim.oll. 5 = 0.

Proof Recall that by (8.6)

(8.18) I|m .5 = 2)\I|m

I[%Z/Pt s X P[MX(8, ¢, €', €) — MX(8, ¢, €,0)] ds
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foreach 6 < §’ < s. Applying Lemmas 8.6, 8.7, 8.9 it is easy to make

4 t
Z/ Pis x P[ME(S, ¢, €', €) — ME(S, €, €,0)] ds
k=179’

arbitrarily small uniformly in ¢, €’ by choosing 4 sufficiently small. This finishes the proof
of the lemma. ]

Lemma8.11 lims/yolcs» = Ouniformlyin0 < e < 1.

Proof
;
s < lzx/ P x P[<Ks(xl,x2),v3(Ht_s)>
(8.19) 0
+ [ U 000U 06 >”<t_s<dx>} ds|.
Rd
By (7.39) we obtain
;
/ Bie x PLK:(X™, X2), VA (Hy_o))] ds
0
;
(5.20 < [ | [ 500050600 |- dxes

5
< 02/0 P [/Rd Pas(X — ) X3(dx) Xé(dy)} ds.

The last integral is finite (and therefore approaches 0 as 6’ | 0) since P(X},X3)~! €
M (Mgw X Megy). Turning to the second term in (8.19), we may use Corollary 7.22 to
see that

5/
/ B x P { / U (He_ss ) XU, (Fie_s, ) X)) >?t_5<dx>} ds
0 Rd
6/
</ ﬁtsxp[ | 5:0008. 00005 -(HaD dx} s
0 Rd
(5‘/
< [P [ prndc - 1) X0 @) xay]

e+d’
S { | P = 9 X3 X3@y) dxdy] ds.
B R

As in (8.20), the last expression approaches 0 as §’ | 0 uniformly in 0 < ¢ < 1 and the
lemma follows. ]
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Lemma8.12 Foreachd’ > 0, lim.oIll. 5 = 0.

Proof

t €
M5 < 2/\/ P X P[/d/ (Se—u(JUu(Hi—s,%)[), X2)
o’ R4JO

% (Sea(IUa(He_s, 0| Va(Heo)]), X2 duit_s(dx)} ds

+ 2)\/;F7ts x P [/Rd/;<seu(uu(Hts,X)I)7x51>

X (Se—u (JUu(Hi—s, ¥)| Vu(Hi—s)[), X) du it_s(dx)] ds.

We will only prove that the first term converges to 0 as §’ | 0 since the proof of the conver-
gence for the second term is the same.

/;'St—s x P VW/OE<Se—u(IUu(ﬁt_s,x)|)x§>

% (e (Uu(Hrs: )| Va(He_)]), X2 duit_s(dxﬂ ds

< /{;Fﬂ_s X P[/Rd/;(sg_u(pu(x — ), %)

% (S (Pulx = YVa(He_o)]), X2 duit_s(dx)] ds

< /5 frst_s . p[ /R d /O '5.00))

X (Pulx — ')‘Vu(Ht—s)|aSequsl> du )zts(dx)] ds
t~ €
< [ Fesxp| [ 150 5510
o’ 0

« [ |vu(Ht_s)|(y)su(>?t_s)(y)dydu] ds
Rd

t S+e
< cl,0 / B, [ / / WarealH|0)Ssre—o Ko ) () 0y du} ds
S R

’

t
= cg,co/ M2, .(¢,0,0,0) ds.
6/

The first inequality follows from (5.18) and the fact that X; € MZ (and hence does not
charge sets of nil capacity). The derivation of the other inequalities is straightforward.
Now apply Lemma 8.8 to complete the proof. ]

https://doi.org/10.4153/CJM-1999-019-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1999-019-x

Uniqueness for a Competing Species Model 425

Recall we are proving Lemma 8.5.

Proof of Lemma 8.5

lim{P Pelexp{—(X{,Vc(Ho)) — (X2, V(Ho))}

—-Px Ist[eXp{_<xéave(Ht)> - <X(2)7V€(ﬁt)>}]} =0.

The limit equals to
|im(|€5/ + 1.5 + |||55/)
oL : :

foreach ¢’ > 0. By Lemma 8.11 we can make I. - arbitrarily small uniformly in e by fixing
¢’ sufficiently small. By Lemma 8.10 and Lemma 8.12 Il 5- and I11. ;- approach O ase | 0
for the chosen fixed §' and this finishes the proof of the lemma. ]

Corollary 8.13

Plexp{—(X{, ¢) — (X, 9)}1 = limP x Pelexp{— (X3, Ve(H)) — (X5, V() }1,
where ¢ = Hy.
Proof Since ¢, € S(RY), we have that lim ;o [[V<(#) — &||oe = 0, limjo V(@) — Bll0o =

0. Now we are done by Lemma 8.5. ]

Remark 8.14 v = P(X},X3)™1 € M;(Mgy x Mey) and ¢ € S(RY) were arbitrary. There-
fore by Corollary 8.13 and Lemma 4.3 the proof of Theorem 2.6 is now finished.

A Appendix
Proof of Theorems 5.8, 5.9
A.1 Proof of Theorem 5.8

We start with some notation. For any interval | € R, and any measure v € Mg(R+ x RY)
(the set of finite measures on Ry x RY) let || - ||p.; and || - ||, be the norms on the spaces
LP(I x RY) and LP(R+ x RY, v(ds, dx)) respectively.

Let us introduce two more spaces:

leoc = {f € Lz((oaT] X Rd)7 VT > 0},

2, .
128 = {f € C((0,00) x RY) : |2 0m1,

.
E/s*p||f(s,-)\|§ds<oo, VT>O}, p>0.

0+

In what follows, in order to simplify notation, we will write [; instead of [ ..

Itisclear thatif f Lf;l‘;c forsomep > 0,then f € Lf;&c forany q < p and in particular
fell,.
Let p > 0. We say that ™ — fin L3P _if
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(i) ™ — f uniformly on compact subsets of (0, co) x RY,
(ii) lim o limsup, [ f ™20, =0,
(iii) limsup,_, . sup.<o<1 [ FV(5, Yoo < 00, V0 <€ < T.

Recall that p, p are constants that satisfy

d 3 d
(A1) (5_1VO)<'0<(1/\§_Z>’
R d
(A.2) 0<p<<3—§2p/\1p>.

Recall that forany r > 0, k € Cr(R+)+ and f € S(RY) V¢ (f, k) denotes the solution of
the following evolution equation:

t
(A3) Vi =S f + / St_s(V2)k(s)ds, t>r.
r

Given T > 0,V. (-, -)(-) may be considered as a mapping
[0,T) x S(RY) x Cr([0,T)), x R* ~ C.

Our main concern in this subsection is to prove that V.1 (-,-) may be extended to the
mapping [0, T) x $"” x Lg°([0,T)), x RY ~ C (where we induce weak* topology on
Lz ([0, T)),) and this mapping is continuous. For the definition of $” and the definitions

and basic properties of w(s, u), W,(6, p), W,(s, 1) (with & € §’) the reader is referred to
Section 5.
The following lemma will be extensively used.

LemmaA.l Let f®™ — finS"” Then

(A4 lim lim sup =7 (wt, £™) + W, (t, f ™)) dt =0,

n—oo 0

n—oo

;

lim / 7 (wit, F) +W, (¢, f )220 dt

(A5) 0

- / 7 (wt, £) + W, (¢, f)ztz_%_z") dt < oo, VT >0.
0

Proof (A.5) is an easy consequence of (A.4). The derivation of (A.4) is straightforward
from our assumptions on p and  and the definition of convergence in $’”. The details are
left to the reader. ]

Observe that for each r > 0, V1 (f, k) = Vo (f,/-@(l’ + ~)), therefore many properties
of Vi may be expressed via the properties of V. For simplicity (but with a slight abuse of
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notation), set V(f, k) = Vo:(f, ), that is, V(f, ) solves the following evolution equa-
tion

t
(A.6) Vg =S f + / St_s(V2)k(s)ds, t > 0.
0

In the sequel for given f, «, if we consider V.(f, x)(-) as a function defined on (0, co) x RY,
then this function will be denoted by V (f, ). As we will see later, Theorem 5.8 is an easy
consequence of the following proposition.

Proposition A.2

(a) Foreach u € $"" and k € L3°(R+)+, there exists a unique solution V¢(u, ) for (A.6)
such that

V(u, k) € LS:I/ZW
Ve (u, k) € C([0,TI xRY),, VT >0, €>0,
Vi(u, k) € LY(RY,, Vt>0, q>2,
Vi, k) € Lk(RY., Vt>0.

If & € Cr(R+)+, then Vi (u, x) is a strong solution for (A.6).
(b) Let k™ — x weakly* in L°(R+)+ and u™ — 1 in S’”. Then

V (™, kM) = V(u, k) inLZ

¢,loc?

asn — oo. _
(©) Lety € S(RY), and let A be any compact subset of (S”J X Lg"(R‘L))+ (as usual, the
topology on L3°(R+)+ is weak*). Then

lim sup |<w7VS(N) K;)> - <¢,/~L>| =0.

€l0 s<e,(p,k)EA

We will prove this proposition via a series of lemmas.

LemmaA.3 Lety™ e C([¢, T] x RY) for some 0 < e < T. Suppose that

SUP [0 |oo fe1] < 00
n

and ™ — 1 uniformly on compact subsets of [¢, T] x RY. Then, for all (t, x) € [, T] x RY,
St—. (v (-, ) () = Si—. (¥(:, -)) (x) uniformly on [e, t].

Proof Let {sn} be a sequence such thats, — sin [e,t]. We need to show that
n—o0

lim ' / Ps, (X — V)™ (n, y) — Prs(x — Y)U(s, y) dy| = 0.
y€ERd

But the sequence of measures pi—s, (X — y)dy converges weakly to the measure
pr_s(x — y)dy (or & in the special case s = t). By our assumptions on ¥ the result
follows from standard theorems on weak convergence. ]
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LemmaA4 Letyp™ € C((0,00) x RY). Define

G ™)(t,x) = /otst_s(w(n)(s’ D) (x)ds, ¥ (t,x) € (0,00) x RY.

Suppose that

(A7) limlim sup 1™ |04 =0,

and, foreach T > 0,

(A.8) limsup [|[™ s per] <00, VO<e<T.
n

Then G(x»(™) is relatively compact in C ((0, co) x RY), that is, for each subsequence of G(y™),
there is a further subsequence that converges uniformly on compact subsets of (0, o) x RY.

Proof Let (t,x) be an arbitrary point in (0, c0) x RY. Choose e > 0 such that e < t. Then

GO0 < [ [ Ipreutx -2 0w, dz

t
(A.9) +//Rd|pt_u(x_z)‘|¢(n)(u,z)|dzdu

< [Ipt—- (X = oo l¥® 0. + [t = €] [0,y < 00

uniformly in n. Let us check equicontinuity condition. For any (t,x), (s, y) € (0, c0) x RY,
e > 0 (without loss of generality, we assume that s <t,0 < € < 9)

G ™)(t,x) — GW™)(s, y)|
< /OE/Rdlpt_U(X —2) — ps_u(y — 2)| |¢(n)(uyz)| dz du

S — — _ (n)
*[ /Rd'ptfu(x 2) = ps_u(y — 2)| [ (u,2)| dzdu

+

/ 'S (™), ) du

N

<P (X =) = Po— (Y = Nloo,0a ™ |10
+ [0 oo fes [ Pe— (X = ) = Ps— (Y = Mg + 1t = 3 [0 o s11-

Using (A.7), it is easy to make the first term arbitrarily small by fixing e sufficiently small.
Observe that p;_.(x — -) converges to ps_.(y — -) in L*([¢,s] x RY) as (t,x) — (5, y). This
together with (A.8) implies that the second term may be made arbitrarily small uniformly
in n for all (t, x) sufficiently close to (s, y). The same happens to the third term. Therefore
{G(y™)n > 1} isequicontinuous at (s, y) (for s > t the arguments are the same). By (A.9)
it is also bounded at (s, y). Since (s, y) was an arbitrary point in (0, c0) x RY, we are done
by Arzela-Ascoli theorem. ]
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LemmaAS5 Let u™ — 1 inS’. Then, forany T > ¢ > 0 and any compact set ' ¢ RY,

lim  sup  [Sep®™(x) — Stp(x)| = 0.
N—=00 c<t<Txel

Proof By definition, S;u™(x) = (pt(x — -), u™). The set of functions {p¢(x — ) : € <
t < T,x € I'} is a bounded compact set in S(RY), and, as (™ — 1 in the strong topology
of S’, we are done. ]

LemmaA.6 LetT' C S’ be compact. Then for any ) € S(RY)

lim Su? |<7/}aselu> - <¢7M>| =0.

E—> 00 ,LLE

Proof Since (1, Scp) = (Seb, ), S — 1 in S(RY) as e — 0, and T is a compact set of
linear continuous functionals on S(RY), the result follows. ]

LemmaA.7 Let f € S(RY), x € Cr(R+)+. Denote v = Ve1(f, ). Then
[, T ()] < [St—e(F)(X)]

i
“lel [ [ Pt yiS(DOIdyds, VO<t<T. xR

Proof The author suspects that the lemma may be proved by using tools from PDE-s. But
here we will apply probability methods.
For e > 0 let X{ be a super-Brownian motion started at edx defined on the time interval
[0, T] such that
e~ —p e (D] 0<t<T.

By Taylor expansion we have
€ 1 €
e X =1 _ Xe(f) + / e~ (DXE(F)2(1 - 0) do,
0

where 0 < 8 < 1 is some random number. Therefore

1

1
s e =2, pin] - Te | [ e Ox A - )0
€ € € 0

1
< S + 2P | XDF [ 630

= SN0I] + 5P, X (DXECT]

= [S(N0O] + 518(NEOP

1 2
’ 5/0 /R Ps(x — Y)[St—s(F)(Y)I* dy 26(T —5) ds,
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< 8D+ 5 IS (DEOP
t
. 2
il [ prc= y)is (0 dy s

where the last equality follows from the moment formula for superprocess.
Letting e — 0 and using a simple change of variables, we are done. ]

The proof of the uniqueness of solution to (A.3) is based on the following lemma.

LemmaA.8 Let v(t) satisfy the following evolution equation

t
o) = = [ S+ (o)) 8.

(A.10) v(s,) ECRY), Vs>0,
u@,-) € C(RY4+, Vs>0,
K € LEO(R+)+

Then, forallt > 0, v(t) = 0.

Proof For each x € RY,
t t
5 0u@) 00s@ds = [ [ peostx =yt puts e dyds
0 0 JR
is well defined, therefore
t
[ et = ot us. (9 dy s < o
R
forall x € RY. Hence, forallt > 0,
S
Iim/ Si—z (lv(@u@)]) (0)|x(2)| dz = 0.
sJ0 0
Combining this with (A.10) we obtain
S
(A.11) Iiw Si—s([o©)]) (x) < / Si—: (lv@u@)|) )|Kx@)|dz =0, Vt>0, xeR".
: 0
By the semigroup property, v(t) can be represented as

t
o) = S0 - [ S (LU @

S
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for each 0 < s < t. Noting that v(s), u(s) € C(RY) for each s > 0, we use Feynman-Kac
formula to obtain

u(t, X) = Ex[v(s,B(t —s))e~ J} B2k Vit >,
where B is a Brownian motion starting at x. Since Re(us) > 0, we obtain

lu(t,X)| < Ex[|v(s,Bt —9))[] = Si—s([v())(¥), Vt>s.
Therefore by (A.11) we get

lu(t,X)| < lsiﬂ; St—s(|v(©)) () =0,
and we are done since (t,x) € (0, 00) x RY was arbitrary. [ ]

LemmaA.9 Foreach f € $’andx € L3° (R+)+, (A.6) has at most one solution v such that
v(s, ) € C(RY), foralls > 0.

Proof For any two solutions v, v2 of (A.6) we define v; = v — vZ and u; = v} +vZ. Then
it is easy to check that v satisfies (A.10). Therefore, by Lemma A.8, v; = 0 foreacht > 0,
and the result follows. ]

Assumptions and Notation

(i) Fixarbitrary f € §, k € LR(R+)s. Let {f® = £V + it} € §RY), {xM} €
Cr(R+)+,and fM — finS’ k™ — k weakly* in L asn — co. Denote

v =V (F™ k™)t > 0.

(i) limnyolimsup, . J2's~tw(s, f™)ds = 0;
(iiiiy limpyo limsup,_,__ W,(h, f®) = 0.

Remark A.10  (iii) follows from (ii) by Lemma 5.5.

Remark A.11  Assumptions (i)-(iii) clearly imply that f™ — f in $’°. We introduced
assumptions (ii)—(iii) (instead of just saying f™ — f in $’") with the only purpose of
making the future references more convenient.

LemmaA.12 Let f™, f, v satisfy (i)—(iii). Then foralln > 1

(A.12) V™3 < C(d, p, KDY (w(t, ™)+, (¢, fD)21-%), vt >0,
(A.13)
;
V@12 05 < C(d, p,5™) / 7 (w(t, fO) + W, (¢, f )22 %) dt, VT >0,
o 0

where C(d, p, (M) is the constant that depends only on d, p, x™.
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Proof (A.13) isimmediate from (A.12).
Let us check (A.12). By Lemma A.7 we obtain

PR
Rd

(A.14) < Z/RdISt(f("’)(y)Izdy

t 2
w20 [ | [ oty iSO @Rtz dy, veso

Consider the second term in (A.14). For each j = 1, 2 we have

/Rd (/;/R p(y — 2)(Si—s(f™)(@))° dz ds)zdy
= ' ps(y — 2)Si—s(f™)(2)?
LLLLL

X P, (Y — 2)St—s, (F{7)(22)° dy dz dzy ds sy
t pt
= / / / d / dpsﬂl(zl—z)(St_s(fj("))(z))z(St_sl(fj(”))(zl))zdzdzldsdsl
0 JO0O JRYJR

t t
< Cqg / / (s+51)"2w(t —s, f{)w(t — sy, fV) dsdsy
0 JO

t pt
<Cam, (7 [ [ rs) -9 0 - s) v dsds,
0 J0

1,1
= Cam, @, (O [ [ a9 - 0@ - w) v duduy
0 JO

< Cy W, (t, 10)22 572,
where Cq, = Cq4 fol fol(u +u)"%2(1 — u)~”(1 — uy) " dudu; and the last inequality
follows from Lemma 5.5. Cq , is finite since p < 1, d < 3. Since, by definition, we also have
Jre ISt (FM)(y)[2dy = w(t, f™M), (A.14) shows that

P13 < 2wt ) + 2] o Ca Wy (t, 1212, Wt >0,
and (A.12) follows. ]

Corollary A.13  Let f™ £, v{™ be asin Lemma A.12. Then

(A.15) limsup sup [[VV|; <00, VO<e<T,
n—oo e<s<T
(A.16) lim sup |V ||2.0.q = O,
el0 ’
(A.17) sup V5 0y < 00, VT >0.
n
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Proof (A.15) is immediate from Assumptions (ii), (iii) and the previous lemma. By (A.1),

IS t2=% -2 dt is finite and this together with (A.12) and Assumptions (i)—(ii) yields (A.16).
(A.17) is an easy consequence of (A.15), (A.16). ]

LemmaA.14 Let f®, f,v{" and v, be asin Lemma A.12. Then, foreach 0 < e < T,

(A.18) sup sup [v{”lg < 00, V2<q< o0,
N e<t<T
(A.19)
sup [[v™]lq
e<t<T

< V C(dapa H(n)) Hp€/4HqZTC'2

x \/W(e/4, FM) + W, (¢/4, fM)2(e/4)2~5-2» VY2<g<oo, n>1.
(e/4, TM) +W,(e/4, 1M)*(e/4) ; q ;

Proof By the semigroup property of V. .
Vt(n) — Vt(f(n), n(")) =V, /21 (V075/2(f(n)’ /-z(”)), n("))
and, so, by Lemma 5.2 we have
VPl < IVoe2(FP, 6 lg = [Vea(FO, M) lg, Ve <t <T.
Again using the semigroup property of V. . and applying Lemma 5.2 we obtain
IVera(F, 6 lg < IIVesaera(VoesalFO, M), s®)

< ||pe/4|\(%||Ve/4(f(n)7li(n))||2-

By Corollary A.13 ||V /4 (f™, ™M)||, is bounded uniformly in n and (A.18) follows. (A.19)
is also immediate from Lemma A.12. ]

LemmaA.15 {v(™ n > 1} is relatively compact in C ((0, 00) x RY).
Proof Let ¢™(t,x) = vV (x)2™(t). Then
v = S (F) + 6™, ), VYt e (0,00),

where G(1/(™) is defined as in Lemma A.4. By LemmaA.5, S.(f ™)(-) — S.(f)(-) uniformly
on compact subsets of (0,00) x RY as n — oco. By Corollary A.13, Lemma A.14 and
Lemma A.4, G(y™) is relatively compact in C ((0, o) x RY) and we are done. [ ]
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Corollary A.16  Let v be a limit point of v(™. Then

(AZO) Vi :Vt(f,lﬁ}), vt > O,

(A.21)

sup _[IVe(f, k)l
e<t<T

< V C(d7p7 K) ||pe/4Hchqz

X\ W(e/a, ) + W e/4, D2(e/A %, ¥2<gq<oo, VO<e<T,

(A.22)
HV(f, K)”%,(O,T],ﬁ < C(d7 Py K'(n))

;
x/ = (w(t, f)+W,(t, 2> E %) dt < oo, VT >0,
0

(A.23) V(f, k) €L,

(A.24) Ve (u, k) € C([0, TI xRY),, VT >0, €>0,
(A.25) Vi(u, 6) € LYRY,, Vt>0, q>2,
(A.26) Vi, k) € Lk(RY., Vit >0,

(A.27) tim v =V (f,k), inC((0,00) x RY).

Proof Let v(™ be a subsequence of v(™ which converges to v. In order to prove that v
satisfies (A.6) (and this means (A.20)), we need to show that

lim <St(f(”k))(x)+ / t / Pr_s(X — y)vs(”k)(y)zn(”k)(s)dyds))
Ng— 00 0 Rd

t
— S (D) + /0 /R st VR dyds, Ve

Convergence of the first term follows immediately from Lemma A.5. Consider the second
term. By Lemma A.15, v(™) converges to v uniformly on compact subsets of (0, c0) x RY
and by Lemma A.14 sup,, [V, 17 < oo forall 0 < e < T. Now apply Lemma A.3 to
see that, forall 0 < € < t,

(A28) lim sup [Sis((«")?) () — Si-s(v2)(9)| = 0.
<

Ng— o0 e<s<t

Since xn, — « weakly* in L>°(R+), (A.28) immediately yields

t t
. _ (nk) ZH(nk) _ . _ . ZH .

Ng— 00
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By choosing e sufficiently small,

/ / Ps(X — YV (y)?(s) dy ds
0 JRd

and

/ / Bes(X — Y)Va(y)2R () dy ds
0 JRd

may be made arbitrarily small (uniformly on ny) by Corollary A.13 and Fatou’s lemma
respectively. This shows that

t t
im_ [ [ st @ dyds = [ [ pestx- yume dy s,
n—o0 Jg JRd 0 JRd

and (A.20) follows. (A.21) follows immediately by passing to the limit in (A.19) and then
from Fatou’s lemma. To get (A.22) pass to the limit in (A.13) and use Fatou’s lemma. Our
conditions on p and p together with Assumptions (ii), (iii) yield convergence of the right
hand side of (A.13) to the finite right side of (A.22).

(A.22) together with the fact that V (f, k) isin C (R x (0, 00)) (which is an immediate
consequence of the convergence of v(™ to V (f, k) inC (Rd % (0, 00))) yields (A.23). (A.24),
(A.25) follow from (A.21). We leave to the reader to check the inequality |[V[|; < (VE, 1)+
15|00 ||V Hg’(o_ﬂ. This inequality together with (A.22) yields (A.26).

We proved that for each subsequence of v(™ there exists a further subsequence v(")
which converges to V (f, ) uniformly on compact sets in (0,00) x RY. However, by
Lemma A.9, (Vt(f, K),t > O) is unique, therefore each convergent subsequence converges
to V (f, k). This implies that, in fact, v(™ converges to V (f, ) and (A.27) follows.

Proof of Proposition A.2 For each f € S’ k€ L (R+)+, the existence and all the
properties of V¢ (f, k) are proved in Corollary A.16. The uniqueness of V(f, ) is given by
Lemma A.9. For k € Cr(R.+)+ Use the smoothness properties of S; to check that Vi (f, ) is
a strong solution of (A.6).

(b) Let {u™} € §, u™ — 1 inS” and K, — & weakly* in L(R+)+. Let I" be an
arbitrary compact set in (0, c0) x R%. We need to prove that

(A29) lim sup Ve(u®, kn)(0) — Ve(u, £)()] = 0.

=00 (t x)eT'

In Corollary A.16 we proved the following. If {f(™} in S(R") and {£™} in Cr(R+)+ are
such that f™ — f in S’” and &M — & weakly* in L2 (R+)+, then

(A.30) lim sup [V(f™ ZM)(x) — Vi(f, k)(x)| = 0.

=20 (t x)eT

For each € > 0 one can choose { (™} in S(RY) and {#(} in Cr(R+)+ such that £ — 4
inS””, K™ — x weakly* in L°(R4)+ and

(A31) (tSl;IOF Ve(f®, 80) = Ve (u®, k)0 < €
X)€E
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for all n. This yields

lim sup Vi (u®™, k) (x) = Ve (u, £)(x))|

”_>°°(t,x)el‘
< lim sup Ve(u™, ™) =V (f©,50))
=00 (t x)eT
+ lim sup Ve(F®,ZO)(x) — Vi, £)(%)|
n—>(>0(t7x)6r
< lim sup [Ve(u®, k™)) = Ve(FO, ZO)(x)| < e,
=00 (t x)eT

where the last inequality follows by (A.30), (A.31). Since e was arbitrary, we get (A.29).
From (A.22) and Lemma A.1 we obtain

(A.32) limlimsup [V (4™, 5™)||2.0.9,5 = 0.
0 nooo '
From (A.21) we get
(A.33) limsup sup [[Vs(u™, k™M)||oo < 00, VO0O<e<T.

n—oo e<s<T

(A.29), (A.32), (A.33) imply that VV (1™, ™) converges to V (i, &) in L%7

¢,loc,+*
(c) Let us take arbitrary u™ — 1 in S, kM — x weakly* in L2°(R+)+ and ¢, — 0.
We have to check that

im sup| (4, Vs(u®, k™)) = (1, u®)| = 0.

s<en
By definition
(4, Ve (0, 50)) = (1, 5™ < (86, 8, (u) — )|

<w, / 7S (Vuu®, KOY) >m<”>(u) du
0

By Lemma A.6, the first term convergesto 0 as n — oo. The second term is bounded by

+

€n
[¥]lo HH(")HOO/O IVu(a®, KM I3 du = [ oo 15 loo IV (1, £D)]3 0.0,

2
< oo 6™ o IV (™, 6™) 15 0.5

—0 asn— o

by (A.32). n
Proof of Theorem 5.8 (a) Forr >0, u € §”, k € L ([r, 00)),, define

KO@M) = k(r+1), Vt>0.
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Then Vi (u, £) = Ve_r(i, 5O for all t > r, and (a) follows from Proposition A.2.

(b), (d) Fix arbitrary p € "t € [0, T) k€ LE(R+)+, x € RYand let {u™M}, {t,},
{kM}, {x(”)l be arbitrary sequences in $’”, [0, T), L2(R+)+, RY respectively such that
™ = pinS” ty = t, kM — & weakly* in L3°(R+)+ and x™ — xinRY, asn — oo. For
(b), (d) it is sufficient to show that

(A.34) lim Vi, 72, KO O) = Vir (n, £)X)] = 0.
and
(A35) sup [V, 7 (6™, kM) (y)| < oo.
yeRd
But
(A.36) Ve, 1, KOYX®) = Vg, (10, 5O (),

where k(M) (s) = kM(t, + ) for all s > 0. Letting n — oo, it is easy to check that
k(M) — kO weakly* in L3°(R+)+. Then Proposition A.2 (b) |mplles thatV(;N‘) rM)) —
V(, «®) in Lf’l’gc + (A.36) and the definition of convergence in L2? immediately gives
(A.34), (A.35).
(c) Let {4}, {e,} be arbitrary sequencesin $” and R respectively such that ™ — 4

in S’ and e, — 0. Then it is sufficient to show that

lim  sup (%, Vs (™, ™)) — (4, u™)| = 0

N=00 1t _g|<en,s<T

¢,loc,+

uniformly in n. As in (b) it suffices to show that

lim  sup (s, Vu(u®™, k™)) — (b, u™)| = 0.

N=00 ey s<T
But {9 n > 1,5 € [0, T]} is weakly* compact in L3°(R+)+, therefore we are done by
Proposition A.2 (¢). [ |

A.2 Proof of Theorem 5.9

We will prove a slightly more general result than Theorem 5.9; Theorem 5.9 will be an easy
consequence of our more general setting.
Recall basic definitions from Section 5 and introduce some new notation.

(s, dy) = 9pi(@)100 < 5 < 1 dscly
1
5100= [ [ 1(s.y)pi0c— )2 ).

For any function f € L?(R? x R+, &(ds, dy)) we define || f[|, by setting

1
1113, = / / 1165, ) (s, dy).
0 Rd
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The capacity of a set is given by
C(B) = inf{||f|l2»: Gf(x) > 1,Vx € B}, VBe B(RY).

Let E be a metric space. Then C,(E x RY) (resp. fq(E x RY)) is the space of functions on
E x RYsuch that

(@) forg.e. x € RY, f(-,x) € C(E) (resp. C(E)),
(b) forally € E, f(y,-) is quasicontinuous.

We say that a sequence of functions {f™(-,-)} in B(E x RY) converges to f(-,-) almost
uniformly g.e. if
fM(y,x) — f(y,x), VYyeE, forge. x,

and, moreover, for each § > 0, there exists an open set B; ¢ R with @(B;s) < ¢ such that

sup [F™(,x) — f(,x)| =0

x€B§

uniformly on compact subsets of E. The notation f®™(., ) a8, f (-, -) stands for this con-
vergence. We say that { f(W(-,-)} in B(E x RY) converges to f(-,-) in € if, for each e > 0,

C(x: [fM(,x) — (-, )] >€) =0,
uniformly on compact subsets of E. % stands for this type of convergence.
Remark A.17 There is some possible confusion over the above definitions since functions
are defined on the product space E x RY and most of their properties are verified “for every”
y in E and g.e. x in RY. In order to help the reader to distinguish between E and R (since

in many cases E will be RY as well!), we reserve the letter x for an element in the space R¢
over which functions and their properties are defined g.e.

Letv.(:) € Lffm‘+ and k € L°(R+)+. Then Wy (v, x, X)(-) denotes a solution (if it exists)

of the following evolution equation:

t
A37)  ut,y) = pux —y) - /O 26(5)Ss (VOUE) (y) &5, t >0, y e R,

For u € Mg, Wi (v, , 1)(+) denotes a solution (if it exists) of the following equation

t
(%) uty) =S - [ 2608 (OUO) (s 10, yeR
0
As we will see later Theorem 5.9 is an easy consequence of the following proposition.

Proposition A.18
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2,p
(a) Foreachv e L ..

for (A.37) such that

K € LY (R+)+ and g.e. x, there exists unique solution W (v, &, X)(-)

W. (v, 5,X)(-) € C((0, 00) x RY),
Wi (v, 5,X)(-) € C(RY), Vvt >0.

Foreacht > Oand y € RY, the function Wy(v, &, -)(y) is quasicontinuous and there
exists N ¢ RY with @(N) = 0 such that

|Wt(V,HaX)(y)| S pt(X - y)a V(t, Y, X) € (0,00) X Rd X (Rd \N)

(b) Foreach 1 € ME(RY),

W00 = [ W00 @),

that is, the solution for (A.38) is given by the integration of the fundamental solution with
respect to initial condition. )
() Let {x™}inLz(R:+)+ and {v™}in L

) ¢,loc,+
(n) i | 2P
and vtV — vin L, .. Then

be such that (™M — « weakly* in L3 (R+)+

Cx: W.(v™, k™ x)() = W.(v, 5,X)(-)| > €) — 0,

uniformly on compact subsets of (0,00) x RY, that is, according to our notation
W. (v, 5O, )() S WV, K, ().

We will prove this proposition via a series of lemmas. We start with the lemma that gives
the “uniqueness” part of the proposition.

LemmaA.19 (A.38) (and therefore also (A.37)) has at most one solution such that, for each
s> 0,u(s,-) € C(RY)..

Proof Immediately from Lemma A.8 (see also the proof of Lemma A.9). ]

In the following lemmas we investigate some properties of convergence g.e. and in C.

LemmaA.20  Let {f™} be a sequence in C,(E x R?) such that f® 2% fasn - .
Then f € C,(E x RY).

Proof Foreach § > 0, there exists an open set B; ¢ RY with C(Bs) < ¢ such that, for each
compactsetT' C E, limp_,oo f™ = f uniformly on T x BS. The convergence is uniform,
hence f | T x B € C(T" x BS). Since I" and B, were arbitrary, we are done. ]

LemmaA.21 Let {f(™} beasequence in B(E x RY) such that f™ 2% f asn — co. Then
fo S f,
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Proof Fixanyé > 0. Let B; C RY be a set such that €(B;) < d and
sup [F™(,x) — £(-,x)] = 0

X€B§
uniformly on compact subsets of E. Let T be an arbitrary compact set in RY. Then
sup C(x: [f™(y,x) — f(y,X)| > )
yer

< sup C(Bs) +sup C(x : [F™(y,x) — f(y,X)| > €,x € BY).
yel’ yel’

Since ™ 2% f there exists N such that, for any n > N, the second term equals to 0. The
first term is less than 4. Since § was arbitrary, we are done. [ |

LemmaA22 Let {f™} beasequence in C,(E x R?). Suppose that, for each subsequence
{0}, there exists a further subsequence { f ™)} such that ™) 2% f asn/ — co. Then
f™ & fasn — oo.

c
Proof Let f™ 4 f. This means that, for any ¢ > 0, there exists { {(™W} and 0 < a < oo
such that

(A.39) sup C(x : [F™(x,y) — f(x,y)| >€) —a>0.
yerl

{9} contains a further subsequence { {0} such that ™) 2% . Then the previous
lemma implies that £ 5 f and this contradicts (A.39). [
LemmaA23 Let {f™} {g™}, f gbeinB(E x RY)and suppose that f™ 5 f, g™ & g
asn — oo. Define
h®(y,z,x) = £y, )9 (z,x) € BE x E x RY,
h(y,z,x) = f(y,X)g(z,x) € B(E x E x RY).

Then h® & .
Proof Trivial.

LemmaA24 Let {f™} be a sequence in B(E x RY) such that f™ & fasn — oo.
Suppose that there exist sets N™, N R of nil capacity with the following properies. For any
compact set ' € E there exists a function g*' € S(RY). such that

sup [F™(y,x)| < ¢"(x), VxeR\N®
yerl’

sup [f(y, )| <g"(x), VxeRI\N.
yel'
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Let {u(M} be a sequence in ME(RY) such that ™ = 1 in ME(RY). Then
/ T X) — ) [p™@dx) -0 as n— oo
Rd

uniformly on compact subsets of E.
Proof Lete > 0be arbitrary. Foreachn > 1,y € E, set
By,n,e = {X . |f(n)(y> x) — f(y, X)| > 6}'

Take an arbitrary compact set T'  RY. Since g*" € S(RY). and 1™ converges in MZ(RY),
therefore for each e’ > 0 we can choose another compact set I'., ¢ RY such that

/ gT U™ (dx) < ¢/, n.
Ie,

Then

sup [ [F™(y,x) — f(y,x)| u™(dx)

yel' JRd

<sup 1Oy, x) — f(y,%)| u™(dx)
YyeI' JByn,
+sup 1FO(y,x) — f(y,%)| 1™ (dx)
yel Bg,.n_sﬂl—‘(/

(A.40) +sup 1Oy, x) — f(y,x)| ™ (dx)

yel JBe

C
y.n.enrt/

<sup [FO(y, %) — £y, %)| 1™ (dx)
yeI' JByn,
+esup u (B, NTe) +2uM(g" - NTe)

yel

<sup [ [FO(y,x) — £y, )| p®(dx) + ep®(T) +2€".
YET JByn.

By fixing €’ and using the fact that ™ (T.) is bounded uniformly in n we can make the
second term less than €’ by choosing e sufficiently small. By Lemma 5.7, u™ € M{(RY)
does not charge sets of nil capacity, hence we obtain

sup | [FO(y, %) — f(y, )] 6 (dx)

yEF By.n,(
= sup 1FO(y, %) — £(y,%)| 1™ (dx)
yer By,n.(\(N(n)UN)
< sup (IO, %)+ f(y, X)) sup P (By.n.e)-
yel xeRN\ (NMUN) yer

https://doi.org/10.4153/CJM-1999-019-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1999-019-x

442 Leonid Mytnik

By Theorem 2.5.1 [1] (see inequality (2.5.1) there)

M(n)(By,n,e) < HS-H’(n)HZ,f/\/ G(By,n,e)-

1™ = 1 in ME(RY), hence ||S.™ ||,.5 is bounded uniformly in n. f® 5 f, therefore

sup4/€Byn) =0 a n— oo

yel

by definition of By, .. This together with our assumptions on f®, f, N, N yields

lim sup (IF™y, )1+ [F(y,9)]) sup ™ (Byn,e)
N9 y P xeRI\(NOWUN) yer

< im [|g"||oo Sup 1™ By n,c)
n— o0 yer
:0’

and it follows that the first term in (A.40) approaches 0 as n — oo. Since €’ was arbitrary
we are done. ]

LemmaA25 Let {g®™} be in L2} . and suppose that g™ — g in L3} .. Define

fM(s,-) = g™M(s,-)s~?. Then there exists { M} such that GF™ 2% 6. (To be con-
sistent with our definition of g.e. convergence, one can set E = & in this case.)

Proof f™M — f uniformly on compact subsets of (0, c0) x RY. 7 is a finite measure on
(0,1] x RY; the fact that g™ — g in Lf;{éw easily gives the uniform integrability condition
for the sequence { ™} with respect to measure 2. This yields f™ — f in LZ((O, 00) X

RY, 2(ds, dx)). Now the result follows from [1, Proposition 2.3.8]. [

Throughout the rest of the proof of Proposition A.18 the following assumptions are
used.

Assumptions

(i) Letve L), andr € Lg(R.)s bearbitrary.

(i) Let {v(} be a sequence of functions in C([p, o0) x RY), such that v — vin L?y’l’;’)“
as n — oo. For each n define ¥ (s, -) = s=Av(N(s, -).

(ii) Let {xM} € C(R+), kM — x weakly* in L (R+)+ asn — oo.

Since vV, k™ are bounded continuous functions, it follows from the theory of parabolic
equations that the solution W.(v(", kM x)(-) to (A.37) exists for each x € RY, and
W.(v™, kM )(-) € C((0,00) x R x RY) C Cq((0,00) x RY x RY). The following
simple lemma will be frequently used.

LemmaA.26 Wi (V™ ™ x)(y)| < pr(x — y), ¥ (t,y,x) € (0,00) x R x RY, ¥n > 1.
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Proof Fix x € RY. Take a sequence of functions {1)®} in Cgr(RY). such that v»® = 6, as
k — oo. Apply Feynman-Kac formula to see that

W (v®, k@, ) (y)| = |E,[1p®(By)e Jo &BE-Ddzy

< S(@9)(y),
where the inequality follows from our assumption Re(v) > 0. Then passing to the limit as
k — oo, one can easily complete the proof. We leave the details to the reader. ]

We wish to prove that W. (v, k™ () S W.(v, &, -)() € Cy(R+ x RY x RY), where

(a) forg.e. x € R, W.(v,,X)(-) € C((0,00) x RY),
(b) forall (t,y) € (0, 00) x RY, W, (v, &, -)(y) is quasicontinuous.

First, by Lemma A.25, we can choose a subsequence {v(™} such that 7 % G7. Fix
§ > 0and choose an open set B;  RY such that C(Bs;) < ¢ and G7™) — G¥ uniformly on
B. Take any X, — X in BS. Then the definition of G and the fact that GV (x,) — G7(x)
yield
imiimsup [ [ 7096, y)p.on, ~ )9 pa(y) dy s =0,
0 JRd

el0 ng—o00

Using the definition of {7(} one can easily check that, in fact, for each compact T' € R¢
and foreach ¢’ > 0,

(d)  timiimsup sup [ [ VO b, — )Py ~ D)dsdy 0.
’Jo JRd

€0 ne—soo zelt>e

In what follows set
u™(, ) = W.(v@, kO xM)().

LemmaA.27 Setyp™) = vy and G (¢ M)(t,z) = f: St—s (¥™(s)) (z) ds. Then
Go(¥™)(-, ) is relatively compact in C ((0, c0) x RY).

Proof One can represent Go(/™)(t, z) as
() M) = [ 5 (bE)@ s+ G,

By Lemma A.26 [u™(s,z)] < ps(x™ — z). Therefore, using (A.41) it is easy to make
Jo St—s(¥™)(s)) (z) ds arbitrarily small on compact subsets of R by taking e sufficiently
small. To show relative compactness of the second term at the right side of (A.42), change
the variables to get that G, (¢ ™ (-))(t,z) = Go(¥™ (e +-))(t — ¢,2). Then Lemma A4
gives the relative compactness of Go (1™ (e + -)) (t — €, 2) in C((e, 00) x RY). []

The proof of the following corollary is completely analogous to the proof of Corol-
lary A.16 and hence omitted.
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Corollary A.28  u(™) is relatively compact in C ((0, o) x RY) and if u is any limit point of
u®™ then u(t, -) = Wy(v, &, x)(-) forany t > 0.

LemmaA.29 W.(v k00 )() 225 W (v, &, -)(-) as ng — oo.

Proof Recall that {x(™)} was an arbitrary sequence in BS such that limg, 0 Xn, = X
Therefore, for any compact set T' € RY,

sup [W.(v®™, £ x)() = W.(v, 5, X)(-)] = 0 as ng — oo
x€l'NB§

uniformly on compact subsets of (0, c0) x RY. Using [W.(v(™), k() x)(-)| < p.(x — -), it
is easy to verify that, in fact,

sup [W.(v™ | £ x)() —W.(v, 5, X)(-)| = 0 as ng — oo
X€EB§

uniformly on compact subsets of (0, co) x RY. ]
LemmaA.30 Thereexists N ¢ R with @(N) = 0 such that

We(v, 5, )] < peXx —Y), V(Y %) € (0,00) x RY x (RT\ N).
Proof Lemma A.29 implies that there exists set N € RY with G(\) = 0 such that

We@, £,0() = lim WiW™, 50,0, ¥ (£, ¥, € (0,00) x RY x (R*\ N).

By Lemma A.26 W (v(™), k(™) x)(y)| < pi(x — y) forall n > 1, and the result follows.
|

LemmaA3l u® S Wy, x,-)()asn — oco.

Proof In Lemma A.29 we proved that there is a subsequence {u®™} such that u™ 2%
Wi(V, 5, -)(-) as ng — oo. But the same arguments say that for any subsequence {u®)}

of {uM} there exists a further subsequence {u®™)} such that u®™) 2% W (v, s, -)(-) as
ne — oo. Hence the desired result follows from Lemma A.22. u
Proof of Proposition A.18 (a) Follows from Lemma A.19, Lemma A.20, Lemma A.29,

Lemma A.30.
(b) Forg.e. x W (v™, (M x)(-) solves (A.37), which means that

W, K000 = i)~ [ [ 26901y — DM, 0, 0@ a2

V(t,y) € (0,00) x RY, forq.e. x.
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Since any . € MZ does not charge sets of capacity nil, we have
[ W, 10 39(9) )
Rd

t
=5uy) — [ [ 26@pu-sty — s W00, 0, 0(2)del (),
Y (t,y) € (0,00) x RY.

Using Fubini’s theorem and putting

Wt(v(n)7 K’(n)y lj’)(y) = / Wt(v(n)7 Kl(n)? X)(y) u(dx)’ vt > 07
Rd

we are done. X
(©) Let {v™}in L2, and {x™} in L (R+)+ be arbitrary sequences such that v — v
in L2 . k™ — kweakly* in L3°(R.)+. Itis sufficient to show that, for any e > 0 and any

compact set T C (0, 00) x RY, we have

(A.43) lim sup €(x: Wy(v™, k™, x)(y) — We(v, 5, X)(y)| > €) =0.

Lemma A.31 shows that, for any {7{™} in C((0, c0) x RY), and {£™} in Cgr(R+)+ such

that 7™ — vin L>2 , and k™ — & weakly* in L3°(R+)+, we have

(A.44) lim sup C(x: Wy(T, 5™, x)(y) — We(v, 5, X)(y)| > €) =0.
n—oo (t,y)EF

For each compact I C (0,00) x R%and ¢,e’ > 0 choose {} in C((0, 00) x RY), and

{F™} in Cr(R+)+ such that 7 — vin L27 ., ™ — x weakly* in L3°(R+)+ and

(A45) sup G(X : |Wt (\7(n)7 E(n)a X)(y) - Wt(V(n)7 H(n)7x)(y)| > 6) < elv
ty)er

for all n. This yields

lim sup G(X : |Wt(V(n)> H(n)7x)(y) —Wt(V, H)X)(y)‘ > 6)

n—oo (t,y)GF
< lim sup G(X . |Wt(\7(n)a E(n),X)(y) _Wt(v(n)7 ’i(n)7x)(y)‘ > 6)
n—oo (t,y)GF
+ lim sup G(X : |Wt(\7(n)7 I’%(n),X)(y) _Wt(V7 KJ,X)(y)| > 6)
N—00 (¢t y)er

< lim sup G(X : |Wt(\7(n)a E(n),X)(y) _Wt(v(n)7 ’i(n)7x)(y)‘ > 6) < 6,7
n—oo (t,y)EF
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where the last inequality follows from (A.44), (A.45). Since €’ was arbitrary, (A.43) follows
and this finishes the proof of Proposition A.18. ]

With Proposition A.18 it is easy to accomplish the

Proof of Theorem 5.9 (a), (b) Letpu € SN’p(Rd), r> 0,k € L3°(Rs)+. Forarbitraryr > 0
define

KO@M) = k(r+t), Vt >0,
Vi = Vie(p, £), Vt>0.

Now we have the following representation for v and U, (Vr,.(u, K), x):
vi = Vi(u, kM), VvVt >0,

Urt (Vrﬁi(,u, n),x) = Wt—r(V, K(r + ~),X), vVt>r.

By Proposition A2 v € L2P  therefore parts (a) and (b) of the theorem follow trivially

¢,loc,+!

from Proposition A.18 (a), (b).

() Let T > 0and 91, ¢ € CHRRY+, p™® — pin S”RY), ry — rin [0,T) and
kM — ks weakly* in L(R+)+. {u™}, u, {rn}, r are arbitrary, hence the proof of part (c)
of the theorem will be finished if we show that

n—oo

lim ‘/ Up T (Vrn;(/‘(n)v ﬂ(n))’ X) (¥1)Ur, 1 (Vrn,-(ﬁ(n)a /‘i(n))7 X) (1) /ign)(dx)
Rd

= [ U (Ve .9, 0) @) (Ve G ). ) 02) (@) = 0

As in (a) and (b) we have
Ur, 7 (Ve (0™, ™), %) = W, v, 600 %) VT >, qe.x,
Ut (Ve (i, 6),X) = Wr_r(v,s0,x), YT >1, qex,
where
kO(t) = K(r +1), KO (t) = kKO(r, +1), VYt >0,
Vi = Vi(u, M), v = v (u®, k™), vt > 0.

Recall that Uy, 1 (Vr, . (2™, k),x) = Uy, 7(Vr,.(0™, k),X) forall & € LE(R+)+. Hence
(A.46) is equivalent to

lim

n—oo

W, (v, £ x) (@)W g, (v, £ ) (38) 1 ()
d
(A.47) R

- / W (v, &0, X) (1 )W (v, &7, X) (1) (dx)| = 0.
Rd
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Since ry — r, K™ — k we obtain that ™ — xO, KO — KO weakly* in L (R+)-.
From Proposition A.2 it follows that

v v =V (u,&0), inl?

cloc+ @8 N — 00.

Apply Proposition A.18 (c) to see that
W@, 500 () S Wy, 50, ).

Apply Lemma A.23, Lemma A.30, Lemma A.24 and triangle inequality to verify that

lim h®™ = lim

n—oo n—oo

W, KO )OW (O, 50,3 () i (dX)
R

- / W'(Va 'V”'(r)a X)()W (Vv H(r)v X)() .UJl(dX) =0,
Rd

(A.48)

uniformly on compact subsets of (0,00) x R? x RY. Since ¢1,9, € CZ{(RY)+, (A.47)
follows immediately. '
(d) The proof of (d) is analogous to the proof of (c) and therefore is omitted. ]
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