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Uniqueness for a Competing Species Model

Leonid Mytnik

Abstract. We show that a martingale problem associated with a competing species model has a unique solu-
tion. The proof of uniqueness of the solution for the martingale problem is based on duality technique. It
requires the construction of dual probability measures.

1 Introduction

Measure-valued branching Markov processes (or superprocesses) arise as limits of branch-
ing particle systems undergoing random migration and critical (or asymptotically critical)
branching.

Recently, there has been interest in the study of populations with interactions. The
uniqueness of a solution for the martingale problems for these models has always been
an important and often difficult question. For some models, the Dawson-Girsanov theo-
rem [6] in its various versions helped to solve the problem of uniqueness (see e.g. Theo-
rem 3.10 [12]). Many cases of interactions were treated in [19] with the help of a historical
calculus.

The competing species model is a model with the most natural kind of interaction—
“point interaction”, in which an interaction only occurs if particles collide. This process was
introduced in [12] as a solution for the martingale problem Mλ which will be formulated
in Section 2. The existence of the competing species model in dimensions d = 1, 2, 3
and non-existence in d > 3 was proved in [12]. The uniqueness for Mλ was derived via
Dawson-Girsanov theorem for dimension d = 1. The question of uniqueness was open for
dimensions d = 2, 3. Moreover, it was proved that for d = 3 solutions to Mλ are singular
(in law) w.r.t. the pair of independent super-Brownian motions, which indicates that it is
impossible to use the usual Dawson-Girsanov arguments. However, Evans and Perkins [13]
recently proved the uniqueness for the historical martingale problem associated with the
competing species model.

In this paper we prove uniqueness for the “non-historical” martingale problem Mλ in
d = 1, 2, 3 using duality arguments already used in [17], [18]. If it is not stated otherwise,
we will always assume that d ≤ 3.

Notation and Organization of the Paper If E is a completely regular topological space,
B(E) denotes its Borel σ-algebra together with Borel measurable functions on E. Let M1(E)
(resp. M1,c(E)) denote the space of probability measures on

(
E,B(E)

)
(resp. with compact
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support) equipped with the topology of weak convergence. Let⇒ stand for weak conver-
gence.

Let CE[0,∞) (respectively, DE[0,∞)) denote the space of continuous (respectively, cad-
lag) E-valued paths with the compact-open (respectively, Skhorohod) topology. (For the
Skhorohod topology in DE[0,∞) with E completely regular, see [15].) Let B(E) (respec-
tively, C(E), C (E), Cc(E)) denote the set of bounded (respectively, continuous, bounded
continuous, continuous with compact support) complex-valued functions on E. ‖ · ‖∞ =
‖ · ‖∞,E will be supremum norm on B(E), C (E), Cc(E). We will often suppress the sub-
script E if there is no ambiguity over what space functions are used. Set BR(E) (respec-
tively, CR(E), CR(E), Cc,R(E)) to be the subset of real-valued valued functions in B(E)
(respectively, C(E), C (E), Cc(E)). In general, if F is a set of complex-valued (resp. real-
valued) functions write F+ for the subset of functions with non-negative real parts, that is,
{ f = f1 + i f2 ∈ F : infx∈E f1(x) ≥ 0} (resp. { f ∈ F : infx∈E f (x) ≥ 0}).

We will abbreviate “boundedly pointwise” by bp.

The paper is organized as follows. The precise formulation of the competing species
model martingale problem Mλ along with our main uniqueness result is given in Section 2.
The important properties of solutions to Mλ are described in Section 3. Section 4 is devoted
to a duality technique and provides a motivation for our construction of dual probability
measures. In Section 5 we introduce solutions for some evolution equations and in Sec-
tion 6 a certain measure and distribution valued process is defined; these are the two main
components for our construction of an approximating sequence of dual measures described
in Section 7. Here we also establish the existence of a system of dual probability measures
as a limit point of the approximating dual measures in an appropriate space. We prove that
these dual measures satisfy a certain equation; the latter plays a key role in the proof of our
main uniqueness result in Section 8. The Appendix is devoted to the existence, uniqueness
and the properties of the equations introduced in Section 5.

2 Competing Species Model and the Main Result

Let MF,w be the space of finite measures on Rd with the weak topology. For µ ∈ MF,w and
f ∈ B(Rd) let µ( f ) = 〈µ, f 〉 = 〈 f , µ〉 ≡

∫
f dµ. Let pt (x) be the standard Brownian

density and {St} be the semigroup with generator 1
2∆ and

D

(
1

2
∆

)
≡

{
φ ∈ C (Rd) :

1

2
∆φ ∈ C (Rd)

}

be domain of 1
2∆. Let (Ω,F, P) be a probability space which is sufficiently rich to con-

tain all the processes defined below, and for any process X defined on (Ω,F, P) let FX
t =⋂

ε>0 σ(Xs, s ≤ t + ε).

We will use the following definition of the collision local time and the collision measure
for two continuous MF,w-valued processes.

Definition 2.1 Let X1 and X2 be continuous MF,w-valued stochastic processes defined on
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(Ω,F, P). If ε > 0 and φ ∈ B(Rd) let

Lt (SεX
1, SεX

2)(φ) ≡

∫ t

0

∫
Rd

(SεX
1
u)(x)(SεX

2
u)(x)φ(x) dx du

=

∫ t

0

∫
Rd

∫
Rd

∫
Rd

pε(x1 − x)pε(x2 − x)φ(x) X1
u(dx1) X2

u(dx2) dx du.

The collision local time of (X1,X2) is a continuous non-decreasing MF,w-valued process

Lt (X1,X2) such that Lt (SεX1, SεX2)(φ)
P
→ Lt (X1,X2)(φ) as ε ↓ 0 for each φ ∈ C (Rd) and

t > 0.

Remark 2.2 In [5] and [12] other approximating sequences are used. It can be checked
directly that all the definitions are equivalent for the processes considered in this paper.

Definition 2.3 Let X1 and X2 be continuous MF,w-valued stochastic processes with a colli-
sion local time Lt (X1,X2). Suppose there exists a progressively measurable measure-valued
process Kt (X1,X2) such that

Lt (X1,X2)(φ) =

∫ t

0
Ks(X1,X2)(φ) ds(2.1)

for all φ ∈ B(Rd) and t ≥ 0 a.s. Then Kt is called the collision measure of X1 and X2.

The martingale problem Mλ for the competing species model is stated as follows. Let
λ > 0. We say that an MF,w ×MF,w-valued process X = (X1,X2) solves Mλ if

Mλ



For all φ1, φ2 ∈ D

(
1

2
∆

)
,

X1
t (φ1) ≡ X1

0(φ1) +

∫ t

0
X1

s

(
1

2
∆φ1

)
ds + M1

t (φ1)− λLt (X1,X2)(φ1),

X2
t (φ2) ≡ X2

0(φ1) +

∫ t

0
X2

s

(
1

2
∆φ2

)
ds + M2

t (φ2)− λLt (X1,X2)(φ2),

where M j(φ j) are continuous martingales such that

〈M1(φ1)〉t =

∫ t

0
X1

s (φ2
1) ds, 〈M2(φ2)〉t =

∫ t

0
X2

s (φ2
2) ds,

〈M2(φ2),M1(φ1)〉t = 0.

Remark 2.4 All the processes (in particular martingales) are supposed to be complex-
valued if it is not stated otherwise. It is a simple exercise to check that the above martingale
problem is equivalent to the martingale problem introduced in [12] with real-valued test
functions.

Remark 2.5 Since D( 1
2∆) is bp-dense in B(Rd), a standard construction allows us to ex-

tend M j
t ( j = 1, 2) to an orthogonal martingale measure {M j

t (φ) : t ≥ 0, ψ ∈ B(Rd)}.

That is, for each ψ ∈ B(Rd), M j
t (φ) is a continuous square integrable martingale such that

〈M j(φ)〉t =

∫ t

0
〈X j

s , φ
2〉 ds.(2.2)
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Let us denote by L2
r (X j , P) the following set of functions:{

φ : Ω× R+ × Rd 7→ R which is predictable (see p. 292 of [20]) and

P

[∫ t

r

∫
Rd

|φ(·, s, y)|2X j
s (y) dy ds

]
<∞, ∀ t ≥ r

}
.

(2.3)

L2(X j , P) stands for L2
0(X j , P). Proceeding as in [20], for each φ ∈ L2(X j , P) one can define

the stochastic integral

M j
t (φ) =

∫ t

0

∫
Rd

φ(s, y) dM j(s, y),(2.4)

where M j
t (φ) is a continuous square integrable martingale with quadratic variation∫ t

0

∫
Rd

φ(s, y)2 X j
s (dy) ds.

L2
r (X j , P) ( j = 1, 2) is a complete space (see e.g. Exercise 2.5 in [20]).

Our concern is with the proof of the uniqueness of the solution for the martingale prob-
lem Mλ. Let us define the function f̃ : MF,w ×MF,w 7→ [0,∞] by

f̃ (µ1, µ2) = µ1(1)2µ2(1)2 + µ1(1)µ2(1)
(
µ1(1) + µ2(1)

)
+

∫ 1

0+

∫
Rd×Rd

ps(x − y)µ1(dx)µ2(dy) ds,
(2.5)

and

M∗1 (MF,w ×MF,w) ≡

{
ν ∈ M1(MF,w ×MF,w) :

∫
f̃ (µ1, µ2) ν(dµ1, dµ2) <∞

}
.

Now we are ready to present our main result.

Theorem 2.6 Let d ≤ 3 and assume that ν ≡ P(X1
0 ,X

2
0)−1 ∈ M∗1 (MF,w×MF,w). Then any

two solutions for the martingale problem Mλ with MF,w ×MF,w-valued paths have the same
finite dimensional distributions, which means that the law of any solution to Mλ is unique (on
CMF,w×MF,w

(
[0,∞)

)
).

3 Properties of Solutions to Mλ

In this section we assume that X = (X1,X2) is any solution of the martingale problem for
Mλ and P(X1

0 ,X
2
0)−1 ∈ M∗1 (MF,w ×MF,w).

Let us derive some simple properties of (X1,X2). As it follows from Theorem 5.1 of [5],
we may assume the existence of dominating independent super-Brownian motions (Y 1,Y 2)
starting at (X1

0 ,X
2
0) (X1 ≤ Y 1,X2 ≤ Y 2) enlarging the probability space if necessary. This

assumption and the notation Y 1, Y 2 for the dominating pair will be valid throughout the
whole paper.
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Lemma 3.1 Let X be any solution of the martingale problem for Mλ, P(X1
0 ,X

2
0)−1 ∈

M∗1 (MF,w × MF,w), and f̃ is as in (2.5). Then P(X1
t ,X

2
t )−1 ∈ M∗1 (MF,w × MF,w) for each

t ≥ 0.

Proof Immediately follows from the definition of M∗1 (MF,w × MF,w) and the fact that
P[ f̃ (X1

t ,X
2
t )] < ∞ for all t > 0. (The domination of (X1,X2) by the pair of independent

superprocesses (Y 1,Y 2) reduces the proof to the calculation of the moments of superpro-
cesses; these calculations are standard (see e.g. [8]).)

Remark 3.2 In fact, one can prove stronger result:

P[sup
t≤T

f̃ (X1
t ,X

2
t )] <∞, ∀T > 0,

which in turn will allow to prove the strong Markov property of the (unique) solution.
However strong Markov property follows easily from uniqueness of the solution for Mλ

given by Theorem 2.6 and Theorem 8.2 in [13]. Therefore we decided to not to include the
self-contained proof of the strong Markov property into the paper, while mentioning that
it is possible.

Lemma 3.3 There exists a version K̃s(X1,X2) of Ks(X1,X2) such that K̃s(X1,X2) ≤
Ks(Y 1,Y 2) for each s > 0.

Proof For all 0 < s < t , φ ∈ CR(Rd)+,

Ls,t (X1,X2)(φ) ≡ lim
ε↓0

∫ t

s

∫
Rd

(SεX
1
u)(x)(SεX

2
u)(x)φ(x) dx du

≤ lim
ε↓0

∫ t

s

∫
Rd

(SεY
1
u )(x)(SεY

2
u )(x)φ(x) dx du

≡ Ls,t (Y
1,Y 2)(φ).

(3.1)

On the other hand (see [5, Remark 5.12(4)]) it is known that

Ls,t (Y
1,Y 2)(φ) =

∫ t

s
Ku(Y 1,Y 2)(φ) du,(3.2)

Ls,t (X1,X2)(φ) =

∫ t

s
Ku(X1,X2)(φ) du.(3.3)

The relations (3.1), (3.2), (3.3) hold for all s < t , φ ∈ CR(Rd)+, therefore there exists a
version K̃s(X1,X2) of measure valued process Ks(X1,X2) such that K̃s(X1,X2) ≤ Ks(Y 1,Y 2)
for each s.

In the remainder of this work, we denote by Ks(X1,X2) any version whose existence was
proved in the previous lemma.
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Lemma 3.4 For all ψ, φ, φ1, φ2 ∈ CR(Rd)+,

P[Ks(X1,X2)(ψ)] ≤ P

[∫
Rd

Ss(X1
0)(x)Ss(X2

0)(x)ψ(x) dx

]
,(3.4)

P[X j
s (φ)Ks(X1,X2)(ψ)]

≤ P

[∫
Rd

X j
0(Ssφ)Ss(X1

0)(x)Ss(X2
0)(x)ψ(x) dx

+

∫
Rd

∫ s

0

∫
Rd

Sv(X j
0)(y)Ss−v(φ)(y)ps−v(x − y) dy dv Ss(Xk

0)(x)ψ(x) dx

]
,

j = 1, 2,

(3.5)

P[X1
s (φ1)X2

s (φ2)Ks(X1,X2)(ψ)]

≤ P

[∫
Rd

(
X1

0(Ssφ1)SsX
1
0(x)

+

∫ s

0

∫
Rd

Sv1 (X1
0)(y1)Ss−v1 (φ1)(y1)ps−v1 (x − y1) dy1 dv1

)
×

(
X2

0(Ssφ2)SsX
2
0(x)

+

∫ s

0

∫
Rd

Sv2 (X2
0)(y2)Ss−v2 (φ2)(y2)ps−v2 (x − y2) dy2 dv2

)
ψ(x) dx

]
.

(3.6)

Proof We outline a proof of (3.6); the inequalities (3.4), (3.5) are established similarly.
Lemma 3.3, the representation

Ks(Y
1,Y 2)(ψ) = lim

ε↓0

∫
Rd

∫
Rd

pε(x − y)ψ
(

(x + y)/2
)

Y 1
s (dx) Y 2

s (dy)

and the Fatou lemma imply that

P[X1
s (φ1)X2

s (φ2)Ks(X1,X2)(ψ)]

≤ lim inf
ε↓0

P

[
Y 1

s (φ1)Y 2
s (φ2)

∫
Rd

∫
Rd

pε(x − y)ψ
(

(x + y)/2
)

Y 1
s (dx) Y 2

s (dy)

]
.

The remainder of the proof rests on a standard calculation of the moments of the pair of
superprocesses (Y 1,Y 2).

Lemma 3.5 For each 0 < β < T,

lim sup
ε↓0

sup
β≤s≤T

E[Ks(SεY
1, SεY

2)(1)2] <∞.
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Proof The proof involves a calculation of the second moments of superprocesses.

The previous lemma yields the following corollary.

Corollary 3.6

lim sup
ε↓0

sup
β≤s≤T

E[Ks(SεX
1, SεX

2)(1)2] <∞,(3.7)

sup
β≤s≤T

E[Ks(Y
1,Y 2)(1)2] <∞,(3.8)

sup
β≤s≤T

E[Ks(X1,X2)(1)2] <∞.(3.9)

Proof The estimate (3.7) is a consequence of Lemma 3.5 and the domination property:
X1 ≤ Y 1, X2 ≤ Y 2.

Further, in Section 4 of [11] it is proved that for every s > 0

Ks(Y
1,Y 2)(1) = lim

ε↓0

∫
Rd

∫
Rd

p2ε(x − y) Y 1
s (dx) Y 2

s (dy) = lim
ε↓0

Ks(SεY
1, SεY

2)(1), a.s.

Now (3.8) is a consequence of Lemma 3.5 and the Fatou lemma.
Further, (3.9) follows from (3.8) and Lemma 3.3.

4 Duality Tools

Our goal is to prove that any two solutions to Mλ have the same finite-dimensional distri-
butions. It is known from Theorem 4.4.2 of [10] that it suffices to verify uniqueness of the
one-dimensional distributions. But attempts to use Theorem 4.4.2 of [10] directly meet
some technical difficulties (see discussion after Lemma 2.1 in [18]). The following lemma
is just a reformulation of Theorem 4.4.2 for our case:

Lemma 4.1 Suppose that for each initial distribution ν = P(X1
0 ,X

2
0)−1 ∈ M∗1 (MF,w ×

MF,w) any two solutions (X1,X2), (X̂1, X̂2) of the martingale problem Mλ have the same one-
dimensional distributions, that is, for each t > 0,

P{(X1
t ,X

2
t ) ∈ Γ} = P{(X̂1

t , X̂
2
t ) ∈ Γ}, Γ ∈ B

(
(MF,w ×MF,w)

)
.(4.1)

Then any two solutions of the martingale problem Mλ have the same finite-dimensional dis-
tributions. (That is, uniqueness holds.)

Proof The proof is completely analogous to the proof of Theorem 4.4.2 of [10]. However
at some stage of the proof we need the following fact: if P(X1

0 ,X
2
0)−1 ∈ M∗1 (MF,w ×MF,w)

then P(X1
t ,X

2
t )−1 is also in M∗1 (MF,w×MF,w) for each t > 0. But Lemma 3.1 assures us that

this is indeed the case.

Let us introduce the following notation. Denote by S(Rd) the (Schwartz) space of rapidly
decreasing real-valued functions on Rd and by S ′ the topological dual of S(Rd), the space

https://doi.org/10.4153/CJM-1999-019-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-019-x


Uniqueness for a Competing Species Model 379

of tempered distributions. We endow S′ with the strong topology. Let MF be the space of
finite measures on Rd. We consider MF as a subspace of S ′ with the relative topology. Note
that MF differs from MF,w by the topology induced on it. Let S̃(Rd) (resp. S̃ ′) be the space of
complex valued rapidly decreasing functions on Rd with positive real part (resp. the space
of complex valued tempered distributions with measure-valued real part), that is

S̃(Rd) ≡ { f : f = f1 + i f2, f1 ∈ S(Rd)+, f2 ∈ S(Rd)},

S̃ ′ ≡ {µ : µ = µ1 + iµ2, µ1 ∈ MF, µ2 ∈ S ′}.

Now we can define a class of functions on MF,w × MF,w that separates the measures in
M∗1 (MF,w ×MF,w). Let

L ≡ linear span {F ∈ C(MF,w ×MF,w) : Fφ(µ1, µ2)

≡ exp{−〈µ1, φ〉 + i〈µ2, φ〉}, φ ∈ S̃(Rd)}.

Lemma 4.2 The set of functions L is separating on M1(MF,w ×MF,w).

Proof Let µ̃1 = µ1 + iµ2, µ̃2 = µ1 − iµ2. Since the transformation (µ1, µ2) 7→ (µ̃1, µ̃2) is
one-to-one, it suffices to show that the set of functions

L̃ ≡ linear span {F̃φ1,φ2 (µ̃1, µ̃2) ≡ exp{−〈µ̃1, φ1〉 + i〈µ̃2, φ2〉},

φ1 ∈ S(Rd)+, φ2 ∈ S(Rd)}

is separating on M1(MF,w × S ′). But this follows from Corollary 1.9 of [2].

If {P̃t , t ≥ 0} is a set of probability measures in M1(MF × S ′), then for any function
f ∈ B(MF × S ′) we denote P̃t [ f (X̃t , Ỹt )] ≡

∫
MF×S ′ f (µ1, µ2)P̃t (dµ1, dµ2).

Lemma 4.3 Let fε ∈ B(MF × S ′) for each ε > 0. Suppose that for each initial distribution
ν = P(X1

0 ,X
2
0)−1 ∈ M∗1 (MF,w ×MF,w) and each φ = φ1 + iφ2 ∈ S̃(Rd), there exists a set of

probability measures {P̃t , t ≥ 0} in M1(MF × S ′) such that P̃0 = δ(φ1,φ2) and

P[e−〈X
1
t ,φ〉−〈X

2
t ,φ〉] = lim

ε↓0
P × P̃t [e−〈X

1
0 , fε(X̃t +iỸt )〉−〈X2

0 , fε(X̃t−iỸt )〉](4.2)

for each t ≥ 0 and each solution (X1,X2) to Mλ. Then for each initial distribution ν =
P(X1

0 ,X
2
0)−1 ∈ M∗1 (MF,w ×MF,w) uniqueness holds for the martingale problem Mλ.

Proof With Lemma 4.1 and Lemma 4.2 in mind the proof is completely analogous to that
of Theorem 4.4.7 of [10] (see also Theorem 1.3 in [17]).

To prove our main theorem we construct such a set of probability measures {P̃t , t ≥ 0};
henceforth this set will be called the set of dual probability measures. We use tightness
arguments. We are motivated by the following considerations. Let us rewrite the martingale
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problem Mλ in an exponential form. Itô’s formula implies that, for all φ = φ1 + iφ2 ∈
S̃(Rd),

e−X1
t (φ)−X2

t (φ) −

∫ t

0
e−X1

s (φ)−X2
s (φ)

(
−X1

s

(
1

2
∆φ

)
− X2

s

(
1

2
∆φ

)
+

1

2
〈X1

s + X2
s , φ

2
1 − φ

2
2〉 + i〈X1

s − X2
s , φ1φ2〉

+ 2λKs(X1,X2)(φ1)

)
ds

(4.3)

is a martingale.
Suppose that there exists a pair of MF × S ′-valued processes (X̃, Ỹ ) which is defined on

some probability space (Ω̃, F̃, P̃) and satisfies the following martingale problem:



For all ψ1, ψ2 ∈ D

(
1

2
∆

)
,

X̃t (ψ1) ≡ X̃0(ψ1) +

∫ t

0
X̃s

(
1

2
∆ψ1

)
ds + M1

t (ψ1)

− 1
2

∫ t

0
Ks

(
(X̃ − Ỹ ), (X̃ + Ỹ )

)
(ψ1) ds,

Ỹt (ψ2) ≡ Ỹ0(ψ2) +

∫ t

0
Ỹs

(
1

2
∆ψ2

)
ds + M2

t (ψ2)−

∫ t

0
Ks(X̃, Ỹ )(ψ2) ds,

where M j(ψ j) are martingales such that

〈Mk(ψk),M j(ψ j)〉t = δk jλ

∫ t

0
(X̃s)(ψkψ j) ds, ∀ k, j = 1, 2.

(4.4)

Here Kt (X̃, Ỹ ), Kt (X̃ − Ỹ , X̃ + Ỹ ) are supposed to be the “collisions distributions” between
corresponding S ′-valued processes. (The “collision distribution” between S′-valued pro-
cesses can be defined similarly to the collision measure between measure-valued processes;
here we use an intuitive concept of collision distribution for motivational purposes only
and omit precise definitions.)

Let {P̃t , t ≥ 0} be the set of one-dimensional distributions of (X̃, Ỹ ). Now define H ≡
X̃ + iỸ , H ≡ X̃ − iỸ and use Itô’s formula to show that

P̃t [e−〈ψ1,Ht〉−〈ψ2,Ht〉]

= P̃0[e−〈ψ1, X̃0+iỸ0〉−〈ψ2, X̃0−iỸ0〉]

+

∫ t

0
P̃s

[
e−X̃s(ψ1)+iỸs(ψ2)

(
−Hs

(
1

2
∆ψ1

)
−Hs

(
1

2
∆ψ2

)
+ 2λX̃s(ψ1ψ2)

)]
ds

+

∫ t

0
P̃s

[
e−X̃s(ψ1)+iỸs(ψ2)

(
1

2
Ks(X̃ − Ỹ , X̃ + Ỹ )(ψ1 + ψ2) + iKs(X̃, Ỹ )(ψ1 − ψ2)

)]
ds.

(4.5)

https://doi.org/10.4153/CJM-1999-019-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-019-x


Uniqueness for a Competing Species Model 381

Let (X̃, Ỹ ) be as in (4.4), independent of (X,Y ) with X̃0 = φ1, Ỹ0 = φ2 and φ = φ1 + iφ2.
Let us imagine for a moment that we can consider the collision distribution as a multi-
plicative operator (that is, Kt (X̃, Ỹ ) “= ” X̃tỸt ). Then applying the duality arguments from
Chapter 4.4 of [10], one can conjecture that

P[e−〈X
1
t , φ〉−〈X2

t , φ〉] = P × P̃t [e−〈X
1
0 , X̃t +iỸt〉−〈X2

0 , X̃t−iỸt〉],(4.6)

and this implies that the original martingale problem has a unique solution. The “only”
problem is the existence of such a process (X̃, Ỹ ). We will avoid this problem by construct-
ing a sequence of processes that “should” approximate solution to (4.4). This sequence
of processes determines the sequence of one-dimensional distributions {P̃(n)

t , t ≥ 0} on
MF × S ′ which we will call approximating sequence of dual (probability) measures. For the
sequence {P̃(n)

t , t ≥ 0} we will establish the existence of a “limit point”—a set of limiting
one dimensional distributions {P̃t , t ≥ 0} which satisfies the conditions of Lemma 4.3.
This will complete the proof of Theorem 2.6.

Remark 4.4 We will not prove the existence of (X̃, Ỹ ) which solves (4.4), though such a
process is likely to exist.

The next two sections are crucial for our construction of the approximating sequence of
dual measures.

5 Basic Evolution Equation

Given 1 ≤ p ≤ ∞ and B ∈ B(Rd), we define the space Lp(B) ≡ Lp(B, dx) as the normed
space of equivalent classes of measurable complex-valued functions with the finite norm

‖ f ‖p ≡ ‖ f ‖p,B =

∫
B
| f (x)|p dx, 1 ≤ p <∞,

‖ f ‖∞ ≡ ‖ f ‖∞,B = ess sup | f |.

We will suppress the subscript B in the notation of the norm if there is no ambiguity. Lp
R(B)

stands for real-valued functions in Lp(B). Let C∞c,R(Rd) be the space of real-valued infinitely-

differentiable functions with compact support in Rd.
For each φ ∈ S̃ ′ define

St (φ)(x) ≡ 〈φ, pt (x − ·)〉, ∀ t > 0, x ∈ Rd.

This extends the domain of the semigroup St to the set of tempered distributions.
For each φ = φ1 + iφ2 ∈ S̃ ′, r < t and κ ∈ L∞R

(
[r,∞)

)
+

, let Vr,t (φ, κ) = V 1
r,t + iV 2

r,t

denote a function-valued solution (if exists) of the following non-linear evolution equation

υ(t) = St−r(φ)−

∫ t

r
κ(s)St−s

(
υ(s)2

)
ds, r < t,(5.1)
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where V 1 = Re(V ) and V 2 = Im(V ) are, respectively, the real and imaginary parts of V .
We say that Vr,t (φ, κ) is a strong solution to (5.1) if it satisfies

∂υ(t)

∂t
=

1

2
∆υ(t)− κ(t)υ(t)2, r < t,

lim
t↓r

υ(t) = φ1 + iφ2 in S̃ ′.
(5.2)

We adopt the convention that Vt,t (φ, κ) ≡ φ for all t ≥ 0.
The equation (5.1) can be rewritten as a system of equations

υ1(t) = St−r(φ1)−

∫ t

r
κ(s)St−s

(
υ1(s)2 − υ2(s)2

)
ds, r < t,

υ2(t) = St−r(φ2)−

∫ t

r
2κ(s)St−s

(
υ1(s)υ2(s)

)
ds, r < t

(5.3)

with V 1 = υ1, V 2 = υ2. It is easy to check that

V 1
r,t (φ1 + iφ2, κ) =

1

2

(
Vr,t (φ1 + iφ2, κ) + Vr,t (φ1 − iφ2, κ)

)
,(5.4)

V 2
r,t (φ1 + iφ2, κ) = −i

1

2

(
Vr,t (φ1 + iφ2, κ)−Vr,t (φ1 − iφ2, κ)

)
.(5.5)

The existence and uniqueness of a solution to (5.1) for smooth initial conditions was
proved in Lemma A1 of [2] (the coefficients there do not depend on t but the required
extension to non-smooth coefficients is straightforward). The case of real measure-valued
initial conditions (φ2 = 0 in our setting) has been investigated by several authors (e.g. [14],
[4]), whereas equation (5.1) with complex S̃ ′-valued initial conditions does not seem to
have been previously investigated.

We will need the following auxiliary lemmas.

Lemma 5.1

‖St (φ)‖q ≤ ‖φ‖q, ∀φ ∈ Lq(Rd), ∀ 1 ≤ q ≤ ∞, t ≥ 0,

‖St (φ)‖q ≤ ‖pt−r‖ 2q
q+2
‖φ‖2, ∀φ ∈ L2(Rd), 2 ≤ q ≤ ∞, ∀ t > r

where pt is the Brownian density.

Proof The result follows immediately from Young’s inequality (see e.g. [1, 1.1.7]).

Lemma 5.2 For each φ ∈ D( 1
2∆)+ and κ ∈ L∞R

(
[r,∞)

)
+

we have

|Vr,t (φ, κ)(x)| ≤ St−r(|φ|)(x), t ≥ r(5.6)

and, therefore,

‖Vr,t (φ, κ)(·)‖q ≤ ‖φ‖q, ∀ 1 ≤ q ≤ ∞, t ≥ r,(5.7)

‖Vr,t (φ, κ)(·)‖q ≤ ‖pt−r‖ 2q
q+2
‖φ‖2, 2 ≤ q ≤ ∞, ∀ t > r(5.8)

where pt is the Brownian density.

https://doi.org/10.4153/CJM-1999-019-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-019-x


Uniqueness for a Competing Species Model 383

Proof The Feynman-Kac formula is used to get (5.6). The estimates (5.7), (5.8) follow
from (5.6) and Lemma 5.1.

Let (φ, ψ) ∈ S̃ ′ ×MF , and let Ur,t

(
Vr,·(φ, κ), ψ

)
be a solution (if exists) of the following

linear equation

u(t) = St−r(ψ)−

∫ t

r
2κ(s)St−s

(
Vr,s(φ, κ)u(s)

)
ds, t > r.(5.9)

We will adopt the convention that Ut,t

(
Vt,·(φ, κ), ψ

)
= ψ for all t ≥ 0. For the spe-

cific case when ψ = δx, the corresponding solution to (5.9) (if exists) will be denoted by
Ur,t

(
Vr,·(φ, κ), x

)
. That is, Ur,t

(
Vr,·(φ, κ), x

)
solves

u(t, y) = pt−r(x − y)−

∫ t

r
2κ(s)St−s

(
Vr,s(φ, κ)u(s)

)
(y) ds, t > r, y ∈ Rd.(5.10)

One can consider Ur,t

(
Vr,·(φ, κ), x

)
as a “fundamental solution” to the equation (5.9). We

set

Ur,t

(
Vr,·(φ, κ), x

)
(ν) ≡

∫
Rd

Ur,t

(
Vr,·(φ, κ), x

)
(y) ν(dy), ∀ ν ∈ MF.

It is easy to check that, for each (φ, ψ) ∈ S̃ ′ ×MF ,

Ur,t

(
Vr,·(φ, κ), ψ

)
= U r,t

(
Vr,·(φ, κ), ψ

)
, ∀ r ≤ t ≤ T.

We will establish the existence, uniqueness and properties of solutions for (5.1) and (5.9)
under certain regularity assumptions on the distribution valued boundary conditions. Let
ρ ≥ 0. We set

w(s, µ) ≡ ‖Ssµ‖
2
2 =

∫
Rd

|(Ssµ)(x)|2 dx, ∀ s > 0, µ ∈ S̃ ′,

wρ(δ, µ) ≡ sup
s≤δ

sρw(s, µ), ∀ δ > 0, µ ∈ S̃ ′,

w̃ρ(s, µ) ≡ ρ

∫ s

0
uρ−1w(u, µ) du, ∀ s > 0, µ ∈ S̃ ′.

In order to study Vr,t and Ur,t we need to introduce the following subsets of the spaces MF,
S ′ and S̃ ′

S ′ρ ≡ {µ ∈ S ′ : lim
δ→0

wρ(δ, µ) = 0},

Mρ
F ≡ {µ ∈ MF : lim

δ→0
wρ(δ, µ) = 0},

S̃ ′
ρ
≡ {µ = µ1 + iµ2 ∈ S̃ ′ : µ1 ∈ Mρ

F , µ2 ∈ S ′ρ}.

We would like to introduce the following definition.
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Definition 5.3 Let { f (n)} ∈ S̃ ′
ρ
, f (n) → f in S̃ ′ as n→∞, and

lim
h↓0

lim sup
n→∞

w̃ρ(h, f (n)) = 0.

Then we say that f (n) → f in S̃ ′
ρ

as n→∞. Let τρ be the corresponding topology on S̃ ′
ρ
.

Sometimes it will be convenient for us to consider S̃ ′
ρ

as a subspace of S̃ ′ with relative
topology τ̂ ρ induced on it. In this case we will use the notation (S̃ ′

ρ
, τ̂ ρ) to emphasize the

fact of using of topology induced by S̃ ′. But if it is not stated otherwise we assume that
topology on S̃ ′

ρ
is τρ.

It should be also pointed out that the notation τρ and τ̂ρ will have a double meaning
throughout this paper. They will denote not only topologies on S̃ ′

ρ
, but on Mρ

F × S ′ρ as
well. The correct meaning will be always obvious from the context.

Lemma 5.4 For any φ ∈ S̃ ′
ρ

there exists {φ(n)} in S̃(Rd) such that limn→∞ φ(n) = φ in
S̃ ′
ρ
.

Proof The proof is elementary. Take a function ψ ∈ S(Rd)+ such that

ψ(x) = 1, for |x| ≤ 1.

Define φ(n)(x) = S1/n(φ)(x)ψ(x/n). Then it is easy to check that φ(n) ∈ S̃(Rd), φ(n) → φ in
S̃ ′ and

lim
h↓0

lim sup
n→∞

w̃ρ(h, φ(n)) = 0.

For each µ = µ1 + iµ2 ∈ S̃ ′ such that w(s, µ) < ∞, one can easily check, using the
definition of the heat kernel and integration by parts formula, that w(s, µ) is differentiable
in s and that

w ′(s, µ) =
∂w(s, µ)

∂s

=

2∑
k=1

∫
Rd

∂

∂s
(Ssµk)(y)2 dy

=

2∑
k=1

∫
Rd

2(Ssµk)(y)
1

2
∆(Ssµk)(y) dy

= −
2∑

k=1

∫
Rd

d∑
j=1

(
∂

∂y j
(Ssµk)(y)

)2

dy ≤ 0, ∀ s > 0.

(5.11)

The following lemma will be frequently used.

Lemma 5.5 Let ρ > 0, µ ∈ S̃ ′. Suppose

w̃ρ(T, µ) <∞, ∀T > 0.(5.12)
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Then

sρw(s, µ) ≤ w̃ρ(s, µ), ∀ s > 0,(5.13)

and

lim
δ→0

wρ(δ, µ) = 0,(5.14)

that is, µ ∈ S̃ ′
ρ
.

Proof (5.14) follows immediately from (5.13). Let us show that lims↓0 sρw(s, µ) = 0. Since
w(s, µ) is differentiable in s, for any T > s we have

sρw(s, µ) = Tρw(T, µ)− ρ

∫ T

s
tρ−1w(t, µ) dt −

∫ T

s
tρw ′(t, µ) dt,

where w(t, µ) ≥ 0, w ′(t, µ) ≤ 0; therefore, both integrals at the right side are monotone in

s. Monotonicity of the integrals combined with the boundedness of
∫ T

0 tρ−1w(t, µ) dt imply
existence of the limit on the left hand side, so there exists a such that lims↓0 sρw(s, µ) = a.
Moreover, a = 0 since otherwise∫ T

0
tρ−1w(t, µ) dt =

∫ T

0

(
tρw(t, µ)

)
t−1 ds =∞,

which contradicts (5.12).
Thus, lims↓0 sρw(s, µ) = 0 and, hence,

sρw(s, µ) = ρ

∫ s

0
tρ−1w(t, µ) dt +

∫ s

0
tρw ′(t, µ) dt

≤ ρ

∫ s

0
tρ−1w(t, µ) dt.

For any ρ > 0 and A ⊂ Mρ
F × S ′ρ let us define two relative topologies:

τA
ρ ≡ {B ∩ A,B ∈ τρ}

τ̂A
ρ ≡ {B ∩ A,B ∈ τ̂ρ}.

Corollary 5.6 Let A = {(µ1, µ2) ∈ MF × S ′ :
∑2

l=1

∫ δ
0 tρ−1w(t, µl) dt ≤ k} for some

ρ, δ, k > 0.

(a) Then A ⊂ Mρ
F × S ′ρ and A is closed in MF × S ′.

(b) Suppose that in addition A is compact in MF × S ′. Then, for any ρ ′ > ρ, A is compact in

(Mρ ′

F × S ′ρ
′
, τ ρ

′
) and τA

ρ ′ = τ̂
A
ρ ′ .
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Proof (a) The fact that A ⊂ Mρ
F×S ′ρ is an immediate consequence of the previous lemma.

Let us check that A is closed. Let (µ(n)
1 , µ(n)

2 )→ (µ1, µ2) in MF×S ′ such that (µ(n)
1 , µ(n)

2 ) ∈ A
for all n. Then

∫ δ

0
tρ−1

2∑
l=1

w(t, µl) dt =

∫ δ

0
tρ−1

2∑
l=1

w(t, lim
n→∞

µ(n)
l ) dt

≤ lim inf
n→∞

∫ δ

0
tρ−1

2∑
l=1

w(t, µ(n)
l ) dt ≤ k

where the first inequality follows from Fatou’s lemma. Therefore, (µ1, µ2) ∈ A and we are
done.

(b) Let { f (n)} be any sequence in A. Since A is compact in MF × S ′, there exists subse-
quence {n ′} such that { f (n ′)} converges in MF × S ′ to some f . Let us check that { f (n ′)}

actually converges in Mρ ′

F × S ′ρ
′

for any ρ ′ > ρ. Without loss of generality we may assume
that ε < δ and then we have

w̃ρ ′(ε, f (n ′)) = ρ ′
∫ ε

0
sρ
′−1w(s, f (n ′)) ds

= ρ ′
∫ ε

0
sρ
′−ρ−1sρw(s, f (n ′)) ds

≤ ρ ′
∫ ε

0
sρ
′−ρ−1w̃ρ ′(s, f (n ′)) ds

≤ ρ ′
∫ ε

0
sρ
′−ρ−1k ds

→ 0, as ε ↓ 0,

uniformly in n ′. The first inequality follows from Lemma 5.5 and the second inequality

follows by our assumptions on A. Therefore f (n ′) converges in Mρ ′

F × S ′ρ
′
, and hence A is

compact in Mρ ′

F × S ′ρ
′

. The same arguments will readily show that subsets of A which are

closed in (Mρ ′

F × S ′ρ
′

, τ̂ρ ′) concise with with the subsets of A which are closed in (Mρ ′

F ×

S ′ρ
′
, τρ ′) and therefore τA

ρ ′ = τ̂
A
ρ ′ .

We will assume, unless stated otherwise, that ρ is a fixed number satisfying the condition:(
d

2
− 1

)
∨ 0 < ρ < 1 ∧

(
3

2
−

d

4

)
.(5.15)

With this fixed ρ in mind, we define another constant ρ̂ which satisfies the following con-
dition

0 < ρ̂ <

(
3−

d

2
− 2ρ

)
∧ (1− ρ).
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The measures in Mρ
F that we have previously defined, satisfy some conditions in terms

of capacities, that we introduce here. Following [1] we define

ν̂(ds, dy) ≡ sρ̂p1(dy)1(0 ≤ s ≤ 1) ds dy,

G f (x) ≡

∫ 1

0

∫
Rd

f (s, y)ps(x − y)ν̂ (ds, dy).

For any function f ∈ L2
(
Rd × R+, ν̂(ds, dy)

)
we denote

‖ f ‖2
2,ν̂ =

∫ 1

0

∫
Rd

| f (s, y)|2ν̂ (ds, dy).

Now we are ready to introduce the capacity

C(B) ≡ inf{‖ f ‖2,ν̂ : G f (x) ≥ 1, ∀ x ∈ B}, ∀B ∈ B(Rd).

A property that holds true for all x except those belonging to a set B with C(B) = 0 is said
to be true quasi-everywhere, abbreviated q.e.

Lemma 5.7

(i) If d ≤ 2, then there are no non-empty sets of capacity zero.
(ii) If µ ∈ Mρ

F , then µ does not charge sets of capacity zero.

Proof The result is an easy consequence of Theorem 2.5.1 and Proposition 2.6.1 of [1] and
their proofs.

Now we are ready to present the theorems which are important for further proofs. They
will be proved in the Appendix.

Theorem 5.8

(a) For each µ ∈ S̃ ′
ρ

and κ ∈ L∞R
(
[r,∞)

)
+

, there exists a unique solution Vr,t (µ, κ) for (5.1)
such that

Vr,·(µ, κ) ∈ L2
(
Rd × (r,T]

)
∩C
(
Rd × (r,T]

)
+
, ∀T > r,

Vr,ε+·(µ, κ) ∈ C
(
Rd × [r,T]

)
+
, ∀T > r, ε > 0,

Vr,t (µ, κ) ∈ Lq(Rd)+, ∀ t > r, q ≥ 2,

V 1
r,t (µ, κ) ∈ L1

R(Rd)+, ∀ t > r.

If κ ∈ C
(
[r,∞)

)
+

, then Vr,t (µ, κ) is a strong solution for (5.1), that is, it satisfies (5.2).

(b) Let T > 0, and let A, B be any compact subsets of S̃ ′
ρ
× [0,T) × Rd and S̃ ′

ρ
× [0,T)

respectively. Let κ(n) → κ weakly∗ in L∞R (R+)+. Then

lim
n→∞

sup
(µ,t,x)∈A

|Vt,T(µ, κ(n))(x)−Vt,T(µ, κ)(x)| = 0,(5.16)

and

sup
(µ,t,x)∈B×Rd

|Vt,T(µ, κ(n))(x)| <∞.(5.17)

https://doi.org/10.4153/CJM-1999-019-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-019-x


388 Leonid Mytnik

(c) Let T > 0, ψ ∈ S(Rd), and let A be any compact subset of S̃ ′
ρ

and κ(n) → κ weakly∗ in
L∞R (R+)+. Then

lim
ε↓0

sup
|t−s|<ε,s<t<T,µ∈A

|〈ψ,Vs,t (µ, κ
(n))〉 − 〈ψ, µ〉| = 0

uniformly in n.
(d) Let T > 0. The mapping

(t, µ, κ, x) 7→ Vt,T(µ, κ)(x)

of [0,T)× S̃ ′
ρ
× L∞R (R+)+ × Rd into C is continuous on [0,T)× S̃ ′

ρ
× L∞R (R+)+ × Rd

(where we induce the weak∗ topology on L∞R (R+)+).

Theorem 5.9

(a) For each µ ∈ S̃ ′
ρ
, r > 0, κ ∈ L∞R

(
[r,∞)

)
+

and q.e. x there exists a unique solution

Ur,t

(
Vr,·(µ, κ), x

)
for (5.10) such that

Ur,·

(
Vr,·(µ, κ), x

)
∈ C
(
(r,∞)× Rd

)
+
,

Ur,t

(
Vr,·(µ, κ), x

)
∈ C (Rd), ∀ t > r.

For each T > r and y ∈ Rd the function Ur,T

(
Vr,·(µ, κ), ·

)
(y) is quasicontinuous. For

each 0 ≤ r < T there exists N ⊂ Rd with C(N) = 0 such that∣∣Ur,T

(
Vr,·(µ, κ), x

)
(y)
∣∣ ≤ pT−r(x − y), ∀ (y, x) ∈ Rd × (Rd \N).(5.18)

(b) For each ν ∈ Mρ
F ,

Ur,·

(
Vr,·(µ, κ), ν

)
=

∫
Rd

Ur,·

(
Vr,·(µ, κ), x

)
ν(dx),

that is, the solution for (5.9) is given as an integral of the fundamental solution with
respect to the initial condition.

(c) Let T > 0 and ψ1, ψ2 ∈ C∞c,R(Rd)+. For any µ ∈ S̃ ′
ρ

let µ1 = Re(µ). Then the mapping

(t, µ, κ) 7→

∫
Rd

Ut,T

(
Vt,·(µ, κ), x

)
(ψ1)Ut,T

(
Vt,·(µ, κ), x

)
(ψ2)µ1(dx)

of [0,T)× S̃ ′
ρ
× L∞R (R+)+ into C is continuous on [0,T)× S̃ ′

ρ
× L∞R (R+)+.

(d) Let T > 0 and ψ ∈ S(Rd)+. Then the mapping

(t, µ, κ, x) 7→ Ut,T

(
Vt,·(µ, κ), ψ

)
(x)

of [0,T)× S̃ ′
ρ
× L∞R (R+)+ ×Rd into C is continuous on [0,T)× S̃ ′

ρ
× L∞R (R+)+ ×Rd.
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6 A Certain MF × S ′-Valued Process and Its Regularity Properties

Let (Ω,F, P) be a probability space which is sufficiently rich to contain all the processes
and random variables defined below. For any process {Xt , t ≥ 0} defined on (Ω,F, P), let
FX

t ≡
⋂
ε>0 σ{Xs : s ≤ t + ε}. Let P(Ft ) denote the predictable σ-algebra for the filtration

(Ft ).
We start this section with a reformulation of the result of [2] which establishes the exis-

tence and uniqueness of a solution for a certain martingale problem.

Lemma 6.1 For each r ≥ 0 and ν = P(X ′r ,W
′

r )−1 ∈ M1,c(MF × S ′), there exists a unique
solution (X ′,W ′) ∈ CMF×S ′[r,∞) of the following martingale problem

M ′
r,ν,λ



For all φ1, φ2 ∈ D

(
1

2
∆

)
,

X ′t (φ1) ≡ X ′r (φ1) +

∫ t

r
X ′s

(
1

2
∆φ1

)
ds + Z1

t (φ1), t ≥ r,

W ′
t (φ2) ≡W ′

r (φ2) + Z2
t (φ2), t ≥ r,

where Z j(φ j) are continuous square integrable Ft -martingales

such that

Z j
r (φ j) = 0, j = 1, 2,

〈Z j(φ j),Zk(φk)〉t = δ jk2λ

∫ t

r
X ′s (φ2

1) ds, j, k = 1, 2

with Ft ≡ F
(X ′,W ′)
t .

Proof A direct application of Itô’s formula implies that each solution of the martingale
problem M ′

r,ν,λ is a solution of the martingale problem for (A, ν) on the time interval [r,∞)
where

A =

{
exp{−µ1(φ1) + iµ2(φ2)},

exp{−µ1(φ1) + iµ2(φ2)}
1

2
µ1(−∆φ1 + 2λφ2

1 − 2λφ2
2) :

φ1 ∈ DR

(
1

2
∆

)
+

, φ2 ∈ S(Rd)

}
.

(6.1)

By Lemmas 4.10, 4.13, 4.18 from [2], each solution for (A, ν) is also a solution of M ′
r,ν,λ

and the two martingale problems are equivalent. The existence and uniqueness for (A, ν)
established in Theorem 3.3 of [2] completes the proof.

One can extend Z j , ( j = 1, 2) to an orthogonal martingale measure {Z j
t (φ) :

φ ∈ B(Rd), t ≥ r} and for each φ ∈ L2
r (X ′, P) the stochastic integral Z j

t (φ) =∫ t

r

∫
Rd

φ(s, ω, x) Z j(ds, dx) is well defined (see Remark 2.5).
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Corollary 6.2 For each r ≥ 0 and ν = P(X ′0,Y
′

0 )−1 ∈ M1,c(MF× S ′), there exists a unique
solution (X ′,Y ′) ∈ CMF×S ′[r,∞) of the following martingale problem

M ′′
r,ν,λ



For all φ1, φ2 ∈ D

(
1

2
∆

)
X ′t (φ1) ≡ X ′r (φ1) +

∫ t

r
X ′s

(
1

2
∆φ1

)
ds + Z1

t (φ1), t ≥ r,

Y ′t (φ2) ≡ Y ′r (φ2) +

∫ t

r
Y ′s

(
1

2
∆φ2

)
ds + Z2

t (φ2), t ≥ r,

where Z j(φ j) are continuous square integrable martingales such that

Z j
r (φ j) = 0, j = 1, 2,

〈Z j(φ j),Zk(φk)〉t = δ jk2λ

∫ t

r
X ′s (φ2

j ) ds, j, k = 1, 2.

Proof Let (X ′,W ′) be as in the previous lemma with W ′
r = Y ′r . Defining the S ′-valued

process Y ′ by

Y ′t (φ) ≡W ′
r (St−rφ) +

∫ t

r

∫
Rd

(St−sφ)(x)Z2 (ds, dx), t ≥ r,

one can easily check that (X ′,Y ′) satisfies M ′′
r,ν,λ (see e.g. Theorem 5.1 [20]). For uniqueness

one can check that

E[e−〈X
′
t ,φ1〉−i〈Y ′t ,φ2〉] = E[e−〈X

′
r ,ut−r〉−i〈Y ′r ,St−r(φ2)〉],

∀ t > r, φ1 ∈ D

(
1

2
∆

)
+

, φ2 ∈ D

(
1

2
∆

)
,

where ut solves the following equation:

u(t) = St (φ1)−

∫ t

0
λSt−s

(
u(s)2 −

(
Ss(φ2)

)2
)

ds, t > 0,

and uniqueness will follow by standard arguments (see Theorems 4.4.2, 4.4.7 of [10]).

Remark 6.3 In the sequel, the law of the process (X ′,Y ′) which starts at r ≥ 0 and
satisfies M ′ ′

r,ν,λ will be denoted by Q1
r,ν,λ. With a slight abuse of notation, we set

Q1
r,(µ1,µ2),λ ≡ Q1

r,δ(µ1 ,µ2),λ
, ∀ (µ1, µ2) ∈ MF × S ′,

M ′′
r,(µ1,µ2),λ ≡ M ′ ′

r,δ(µ1 ,µ2),λ
, ∀ (µ1, µ2) ∈ MF × S ′.

We will need the following equivalent representation of the martingale problem M ′′
r,ν,λ:
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Lemma 6.4 Suppose (X ′,Y ′) solves M ′ ′
r,ν,λ for some r ≥ 0, ν ∈ M1,c(MF × S ′). Then

(X ′,Y ′) satisfies the following

M̃T
r,ν,λ



For all µ1, µ2 ∈ Mρ
F , T > 0,

X ′t (ST−tµ1) ≡ X ′r (ST−rµ1) + Z1,T
t (µ1), r ≤ t ≤ T,

Y ′t (ST−tµ2) ≡ Y ′r (ST−rµ2) + Z2,T
t (µ2), r ≤ t ≤ T,

where Z j,T(µ j) are continuous square integrable martingales on [r,T]

such that

Z j,T
r (µ j) = 0, j = 1, 2,

〈Z j(µ j),Zk(µk)〉t = δ jk2λ

∫ t

r
X ′s
(

(ST−sµ j)
2
)

ds, j, k = 1, 2

where Mρ
F and ρ are defined in Section 5.

Proof We identify L1
R(Rd)+ with MF by the mapping φ(x) 7→ φ(x) dx. For µ1, µ2 ∈

D( 1
2∆) ∩ L1

R(Rd)+, the result follows from Itô’s formula. For general µ1, µ2 ∈ Mρ
F , one

can choose sequences of smooth functions {ψ(n)
1 }, {ψ

(n)
2 } in D( 1

2∆) ∩ L1
R(Rd)+ such that

ψ(n)
j ⇒ µ j and

lim
n→∞

Stψ
(n)
j = Stµ j in L2

R

(
(0,T]× Rd

)
+
, j = 1, 2,

for all T > 0. The latter condition can be easily satisfied since Stµ j ∈ L2
R

(
(0,T] × Rd

)
+

for µ j ∈ Mρ
F , j = 1, 2. Further, L2

R

(
(0,T] × Rd

)
+
⊂ L2

r (X ′, P) and L2
r (X ′, P) is complete,

hence, the result follows immediately.

Given a bounded stopping time τ ≥ r, we will say that a pair of MF×S ′-valued processes
(X,Y ) satisfies the stopped martingale problem M̃T,τ

u,ν,λ for r ≤ u < T if

M̃T,τ
u,ν,λ



P(Xu,Yu)−1 = ν ∈ M1(MF × S ′),

Xt = Xu,Yt = Yu, for u ≤ t ≤ T, τ < u.

For all µ1, µ2 ∈ Mρ
F ,

1(τ ≥ u)Xt (ST−(t∧τ )µ1) ≡ 1(τ ≥ u)Xu(ST−uµ1) + Z1,τ ,T
t (µ1), u ≤ t ≤ T,

1(τ ≥ u)Yt (ST−(t∧τ )µ2) ≡ 1(τ ≥ u)Yu(ST−uµ2) + Z2,τ ,T
t (µ2), u ≤ t ≤ T,

where Z j,τ ,T(µ j) are continuous square integrable martingales on [u,T]

such that

Z j,τ ,T
u (µ j) = 0, j = 1, 2,

〈Z j,τ ,T(µ j),Zk,τ ,T(µk)〉t = δ jk2λ

∫ t

u
1(τ ≥ s)Xs

(
(ST−sµ j)

2
)

ds, j, k = 1, 2.

For any bounded stopping time τ ≥ r the optional stopping theorem implies that if
(X ′,Y ′) satisfy M̃T

r,ν,λ on [r,T] then (X ′·∧τ ,Y
′
·∧τ ) satisfies M̃T,τ

u,νu,λ
, for any r ≤ u < T with

νu = P(X ′u∧τ ,Y
′

u∧τ )−1.
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In order to simplify the exposition, in the remainder of this section we will deal with the
martingale problem M ′ ′

0,ν,λ. (All the results hold in the general case r > 0 as well.)
Let us indicate several simple properties of (X ′,Y ′). In what follows we will assume that

(X ′0,Y
′

0 ) = (µ1, µ2) =
(
φ1(x)dx, φ2(x)dx

)
,

φ1 ∈ L1
R(Rd)+ ∩ L2

R(Rd)+, φ2 ∈ L2
R(Rd).

Some simple calculations give us the second moment formulae for X ′ and Y ′:

P[〈X ′t , ψ1〉 〈X
′
t , ψ2〉]

= 〈φ1, Stψ1〉 〈φ1, Stψ2〉

+ 2λP

[∫ t

0

∫
Rd

St−u(ψ1)(y)St−u(ψ2)(y)(Suφ1)(y) dy du

]
, ∀ψ1, ψ2 ∈ S(Rd),

(6.2)

P[〈Y ′t , ψ1〉 〈Y
′

t , ψ2〉]

= 〈φ2, Stψ1〉 〈φ2, Stψ2〉

+ 2λP

[∫ t

0

∫
Rd

St−u(ψ1)(y)St−u(ψ2)(y)(Suφ1)(y) dy du

]
, ∀ψ1, ψ2 ∈ S(Rd).

(6.3)

The next lemma establishes regularity properties of (X ′,Y ′) at a fixed time.

Lemma 6.5 For all t > 0, P-a.s. (X ′t ,Y
′

t ) ∈ Mβ
F × S ′β for any β > d

2 − 1.

Proof By Lemma 5.5, it suffices to prove that

P

[∫ T

0
sβ−1w(s,X ′t ) ds

]
<∞, P

[∫ T

0
sβ−1w(s,Y ′t ) ds

]
<∞, ∀ t ≥ 0, T > 0.

We will prove only the assertion about Y ′t ; for X ′t the proof is the same. Since w(s,Y ′t ) ≥ 0,
by Fubini’s theorem and (6.3) we obtain

P

[∫ T

0
sβ−1w(s,Y ′t ) ds

]

=

∫ T

0

∫
Rd

sβ−1P[Ss(Y
′

t )(x)2] dx ds

=

∫ T

0

∫
Rd

sβ−1(St+sφ2)(x)2 dx ds

+ 2λ

∫ T

0
sβ−1

∫
Rd

∫ t

0

∫
Rd

pt+s−u(x − y)2(Suφ1)(y) dy du dx ds

≤ ‖φ2‖
2
2

∫ T

0
sβ−1 ds + 2λCd‖φ1‖1

∫ T

0
sβ−1

∫ t

0
(t + s− u)−d/2 du ds,
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where the constant Cd depends on d. Both integrals are finite for any T, t > 0, β > d/2−1,
therefore we are done.

7 Dual Probability Measures

In this section we will construct the approximating sequence of dual probability measures.
(The motivation for our construction was discussed in Section 4.) We will also establish
the existence of limiting dual probability measures satisfying some equation.

7.1 Construction of Approximating Sequence of Dual Measures

Let Ω̃ = CMF×S ′[0,∞) denote the space of continuous MF(Rd)×S ′(Rd)-valued paths with
the compact-open topology, and let F̃ denote its Borel σ-algebra. Let (F̃t )t≥0 denote the
canonical right-continuous filtration on (Ω̃, F̃). X̃t (ω) = ω(t) will denote the coordinate
mappings on Ω̃. Let F̃[r,t] = σ(X̃u : r ≤ u ≤ t). We wish to construct some sequence of
probability measures P̃(n) on (Ω̃, F̃). Fix n ≥ 1.

Let Q1
r,(µ,ν) be the probability law of the process (X ′,Y ′) defined in Remark 6.3. Before

determining the probability law Q2
r,(µ,ν), we need to introduce further notation. Let

j(n)(t) ≡

1,
2k

n
≤ t ≤

2k + 1

n
, k = 0, 1, 2, . . . ,

0, otherwise

and

V n
r,t (µ1 + iµ2) ≡

{
Vr,t (µ1 + iµ2, j(n)), if (µ1, µ2) ∈ Mρ

F(Rd)× S ′ρ(Rd),

0, otherwise,

where Vr,t is defined as in Section 5. Put V 1,n = Re(V n), V 2,n = Im(V n). For given
r ≥ 0 and (µ1, µ2) ∈ MF(Rd) × S ′(Rd) let Q2

r,(µ,ν) be the law of the deterministic process

(V 1,n
r,t ,V

2,n
r,t )t≥r starting at

(
r, (µ1, µ2)

)
.

Now we are ready to construct P̃(n) on F̃l/n by induction on l as follows. Fix arbitrary
(φ1, φ2) ∈ S(Rd)+ × S(Rd). Let

P̃(n)|F̃1/n
= Q2

0,(φ1,φ2)|F̃1/n
.

Since (φ1, φ2) ∈ S(Rd)+ × S(Rd) ⊂ Mρ
F(Rd)× S ′ρ(Rd), we have

(X̃t , Ỹt ) =
(
V 1,n

0,t (φ1 + iφ2),V 2,n
0,t (φ1 + iφ2)

)
, 0 ≤ t ≤ 1/n.(7.1)

Let Q1
1/n,(X̃1/n,Ỹ1/n)|F̃[1/n,2/n]

be the regular conditional distribution of P̃(n)|F̃[1/n,2/n]
given F̃1/n.

By Theorem 5.8(a) (X̃1/n, Ỹ1/n) ∈
(
L1(Rd)∩ L2(Rd)

)
+
× L2(Rd)+. Therefore by Lemma 6.5

(X̃2/n, Ỹ2/n) ∈ Mρ
F(Rd)× S ′ρ(Rd), P̃(n)-a.s.(7.2)
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Let Q2
2/n,(X̃2/n,Ỹ2/n)|F̃[2/n,3/n]

be the regular conditional distribution of P̃(n)|F̃[2/n,3/n]
given F̃2/n.

By (7.2) we get

(X̃t , Ỹt ) =
(
V 1,n

2/n,t (X̃2/n + iỸ2/n),V 2,n
2/n,t (X̃2/n + iỸ2/n)

)
=
(
V 1

2/n,t (X̃2/n + iỸ2/n, j(n)),V 2
2/n,t (X̃2/n + iỸ2/n, j(n))

)
, 2/n ≤ t ≤ 3/n,

(7.3)

P̃(n)-a.s. Continuing in this way, we define P̃(n) on F̃.
Roughly speaking, we defined the alternating MF×S ′-valued process (X̃, Ỹ) which starts

at (φ1, φ2), and evolves as
(
V 1,n

0,t (φ1 + iφ2),V 2,n
0,t (φ1 + iφ2)

)
until time t = 1/n. In the

interval [1/n, 2/n] the process follows the paths of the (X ′,Y ′) processes constructed in the

Section 6, starting at
((

V 1,n
0,1/n(φ1 + iφ2),V 2,n

0,1/n(φ1 + iφ2)
)
, 1/n
)

. In the interval [2/n, 3/n]

(X̃, Ỹ) evolves again as a solution to (5.3) starting at
(
(X̃2/n, Ỹ2/n), 2/n

)
, and the pattern of

alternating deterministic and stochastic processes continues.
Let

P̃(n)
t (B) = P̃(n)

(
(X̃t , Ỹt ) ∈ B

)
, ∀B ∈ B(MF × S ′), t ≥ 0.

Let
j(t) ≡ 1/2, ∀ t ≥ 0.

Define

Vt (µ) ≡

{
V0,t (µ, j), if µ ∈ S̃ ′

ρ
(Rd),

0, otherwise,

U n
r,t (µ, ·) ≡

{
Ur,t

(
V n

r,·(µ), ·
)
, if µ ∈ S̃ ′

ρ
(Rd),

0, otherwise,

Ut (µ, ·) ≡

{
U0,t

(
V·(µ), ·

)
, if µ ∈ S̃ ′

ρ
(Rd),

0, otherwise.

In order to simplify our notation, it is useful to define S̃ ′
ρ
-valued processes (Ht )t≥0 and

(Ht )t≥0 by setting
Ht ≡ X̃t + iỸt , Ht ≡ X̃t − iỸt , t ≥ 0.

The rest of this section is devoted to the proof of the following two results.

Proposition 7.1 For all T > 0 and (ψ1, ψ2) ∈ S(Rd)+ × S(Rd)+,

exp{−〈ψ1,V
n
t,T(Ht )〉 − 〈ψ2,V

n
t,T(Ht )〉}

−

∫ t

0
exp{−〈ψ1,V

n
s,T(Hs)〉 − 〈ψ2,V

n
s,T(Hs)〉}

× 4λ j(n)

(
s +

1

n

)∫
Rd

U n
s,T(Hs, x)(ψ1)U n

s,T(Hs, x)(ψ2)X̃s (dx) ds

(7.4)

is a P̃(n)-martingale on 0 ≤ t ≤ T.
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Theorem 7.2 There exists P̃t ∈ CM1(MF×S ′)[0,∞) which satisfies the following equation:

P̃t [exp{−〈ν1,VT−t (Ht )〉 − 〈ν2,VT−t (Ht )〉}]

= exp{−〈ν1,VT(H0)〉 − 〈ν2,VT(H0)〉}

+

∫ t

0
P̃s

[
exp{−〈ν1,VT−s(Hs)〉 − 〈ν2VT−s(Hs)〉}

× 2λ

∫
Rd

UT−s(Hs, x)(ν1)UT−s(Hs, x)(ν2)X̃s(dx)

]
ds, 0 ≤ t < T,

(7.5)

for all T > 0 and (ν1, ν2) ∈ Mρ
F ×Mρ

F . Moreover P̃t (Mρ
F × S ′ρ) = 1, for all t ≥ 0.

The above theorem is the key to proving our main uniqueness result in Section 8.

Remark 7.3 By our construction,

(X̃t , Ỹt ) ∈ Mρ
F × S ′ρ(7.6)

and, as a consequence, Ht ,Ht ∈ S̃ ′
ρ

P̃(n)-a.s., for all t ≥ 0. Therefore, everywhere
throughout this section, we will treat V n

t,T(Ht ) (resp. U n
t,T(Ht , ·)) as Vt,T(Ht , j(n)) (resp.

Ut,T

(
V n

t,·, (Ht ), ·
)

).

7.2 Proof of Proposition 7.1

We will prove Proposition 7.1 via a series of lemmas. We start with two technical lemmas
that will be extensively used in the proof.

Lemma 7.4 For any T > 0, µ ∈ MF there exists a superprocess X̂ defined on [0,T] such
that

X̂0 = µ(7.7)

P̂[e−〈X̂T−t ,φ〉] = e−〈µ,V
n
t,T (φ)〉, ∀φ ∈ S̃(Rd).(7.8)

For each φ ∈ S̃ ′
ρ

and for each t such that 2m+1
n ∨ 0 ≤ T − t ≤ 2m+2

n ∧ T, we also have

P̂[e−〈X̂T−t ,φ〉] = e−〈µ,V
n
t,T (φ)〉,(7.9)

P̂[e−〈X̂T−t ,φ〉X̂T−t (x)] = e−〈µ,V
n
t,T (φ)〉

〈
µ, U n

t,T(φ, x)
〉
, for q.e. x ∈ Rd.(7.10)

Proof The existence of a superprocess X̂ which satisfies (7.7)–(7.8) for φ ∈ S(Rd)+ follows
from [9, Theorem 1.1] and then the extension to φ ∈ S̃(Rd) is straightforward. Let us
mention some simple properties of X̂. Take any m such that 0 ≤ m ≤ Tn/2. Then X̂
evolves as a super-Brownian motion on the time interval [T − 2m+1

n ∨ 0,T − 2m
n ] starting

at X̂T− 2m+1
n

. On the time interval [T − 2m+2
n ∨ 0,T − 2m+1

n ] X̂ solves the heat equation
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starting at X̂T− 2m+2
n

. In particular, this implies that X̂ is function-valued on the time interval

[T− 2m+2
n ∨ 0,T− 2m+1

n ] and, so, we can give the rigorous meaning to the left sides of (7.9)
and (7.10).

For φ ∈ S̃′
ρ

let {φ(k)} be a sequence in S̃(Rd) such that limk→∞ φ(k) = φ in S̃ ′
ρ

(such sequence exists by Lemma 5.4). By (7.8) we have that P̂[exp−〈X̂T−t , φ
(k)〉] =

exp−〈µ,V n
t,T(φ(k))〉 for each k. Let k→∞ and apply Theorem 5.8 (d) to get (7.9).

Turning to (7.10), note that, for each φ ∈ S̃(Rd) and ψ ∈ S(Rd)+,

P̂[e−〈X̂T−t ,φ〉〈X̂T−t , ψ〉] = − lim
ε↓0

1

ε
P̂[e−〈X̂T−t ,φ+εψ〉 − e−〈X̂T−t ,φ〉]

= − lim
ε↓0

1

ε

(
e−〈µ,V

n
t,T (φ+εψ)〉 − e−〈µ,V

n
t,T (φ)〉

)
= e−〈µ,V

n
t,T (φ)〉

〈
µ, U n

t,T(φ, ψ)
〉

(see Section 6.3 of [7] for a similar result). For a general φ ∈ S̃ ′
ρ

choose {φ(k)} in S̃(Rd)
such that limk→∞ φ(k) = φ in S̃ ′

ρ
and use Theorem 5.9(b), (d) to get

lim
k→∞

U n
t,T(φ(k), ψ) = U n

t,T(φ, ψ) =

∫
Rd

U n
t,T(φ, x)ψ(x) dx.

By Theorem 5.9 U n
t,T(φ, ·) is quasicontinuous. Therefore Proposition 6.1.3 of [1] implies

that

∫
Rd

U n
t,T(φ, x)ψ(y) dy → U n

t,T(φ, x) as ψ → δx, for q.e. x, and (7.10) follows.

Lemma 7.5 For all 0 < s < T, ν1, ν2 ∈ MF,∫
Rd

|U n
s,T(Hs, x)(ν1)U n

s,T(Hs, x)(ν2)|X̃s (dx)

≤

∫
Rd

ST−s(ν1)(x)ST−s(ν2)(x)X̃s (dx), P̃(n)-a.s.

Proof By Theorem 5.9 |U n
s,T(X̃s ± Ỹs, x)(ν)| ≤ ST−s(ν)(x) for all ν ∈ MF and q.e. x ∈ Rd.

By (7.6), X̃s ∈ Mρ
F P̃(n)-a.s. for all s ≥ 0. Therefore, by Lemma 5.7, X̃s does not charge sets

of nil capacity P̃(n)-a.s., and the desired result follows.

In our proof of Proposition 7.1 we will use localization arguments. Let us define the
stopped version of the canonical process (X̃, Ỹ). Let {Bk, k ≥ 1} be a sequence of open sets
in Mρ

F × S ′ρ, such that limk→∞ Bk = Mρ
F × S ′ρ. We also assume that for each k there exists

Γk—a compact set in Mρ
F × S ′ρ such that Bk ⊂ Γk.

Let

τk ≡ inf{t ≥ 0 : (X̃t , Ỹt ) /∈ Bk},

τ (k)(t) ≡ τk ∧ t.
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Then τk is an F̃t -stopping time. Define

X̃(k)
t ≡ X̃τ (k)(t), Ỹ (k)

t ≡ Ỹτ (k)(t),

H(k)
t ≡ Hτ (k)(t), H

(k)
t ≡ Hτ (k)(t).

The construction of P̃(n), and the fact that νm ≡ P̃(n)−1

(X̃(k)
2m+1

n
, Ỹ (k)

2m+1
n

) ∈ M1,c(MF × S ′)

for all m ≥ 0, and the optional stopping theorem imply that for each m ≥ 0 the process

(X̃(k)
t , Ỹ (k)

t ) satisfies M̃2(m+1)/n,τk
2m+1

n ,νm
on the interval [ 2m+1

n , 2m+2
n ] (see Section 6 for the definition

of M̃2(m+1)/n,τk
2m+1

n ,νm
).

Let us introduce further notation. For all T1,T2 > 0 and (ψ1, ψ2) ∈ S(Rd) × S(Rd),
define

N1
t,T1,T2

(ψ1, ψ2) ≡
〈
ψ1, V n

t,T1
(Ht )
〉

+
〈
ψ2, V n

t,T2
(Ht )
〉
, 0 ≤ t ≤ T1 ∧ T2,

N2
t,T1,T2

(ψ1, ψ2) ≡
〈
ψ1, V n

t,T1
(Ht )
〉

+
〈
ψ2, V n

t,T2
(Ht )
〉
, 0 ≤ t ≤ T1 ∧ T2.

Lemma 7.6 For all T1,T2 > 0 and (ψ1, ψ2) ∈ S(Rd)+ × S(Rd)+,

exp{−N1
τ (k)(t),T1,T2

(ψ1, ψ2)} −

∫ τ (k)(t)

0
exp{−N1

s,T1,T2
(ψ1, ψ2)}

× 4λ j(n)

(
s +

1

n

)∫
Rd

U n
s,T1

(Hs, x)(ψ1)U n
s,T2

(Hs, x)(ψ2)X̃s (dx) ds

(7.11)

and

exp{−N2
τ (k)(t),T1,T2

(ψ1, ψ2)}(7.12)

are P̃(n)-martingales on 0 ≤ t ≤ T, where T = T1 ∧ T2.

Proof We will prove the assertion only for (7.11) since the proof for (7.12) is the same.
Let t ∈ [2m/n, (2m + 1)/n] for some m ≥ 0. Then the construction of P̃(n) and X̃(k)

implies that X̃(k)
t ± iỸ (k)

t = V n
τ (k)(2m/n),τ (k)(t)(X̃(k)

2m/n ± iỸ (k)
2m/n). Therefore, by the semigroup

property of V n
r,t (V n

r,tV
n
s,r = V n

s,t for s ≤ r ≤ t), we obtain that

V n
τ (k)(t),Tl

(X̃(k)
t ± iỸ (k)

t ) = V n
τ (k)(2m/n),Tl

(X̃(k)
2m/n ± iỸ (k)

2m/n), l = 1, 2,

is a constant on 2m
n ≤ t ≤ 2m+1

n . The fact that

exp{−〈ψ1,V
n
τ (k)(t),T1

(H(k)
t )〉 − 〈ψ2,V

n
τ (k)(t),T2

(H
(k)
t )〉}(7.13)

is a martingale on [ 2m
n ,

2m+1
n ] follows immediately.
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Let t ∈ [ 2m+1
n , 2m+2

n ] for some m ≥ 0. Let (X̂1, X̂2) be a pair of independent superpro-
cesses defined on [0,T1] and [0,T2] respectively, such that for all fl ∈ S̃(Rd)

P̂l[exp{−〈X̂l
Tl−t , fl〉}] = exp{−〈ψl,V

n
t,T( fl)〉}, 0 ≤ t ≤ Tl, l = 1, 2.

As we explained in Lemma 7.4, X̂l (l = 1, 2) solves the heat equation on the intervals
[Tl −

2m+2
n ∨ 0,Tl −

2m+1
n ] starting at X̂l

Tl−
2m+2

n
. By the way, this also implies that, for each

m ≤ (Tln− 1)/2,

X̂l
Tl−t = S 2m+2

n ∧Tl−t X̂
l
0∨Tl−

2m+2
n
,

2m + 1

n
≤ t ≤

2m + 2

n
∧ T, l = 1, 2.(7.14)

t ∈ [ 2m+1
n , 2m+2

n ] and, in order to simplify the exposition, we will assume that 2m+2
n ≤ T

(the case 2m+1
n ≤ T ≤ 2m+2

n can be treated in the same manner). Then we get

exp{−〈ψ1,V
n
τ (k)(t),T1

(H(k)
t )〉 − 〈ψ2,V

n
τ (k)(t),T2

(H
(k)
t )〉}

= P̂1 × P̂2[exp{−〈X̂1
T1−τ (k)(t),H

(k)
t 〉 − 〈X̂

2
T2−τ (k)(t),H

(k)
t 〉}].

(7.15)

Since X̂l
t ∈ Mρ

F P̂l-a.s. for all 0 ≤ t ≤ Tl, therefore all the variables above are well defined
P̂1 × P̂2 × P̃(n)-a.s.

By (7.14) we have that, for each t ∈ [ 2m+1
n , 2m+2

n ],

〈X̂1
T1−τ (k)(t) + X̂2

T2−τ (k)(t), X̃
(k)
t 〉

≡ 1
(
τ (k)(t) < (2m + 1)/n

)
〈X̂1

T1−τ (k)(t) + X̂2
T2−τ (k)(t), X̃

(k)
t 〉

+ 1
(
τ (k)(t) ≥ (2m + 1)/n

)
〈S 2m+2

n −τ
(k)(t)(X̂1

T1−
2m+2

n
+ X̂2

T2−
2m+2

n
), X̃(k)

t 〉,

(7.16)

〈X̂1
T1−τ (k)(t) − X̂2

T2−τ (k)(t), Ỹ
(k)
t 〉

≡ 1
(
τ (k)(t) < (2m + 1)/n

)
〈X̂1

T1−τ (k)(t) − X̂2
T2−τ (k)(t), Ỹ

(k)
t 〉

+ 1
(
τ (k)(t) ≥ (2m + 1)/n

)
〈S 2m+2

n −τ
(k)(t)(X̂1

T1− 2m+2
n
− X̂2

T2− 2m+2
n

), Ỹ (k)
t 〉.

(7.17)

Since (X̃(k), Ỹ (k)) satisfies the martingale problem M̃2(m+1)/n,τk
2m+1

n ,νm
, the last terms in (7.16),

(7.17) may be rewritten as

1
(
τ (k)(t) ≥ (2m + 1)/n

)
〈S 2m+2

n −τ
(k)(t)(X̂1

T1−
2m+2

n
+ X̂2

T2−
2m+2

n
), X̃(k)

t 〉

= 1
(
τ (k)(t) ≥ (2m + 1)/n

)
〈S 1

n
(X̂1

T1−
2m+2

n
+ X̂2

T2−
2m+2

n
), X̃(k)

2m+1
n
〉 + Zm,1

t ,
(7.18)

1
(
τ (k)(t) ≥ (2m + 1)/n

)
〈S 2m+2

n −τ
(k)(t)(X̂1

T1− 2m+2
n
− X̂2

T2− 2m+2
n

), Ỹ (k)
t 〉

= 1
(
τ (k)(t) ≥ (2m + 1)/n

)
〈S 1

n
(X̂1

T1−
2m+2

n
− X̂2

T2−
2m+2

n
), Ỹ (k)

2m+1
n
〉 + Zm,2

t ,
(7.19)
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where Zm,1,Zm,2 are continuous square integrable martingales on [ 2m+1
n , 2m+2

n ] such that

Zm,1
2m+1

n
= Zm,2

2m+1
n
= 0, 〈Zm,1,Zm,2〉t = 0 and

〈Zm,1〉t = 2λ

∫ t

(2m+1)/n
1(τ (k) ≥ s)〈

(
S 2m+2

n −s(X̂1
T1− 2m+2

n
+ X̂2

T2− 2m+2
n

)
)2
, X̃(k)

s 〉 ds

= 2λ

∫ t

(2m+1)/n
1(τ (k) ≥ s)〈

(
X̂1

T1−s + X̂2
T2−s

)2
, X̃(k)

s 〉 ds,

(7.20)

〈Zm,2〉t = 2λ

∫ t

(2m+1)/n
1(τ (k) ≥ s)〈

(
S 2m+2

n −s(X̂1
T1−

2m+2
n
− X̂2

T2−
2m+2

n
)
)2
, X̃(k)

s 〉 ds

= 2λ

∫ t

(2m+1)/n
1(τ (k) ≥ s)〈(X̂1

T1−s − X̂2
T2−s)

2, X̃(k)
s 〉 ds,

(7.21)

where for the second equalities in (7.20), (7.21) we use (7.14). Using (7.14) again and
combining (7.16–7.19) we get

〈X̂1
T1−τ (k)(t) + X̂2

T2−τ (k)(t), X̃
(k)
t 〉 = 〈X̂

1
T1−τ (k)( 2m+1

n ) + X̂2
T2−τ (k)( 2m+1

n ), X̃
(k)
2m+1

n
〉 + Zm,1

t ,

〈X̂1
T1−τ (k)(t) − X̂2

T2−τ (k)(t), Ỹ
(k)
t 〉 = 〈X̂

1
T1−τ (k)( 2m+1

n ) − X̂2
T2−τ (k)( 2m+1

n ), Ỹ
(k)
2m+1

n
〉 + Zm,2

t .

We apply Itô’s formula and obtain that

e
−〈X̂1

T1−τ(k) (t)
,H(k)

t 〉−〈X̂
2
T2−τ(k) (t)

,H(k)
t 〉

−

∫ t

2m+1
n

1
(
s ≤ τ (k)(t)

)
e
−〈X̂1

T1−τ(k) (s)
,H(k)

s 〉−〈X̂
2
T2−τ(k) (s)

,H(k)
s 〉4λ〈X̂1

T1−sX̂
2
T2−s, X̃s〉 ds

is a martingale on [(2m + 1)/n, (2m + 2)/n] for P̂1 × P̂2-a.s (X̂1, X̂2). Now by checking the
conditions of the stochastic Fubini theorem (e.g. [20, Theorem 2.6]) we may conclude that

P̂1 × P̂2[e
−〈X̂1

T1−τ(k) (t)
,H(k)

t 〉−〈X̂
2
T2−τ(k) (t)

,H(k)
t 〉]

− P̂1 × P̂2

[∫ 2m+1
n ∨τ

(k)(t)

2m+1
n

e
−〈X̂1

T1−τ(k) (s)
,H(k)

s 〉−〈X̂
2
T2−τ(k) (s)

,H(k)
s 〉4λ〈X̂1

T1−sX̂
2
T2−s, X̃s〉 ds

]

is a martingale on [(2m + 1)/n, (2m + 2)/n]. By (7.15) and by the ordinary Fubini theorem
we obtain that

e
−〈ψ1,V

n
τ(k) (t),T1

(H(k)
t )〉−〈ψ2,V

n
τ(k) (t),T2

(H(k)
t )〉

−

∫ 2m+1
n ∨τ

(k)(t)

2m+1
n

P̂1 × P̂2[e
−〈X̂1

T1−τ(k) (s)
,H(k)

s 〉−〈X̂
2
T2−τ(k) (s)

,H(k)
s 〉4λ〈X̂1

T1−sX̂
2
T2−s, X̃s〉] ds
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is a martingale on [(2m + 1)/n, (2m + 2)/n]. By Lemma 7.4 it is easy to integrate with
respect to P̂1 × P̂2 inside the integral and to obtain that

e
−〈ψ1,V

n
τ(k) (t),T1

(H(k)
t )〉−〈ψ2,V

n
τ(k) (t),T2

(H(k)
t )〉

−

∫ 2m+1
n ∨τ

(k)(t)

2m+1
n

e−〈ψ1,V
n
s,T1

(Hs)〉−〈ψ2,V
n
s,T2

(Hs)〉

× 4λ

∫
Rd

U n
s,T1

(Hs, x)(ψ1)U n
s,T2

(Hs, x)(ψ2)X̃s (dx) ds

(7.22)

is a martingale on [(2m + 1)/n, (2m + 2)/n]. (7.11) follows by (7.13), (7.22) and the fact
that m was arbitrary.

Lemma 7.7 For each ψ1, ψ2 ∈ C∞c,R(Rd)+×C∞c,R(Rd)+, N1
τ (k)(t),T1,T2

(ψ1, ψ2) is a martingale
on [0,T1 ∧ T2] with quadratic variation given by

∫ τ (k)(t)

0
8λ j(n)

(
s +

1

n

)∫
Rd

U n
s,T1

(Hs, x)(ψ1)U n
s,T2

(Hs, x)(ψ2)X̃s (dx) ds

and N2
τ (k)(t),T1,T2

(ψ1, ψ2) is a martingale on [0,T1 ∧ T2] with quadratic variation equal to 0.

Proof Since by truncation the process (X̃(k), Ỹ (k)) “lives” on a compact subset of Mρ
F × S ′ρ

it is easy to check that

lim
ε↓0
−

1

ε

(
exp{−εNl

τ (k)(t),T1,T2
(ψ1, ψ2)} − 1

)
= Nl

τ (k)(t),T1,T2
(ψ1, ψ2),

lim
ε↓0

1

ε

∫ τ (k)(t)

0
exp{−εN1

s,T1,T2
(ψ1, ψ2)}

× ε24λ j(n)

(
s +

1

n

)∫
Rd

U n
s,T1

(Hs, x)(ψ1)U n
s,T(Hs, x)(ψ2) X̃s(dx) ds = 0,

P̃(n)-a.s. and in L1 for l = 1, 2. This together with Lemma 7.6 implies that
Nl
τ (k)(t),T1,T2

(ψ1, ψ2) is a continuous martingale for l = 1, 2. Applying Itô’s formula, we
obtain that for l = 1, 2

e
−Nl

τ(k) (t),T1 ,T2
(ψ1,ψ2)

−

∫ τ (k)(t)

0
e−Nl

s,T1 ,T2
(ψ1,ψ2) 1

2
d〈Nl

·(ψ1, ψ2)〉s

is a martingale and the result follows from Lemma 7.6.

Lemma 7.7 yields the following corollary.
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Corollary 7.8 For each (ψ1, ψ2) ∈ CR(Rd)+ × S(Rd)+, T ≥ 0,

P̃(n)[〈ψ1,V
1,n
t,T (Ht )〉] = 〈ψ1,V

1,n
0,T(H0)〉

≤ 〈ψ1, ST(|H0|)〉, ∀ 0 ≤ t ≤ T,
(7.23)

P̃(n)[〈ψ1,V
1,n
t,T (Ht )〉

2]

≤ 〈ψ1, ST(|H0|)〉
2

+

∫ t

0
2λ j(n)

(
s +

1

n

)∫
Rd

ST−s(ψ1)(x)2Ss(|H0|)(x) dx ds, ∀ 0 ≤ t ≤ T,

(7.24)

P̃(n)[〈ψ2, Ỹt〉] = 〈ψ2,V
2,n
0,t (H0)〉, t ≥ 0,(7.25)

P̃(n)[〈ψ2, Ỹt〉
2] ≤ 〈ψ2, St (|H0|)〉

2

+

∫ t

0
2λ j(n)

(
s +

1

n

)∫
Rd

St−s(ψ2)(x)2Ss(|H0|)(x) dx ds, t ≥ 0,
(7.26)

P̃(n)[〈ψl,V
l,n
t,T(Ht )〉

2]

≤ 〈ψl, ST(|H0|)〉
2

+

∫ t

0
2λ j(n)

(
s +

1

n

)∫
Rd

ST−s(ψl)(x)2Ss(|H0|)(x) dx ds, l = 1, 2, 0 ≤ t ≤ T.

(7.27)

Moreover, for each ψ1, ψ2 ∈ S(Rd)+, T1,T2 > 0, 0 ≤ t ≤ T1 ∧ T2 and l = 1, 2 we have

P̃(n)[〈ψ1,V
1,n
t,T1

(Ht )〉〈ψ2,V
1,n
t,T2

(Ht )〉]

≤ 〈ψ1, ST1 (|H0|)〉〈ψ2, ST2 (|H0|)〉

+

∫ t

0
2λ

(
s +

1

n

)∫
Rd

ST1−s(ψ1)(x)ST2−s(ψ2)(x)Ss(|H0|)(x) dx ds.

(7.28)

Remark 7.9 The analogues of (7.25), (7.26) for X̃ are immediate from (7.23), (7.24).

Proof By (5.4), (5.5) and the definition of N1
t,·,·(·, ·) we get

〈ψ1,V
1,n
t,T (Ht )〉 =

1

2

(
〈ψ1,V

n
t,T(Ht )〉 + 〈ψ1,V

n
t,T(Ht )〉

)
= N1

t,T,T

(
1

2
ψ1,

1

2
ψ1

)
,

〈ψ2,V
2,n
t,T (Ht )〉 = −i

1

2

(
〈ψ2,V

n
t,T(Ht )〉 − 〈ψ2,V

n
t,T(Ht )〉

)
= iN1

t,T,T

(
1

2
ψ2,−

1

2
ψ2

)
.
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A bit of calculation based on Lemma 7.7 yields 〈iN1
·,T,T( 1

2ψ2,−
1
2ψ2)〉t = 〈N1

·,T,T( 1
2ψ2,

1
2ψ2)〉t

for each ψ2 ∈ C∞c,R(Rd)+. Hence, for each (ψ1, ψ2) ∈ C∞c,R(Rd)+ ×C∞c,R(Rd)+, the corollary
follows easily from Lemma 7.7 by passing to the limit as k → ∞ and using bounds from
Lemma 7.5 and Lemma 5.2. For (ψ1, ψ2) ∈ CR(Rd)+ × S(Rd)+ the result follows by an
approximation of (ψ1, ψ2) with functions from C∞c,R(Rd)+ ×C∞c,R(Rd)+.

Proof of Proposition 7.1 Take T1 = T2 = T in (7.11) and let k → ∞. (X̃(k), Ỹ (k)) →
(X̃, Ỹ) and τ (k)(t) → t P̃(n)-a.s. By Corollary 7.8 all the random variables in (7.11) are
uniformly integrable. This immediately yields the result.

7.3 Regularity Properties of the Approximating Dual Measures

Lemma 7.10 For each t > 0, δ > 0, there exist constants C1(ρ, t, δ),C2(ρ, t, δ) such that
∀ n ≥ 1

P̃(n)

[∫ δ

0
sρ−1w(s, X̃t ) ds

]
≤ C1(ρ, t, δ),

P̃(n)

[∫ δ

0
sρ−1w(s, Ỹt ) ds

]
≤ C2(ρ, t, δ),

where
lim
δ↓0

Cl(ρ, t, δ) = 0, l = 1, 2

uniformly on 0 ≤ t ≤ T, n ≥ 1, for all T > 0.

Proof By the Fubini theorem and (7.26) we get

P̃(n)

[∫ δ

0
sρ−1w(s, Ỹt ) ds

]

=

∫ δ

0
P̃(n)[sρ−1w(s, Ỹt )] ds

≤

∫ δ

0
sρ−1Ss

(
St (|H0|)

)
(x)2 dx ds

+

∫ δ

0
sρ−1

∫ t

0
2λ j(n)

(
u +

1

n

)∫
Rd

pt+s−u(x − y)2Su(|H0|)(y) dy du dx ds

≤ ‖H0‖∞‖H0‖1
δρ

ρ
+ Cd‖H0‖1

∫ δ

0
sρ−1

∫ t

0
(t − u + s)−d/2 du ds

≡ C2(ρ, t, δ),

and the result for C2(ρ, t, δ) follows immediately for our choice of ρ. The proof for
C1(ρ, t, δ) is the same.
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Lemma 7.11 For each ε > 0, there exists Aε ⊂ Mρ
F × S ′ρ such that Aε is a closed subset of

MF × S ′ and
sup

0≤t≤T
P̃(n)

t [Ac
ε] ≤ ε

for all n ≥ 1.

Proof By the previous lemma we can always find a sequence δk ↓ 0 such that

sup
n

sup
0≤t≤T

P̃(n)
t

[∫ δk

0
sρ−1
(
w(s, X̃t ) + w(s, Ỹt )

)
ds

]
≤

ε

k2k+1
.(7.29)

Define

Aε ≡

{
(µ1, µ2) ∈ MF × S ′(Rd) :

∫ δk

0
sρ−1
(
w(s, µ1) + w(s, µ2)

)
ds ≤

1

k
, ∀ k > 0

}
.

By Corollary 5.6(a) Aε is closed in MF × S ′, and by (7.29) P̃(n)(Ac
ε) ≤ ε for all n ≥ 1.

7.4 Proof of Theorem 7.2

In this subsection we will prove Theorem 7.2 and investigate the properties of the limiting
dual measures.

In a moment we will formulate the lemma which gives the tightness of the measures
{P̃(n)

t , 0 ≤ t ≤ T, n ≥ 1} for any T > 0 (which sometimes is called the compact con-
tainment condition), where by tightness we mean the tightness of probability measures
on MF × S ′. However, we also need the compact containment condition (in the following
we abbreviate it by CCC) on Mρ

F × S ′ρ for this set of probability measures. Therefore the
following definition is in order.

Definition 7.12 Let {µ(n)
t , t ∈ R+, n ≥ 1} ⊂ M1(MF × S ′). Then we say that {µ(n)

t , t ∈
R+, n ≥ 1} satisfies CCC on Mρ

F × S ′ρ if, for each ε > 0, T > 0, there exists a compact set
Bε,T in (Mρ

F × S ′ρ, τ ρ) such that

sup
n≥1

sup
0≤t≤T

µ(n)
t (Bc

ε) ≤ ε.(7.30)

Recall that τρ denotes the topology, corresponding to the convergence introduced in
Definition 5.3.

Lemma 7.13 For each T > 0, the set of probability measures {P̃(n)
t , 0 ≤ t ≤ T, n ≥ 1} is

tight in M1(MF × S ′).

Proof By (7.24), and (7.26) we get

sup
t≤T,n≥1

P̃(n)
t [X̃t (ψ1)2] <∞, ∀T > 0, ∀ψ1 ∈ CR(Rd)+

sup
t≤T,n≥1

P̃(n)
t [Ỹt (ψ2)2] <∞, ∀T > 0, ∀ψ2 ∈ S(Rd)+.
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This yields the tightness of {
(
X̃t (ψ1), Ỹt (ψ2)

)
: 0 ≤ t ≤ T, n ≥ 1} for each (ψ1, ψ2) ∈

CR(Rd)+×S(Rd)+. By Mitoma’s theorem [16] we get the tightness of our set of measures in
M1(S ′+ × S ′). (Our case is even simpler than the one covered by Mitoma’s theorem which
deals with probability measures on DS ′[0,∞), while our concern is about the probability
measures on S ′.) Since supt≤T,n≥1 P̃(n)

t [X̃t (1)2] < ∞, then, in fact, this set of measures is
tight in M1(MF × S ′) and we are done.

Corollary 7.14 The set of probability measures {P̃(n)
t , t ≥ 0, n ≥ 1} satisfies CCC on

Mρ
F × S ′ρ.

Proof Fix arbitrary ε > 0 and ρ̃ such that ( d
2 − 1 ∨ 0) < ρ̃ < ρ. (Recall (5.15)—the

condition on ρ.) By Lemma 7.11, we can choose Aε ⊂ Mρ̃
F × S ′ρ̃ which is a closed subset

in MF × S ′ and inf0≤t≤T P̃(n)
t [Aε] ≥ 1 − ε/2 for all n. By the previous lemma there exists

Bε, a compact subset of MF × S ′, such that inf0≤t≤T P̃(n)
t [Bε] ≥ 1 − ε/2 for all n. Then

Eε ≡ Aε ∩ Bε is also a compact set in MF × S ′, and by Corollary 5.6(b), Eε is a compact set
in Mρ

F × S ′ρ since ρ > ρ̃. By our construction inf0≤t≤T P̃(n)
t [Eε] ≥ 1 − ε for all n, and we

are done.

Remark 7.15 Let Eε be as in the above proof. By Corollary 5.6(b), τ Eε
ρ = τ̂ Eε

ρ . Hence,

any function f on Eε which is continuous on (Eε, τ Eε
ρ ) (i.e., f ∈ C

(
(Eε, τ Eε

ρ )
)

) will be also

continuous on (Eε, τ̂ Eε
ρ ) (i.e., f ∈ C

(
(Eε, τ̂ Eε

ρ )
)
), and we may just write f ∈ C(Eε) without

explicitly mentioning the topology on Eε.

Lemma 7.16 For each ψ1, ψ2 ∈ S(Rd)+, the sequence of mappings

t 7→ P̃(n)
t [exp{−〈ψ1, X̃t + iỸt〉 − 〈ψ2, X̃t − iỸt〉}]

of R+ into C is relatively compact in CC[0,∞).

Proof P̃(n)
t [exp{−〈ψ1,Ht〉 − 〈ψ2,Ht〉}] is bounded uniformly in n and t . As the proof

relies on the Arzela-Ascoli theorem, we need to check that, for each T > 0,

lim
ε↓0

lim sup
n→∞

sup
|t−s|<ε,s<t<T

|P̃(n)
t [exp{−〈ψ1Ht〉 − 〈ψ2,Ht〉}]

− P̃(n)
s [exp{−〈ψ1,Hs〉 − 〈ψ2,Hs〉}]| = 0.

For each n ≥ 1 and s < t ≤ T,

|P̃(n)
t [exp{−〈ψ1,Ht〉 − 〈ψ2Ht〉}]− P̃(n)

s [exp{−〈ψ1,Hs〉 − 〈ψ2,Hs〉}]|

≤ |P̃(n)
t [exp{−〈ψ1,Ht〉 − 〈ψ2,Ht〉}]

− P̃(n)
s [exp{−〈ψ1,V

n
s,t (Hs)〉 − 〈ψ2,V

n
s,t (Hs)〉}]|

+ |P̃(n)
s [exp{−〈ψ1,V

n
s,t (Hs)〉 − 〈ψ2,V

n
s,t (Hs)〉}]

− P̃(n)
s [exp{−〈ψ1,Hs〉 − 〈ψ2,Hs〉}]|.

(7.31)
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The first term is bounded by∣∣∣∣∫ t

s
P̃(n)

u

[
exp{−〈ψ1,V

n
u,t (Hu)〉 − 〈ψ2,V

n
u,t (Hu)〉}

× 4λ j(n)

(
s +

1

n

)∫
Rd

U n
u,t (Hu, x)(ψ1)U n

u,t (Hu, x)(ψ2)X̃u (dx)

]
du

∣∣∣∣
≤ 4λ‖ψ1‖∞‖ψ2‖1 sup

s≤T
‖Ss(|H0|)‖∞|t − s|

≤ 4λ‖ψ1‖∞‖ψ2‖1‖H0‖∞|t − s|,

(7.32)

where the first expression follows from Proposition 7.1, and the latter inequalities follow
from Lemma 7.5, inequality (7.23) and Lemma 5.1. From (7.32) we obtain that the first
term in (7.31) approaches 0 as ε→ 0 uniformly in n.

Let us treat the second term in (7.31). Corollary 7.14 implies that for each δ > 0 there
exists a compact set Bδ,T ⊂ S̃ ′

ρ
such that

sup
n≥1

sup
0≤t≤T

P̃(n)
t [Bc

δ,T] ≤ δ.

By Theorem 5.8
lim
ε↓0

sup
|t−s|<ε,s<t<T,µ∈Bδ,T

|〈ψ,V n
s,t (µ)〉 − 〈ψ, µ〉| = 0

uniformly in n. δ was arbitrary, therefore the second term in (7.31) converges to 0 uni-
formly in n and this finishes the proof of the lemma.

Lemma 7.16 and Lemma 7.13 yield

Lemma 7.17 There exist {nk} and P̃t ∈ CM1(MF×S ′)[0,∞) such that, for each f ∈
C (MF × S ′),

P̃(nk)
t ( f )→ P̃t ( f ) in CC[0,∞) as nk →∞

and

P̃t (Mρ
F × S ′ρ) = 1, ∀ t ≥ 0.(7.33)

Proof (7.33) is immediate from Corollary 7.14.
Let {(ψ(m)

1 , ψ(m)
2 )m ≥ 1} be a dense subset of

(
S(Rd)+, S(Rd)+

)
. For any (ψ1, ψ2) ∈(

S(Rd)+, S(Rd)+

)
, let us define the function eψ1,ψ2 ∈ C (MF × S ′) by

eψ1,ψ2 (µ1, µ2) ≡ e−〈ψ1+ψ2,µ1〉−i〈ψ1−ψ2,µ2〉.

Now use Lemma 7.16 and the Cantor diagonalization procedure to construct a subsequence
P̃(nk)

t such that P̃(nk)
t (eψ(m)

1 ,ψ(m)
2

) converges in CC[0,∞) for each m ≥ 1. The reader can easily

check that the set of functions

F ≡ linear span {eψ(m)
1 ,ψ(m)

2
,m ≥ 1}
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is bp-dense in L̃ (for the definition of L̃ see the proof of Lemma 4.2) and therefore is sepa-
rating on M1(MF × S ′). This together with the relative compactness of {P̃(n)

t , n ≥ 1} (for
each t ≥ 0) implies that, for each t > 0, there exists P̃t ∈ M1(MF×S ′) such that P̃(nk)

t ⇒ P̃t .
Therefore, for each t > 0 and f ∈ C (MF × S ′), P̃(nk)

t ( f )→ P̃t ( f ) (pointwise convergence).
The fact that P̃(nk)

t ( f ) converges to P̃t ( f ) in CC[0,∞) (uniformly on compact intervals in
R+) follows immediately from an appropriate approximation of f by functions from F.

In the following we assume that P̃(nk)
t and P̃t are as in Lemma 7.17. The following corol-

lary is immediate.

Corollary 7.18 Let f ∈ C (R+×MF× S ′). Then P̃(nk)
t

(
f (t, ·)

)
→ P̃t

(
f (t, ·)

)
in CC[0,∞).

Lemma 7.19 Let I be any interval in R+. Let { f (n)} be in B(I × MF × S ′). Assume that
f̂ (n) ≡ f (n) � I ×Mρ

F × S ′ρ ∈ C (I ×Mρ
F × S ′ρ) is bounded uniformly in n and

f̂ (n) → f̂ (0) as n→∞

uniformly on compact subsets of I ×Mρ
F × S ′ρ. Define

f (0)(s, µ1, µ2) ≡

{
f̂ (0)(s, µ1, µ2), if (s, µ1, µ2) ∈ I ×Mρ

F × S ′ρ,

0, otherwise.

Then
P̃(nk)

t ( f (nk)
t )→ P̃t ( f 0

t ) in CC(I) as n→∞.

Before giving the proof we derive the following consequence.

Corollary 7.20 Let { f (n)} be in B(I ×MF × S ′) and assume that f̂ (n) ≡ f (n) � I ×Mρ
F ×

S ′ρ ∈ C (I ×Mρ
F × S ′ρ), n ≥ 1. Suppose that

f̂ (n) → f̂ (0) as n→∞

uniformly on compact subsets of I ×Mρ
F × S ′ρ. Define f (0) as in the previous lemma.

(a) Assume the uniform integrability condition

lim
ε↓0

lim sup
n→∞

sup
k≥0

sup
0≤t≤T

P̃(n)
t [| f (k)

t |1(| f (k)
t | ≥ ε

−1)] = 0, ∀T > 0.(7.34)

Then
P̃(nk)

t ( f (nk)
t )→ P̃t ( f 0

t ), in CC(I) as n→∞.

(b) If f (n) ∈ BR(I ×MF × S ′)+ for each n, then

P̃t ( f (0)
t ) ≤ lim inf

nk

P̃(nk)
t ( f (nk)

t ), ∀ t ∈ I.
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Proof of Corollary 7.20 (a) The proof is immediate by the uniform integrability tech-
nique.

(b) Recall one of the properties of weak convergence (see e.g. the proof of Theorem 2.4.1
of [3]). If µ(n) ⇒ µ, then for any nonnegative lower semicontinuous function h

µ(h) ≤ lim inf
n→∞

µ(n)(h).(7.35)

By Lemma 7.19 we obtain that the sequence of probability measures {P̃(nk)
t f (nk)

t
−1
, nk ≥

1} (which is in M1(C)) converges weakly to P̃t f (0)
t
−1

for any t ∈ I. Therefore (b) follows
immediately from (7.35).

Proof of Lemma 7.19 Fix any compact T ⊂ I and choose T such that T ⊂ [0,T]. Fix
arbitrary ε > 0. By Corollary 7.14 there exists a closed compact set Bε,T ⊂ Mρ

F × S ′ρ such
that

sup
n≥1

sup
0≤t≤T

P̃(n)
t [Bc

ε,T] ≤ ε.(7.36)

For each k we have

P̃(nk)
t ( f (nk)

t )− P̃t ( f (0)
t ) = P̃(nk)

t ( f (nk)
t − f (0)

t ) + P̃(nk)
t ( f (0)

t )− P̃t ( f (0)
t )

= P̃(nk)
t

(
( f (nk)

t − f (0)
t )1Bε,T

)
+ P̃(nk)

t

(
( f (nk)

t − f (0)
t )1Bc

ε,T

)
+
(

P̃(nk)
t ( f (0)

t 1Bε,T )− P̃t ( f (0)
t 1Bε,T )

)
+
(

P̃(nk)
t ( f (0)

t 1Bc
ε,T

)− P̃t ( f (0)
t 1Bc

ε,T
)
)
.

(7.37)

The first term in (7.37) approaches 0 uniformly in t ∈ T and limnk→∞ f (nk) = f uniformly
on I×Bε,T . Hence by the compact containment condition (7.36) the second and the fourth
terms may be made arbitrarily small uniformly on t ∈ T by fixing ε sufficiently small. Let
us treat the third term P̃(nk)

t ( f (0)
t 1Bε,T ) − P̃t ( f (0)

t 1Bε,T ). T × Bε,T is a closed compact set in
I ×Mρ

F × S ′ρ and by our assumptions (see also Remark 7.15)

f (0) � T× Bε,T = f̂ (0) � T× Bε,T ∈ C (T× Bε,T).

By Tietze extension theorem there is a function f̃ ∈ C (I ×MF × S ′) such that

f̃ (t, µ1, µ2) = f (0)(t, µ1, µ2), ∀ (t, µ1, µ2) ∈ T× Bε,T ,

‖ f̃ ‖∞,I×MF×S ′ = ‖ f (0)‖∞,T×Bε,T ≤ ‖ f (0)‖∞,I×MF×S ′ ≡ ‖ f (0)‖.
(7.38)

By Corollary 7.18 we obtain

lim
k→∞

sup
t∈T
|P̃(nk)

t ( f̃t )− P̃t ( f̃t )| = 0.
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Therefore

lim
k→∞

sup
t∈T
|P̃(nk)

t ( f (0)
t 1Bε,T )− P̃t ( f (0)

t 1Bε,T )|

≤ lim
k→∞

sup
t∈T
|P̃(nk)

t ( f (0)
t 1Bε,T − f̃t )− P̃t ( f (0)

t 1Bε,T − f̃t )|

+ lim
k→∞

sup
t∈T
|P̃(nk)

t ( f̃ )− P̃t ( f̃ )|

= lim
k→∞

sup
t∈T
|P̃(nk)

t ( f̃t 1Bc
ε,T

)− P̃t ( f̃t 1Bc
ε,T

)|

≤ 2ε‖ f (0)‖

where the last inequality follows by the choice of Bε,T and (7.38). So, it is clear that by
first choosing ε sufficiently small and then nk sufficiently large we can make the third term
in (7.37) arbitrarily small uniformly in t and the proof is complete.

In what follows, given an interval I ⊂ R+ and a function h ∈ B(I × MF × S ′), set
ĥ ≡ h � I ×Mρ

F × S ′ρ.
The next lemma establishes the simple properties of the limiting measures.

Lemma 7.21 For each ψ ∈ CR(Rd)+, T ≥ 0,

P̃t [〈ψ,V
1
T−t (Ht )〉] ≤ 〈ψ, ST(|H0|)〉, 0 ≤ t ≤ T,(7.39)

P̃t [〈ψ, X̃t〉
2] ≤ 〈ψ, St (|H0|)〉

2

+

∫ t

0
λ

∫
Rd

St−s(ψ)(x)2Ss(|H0|)(x) dx ds, ∀ t ≥ 0,
(7.40)

P̃t [〈ψ,V
l
T−t (Ht )〉

2]

≤ 〈ψ, ST(|H0|)〉
2

+

∫ t

0
λ

∫
Rd

ST−s(ψ)(x)2Ss(|H0|)(x) dx ds, l = 1, 2, 0 ≤ t < T.

(7.41)

Moreover, for each ψ1, ψ2 ∈ CR(Rd)+, T1 6= T2 > 0, 0 ≤ t ≤ T1 ∧ T2 and l = 1, 2 we have

P̃t [〈ψ1,V
1
T1−t (Ht )〉〈ψ2,V

1
T2−t (Ht )〉]

≤ 〈ψ1, ST1 (|H0|)〉〈ψ2, ST2 (|H0|)〉

+

∫ t

0
λ

∫
Rd

ST1−s(ψ1)(x)ST2−s(ψ2)(x)Ss(|H0|)(x) dx ds.

(7.42)
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Proof First we will prove the lemma for ψ, ψ1, ψ2 ∈ C∞c,R(Rd)+. We pass to the limit in
the corresponding inequalities in Corollary 7.8. The right sides of (7.39)–(7.42) follow
immediately since

j(n) →
1

2
(7.43)

weakly∗ in L∞R (R+) as n → ∞. Let us treat the left sides of (7.39)–(7.42). (7.40) follows
from (7.35). By Theorem 5.8, for each function ψ ∈ C∞c,R(Rd)+ and each T > 0,

̂〈ψ,V n
·,T(·)〉 → ̂〈ψ,VT−·(·)〉 as n→∞(7.44)

uniformly on compact subsets of [0,T)× S̃ ′
ρ
. Recall that P̃(n)

t (Mρ
F × S ′ρ) = 1 for all n ≥ 1,

t ≥ 0 and therefore Corollary 7.20(b) yields the result for ψ, ψ1, ψ2 ∈ C∞c,R(Rd)+. For

arbitrary ψ, ψ1, ψ2 ∈ CR(Rd)+ just approximate them by functions from C∞c,R(Rd)+ and
use Fatou’s lemma.

Corollary 7.22 For all 0 < s < T, ν1, ν2 ∈ MF,∫
Rd

|UT−s(X̃s + iỸs, x)(ν1)UT−s(X̃s − iỸs, x)(ν2)| X̃s(dx)

≤

∫
Rd

ST−s(ν1)(x)ST−s(ν2)(x) X̃s(dx), P̃s-a.s.,

(7.45)

and

P̃

[∫
Rd

|UT−s(X̃s + iỸs, x)(ν1)UT−s(X̃s − iỸs, x)(ν2)| X̃s(dx)

]
≤

∫
Rd

ST−s(ν1)(x)ST−s(ν2)(x)Ss(|H0|)(x) dx.

(7.46)

Proof By (7.39), (7.46) is immediate from (7.45).
By Lemma 7.17 X̃s ∈ Mρ

F P̃s-a.s. for each s ≥ 0 and the proof of (7.45) goes in the same
way as the proof of Lemma 7.5.

Corollary 7.23 For each T > 0,

sup
ε>0,0≤t≤T

P̃t [〈1,V
1
ε (Ht )〉

2] <∞.

Proof By (7.41)

P̃t [〈ψ,V
1
ε (Ht )〉

2] ≤ ‖H0‖
2
1 + tλ‖H0‖1.

and we are done by the assumptions on (X̃0, Ỹ0).
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Proof of Theorem 7.2 Fix T > 0. For fixed (ν1, ν2) ∈ Mρ
F ×Mρ

F let us define the functions
f (n)
µ1,µ2

, g(n)
ν1,ν2

, f (0)
ν1,ν2

, g(0)
ν1,ν2
∈ B
(

[0,T)×MF × S ′
)

by

f (n)
ν1,ν2

(t, µ1, µ2) = exp{−〈ν1,V
n
t,T(µ1 + iµ2)〉 − 〈ν2,V

n
t,T(µ1 − iµ2)〉},

g(n)
ν1,ν2

(t, µ1, µ2) = exp{−〈ν1,V
n
t,T(µ1 + iµ2)〉 − 〈ν2,V

n
t,T(µ1 − iµ2)〉}

× 4λ

∫
Rd

U n
t,T(µ1 + iµ2, x)(ν1)U n

t,T(µ1 − iµ2, x)(ν2)µ1(dx),

f (0)
ν1,ν2

(t, µ1, µ2) = exp{−〈ν1,VT−t (µ1 + iµ2)〉 − 〈ν2,VT−t (µ1 − iµ2)〉},

g(0)
ν1,ν2

(t, µ1, µ2) = exp{−〈ν1,VT−t (µ1 + iµ2)〉 − 〈ν2,VT−t (µ1 − iµ2)〉}

× 4λ

∫
Rd

UT−t (µ1 + iµ2, x)(ν1)UT−t (µ1 − iµ2, x)(ν2)µ1(dx).

Fix arbitrary ψ1, ψ2 ∈ C∞c,R(Rd)+ and let us first get (7.5) for (ν1, ν2) = (ψ1dx, ψ2dx).

Recall that for any function h ∈ B
(

[0,T)×MF × S ′
)

we set ĥ ≡ h � [0,T)×Mρ
F × S ′ρ.

By Theorems 5.8, 5.9 it is easy to see that

f̂ (n)
ψ1,ψ2

, ĝ(n)
ψ1,ψ2

∈ C
(
[0,T)×Mρ

F × S ′ρ
)
, ∀ n,

and
f̂ (n)
ψ1,ψ2

→ f̂ (0)
ψ1,ψ2

, ĝ(n)
ψ1,ψ2

→ ĝ(0)
ψ1,ψ2

as n→∞

uniformly on compact subsets of [0,T) × Mρ
F × S ′ρ. The functions { f (n)

ψ1,ψ2
, n ≥ 1} are

bounded; by Corollary 7.8 and Lemma 7.5 functions {g(n)
ψ1,ψ2

, n ≥ 1} are uniformly inte-
grable (in the sense of (7.34)). Fix any t < T. By Corollary 7.20 we obtain that

P̃(nk)
t

(
f (nk)
ψ1,ψ2

(t, ·, ·)
)
→ P̃t

(
f 0
ψ1,ψ2

(t, ·, ·)
)

as n→∞,(7.47)

P̃(nk)
s

(
g(nk)
ψ1,ψ2

(s, ·, ·)
)
→ P̃s

(
g0
ψ1,ψ2

(s, ·, ·)
)
, in CC([0, t]) as n→∞.(7.48)

(7.43), (7.47), (7.48) give (7.5) for any (ν1, ν2) = (ψ1dx, ψ2dx) with ψ1, ψ2 ∈ C∞c,R(Rd)+.

For arbitrary (ν1, ν2) ∈ Mρ
F ×Mρ

F take the sequence (ψ(n)
1 , ψ(n)

2 )⇒ (ν1, ν2) in Mρ
F ×Mρ

F

with ψ(n)
1 , ψ(n)

2 ∈ C∞c,R(Rd)+ for each n. It is easy to check that

f (0)

ψ(n)
1 ,ψ(n)

2

(µ1, µ2)→ f (0)
ν1,ν2

(µ1, µ2), g(0)

ψ(n)
1 ,ψ(n)

2

(µ1, µ2)→ g(0)
ν1,ν2

(µ1, µ2)(7.49)

for every (µ1, µ2) ∈ Mρ
F ×Mρ

F . Lemma 7.5 and the uniform integrability condition (7.40)
give (7.5) for any (ν1, ν2) ∈ Mρ

F ×Mρ
F and we are done.

8 Uniqueness

In this section we will finish the proof of Theorem 2.6 and the proof will rely on checking
the conditions of Lemma 4.3. Fix arbitrary ν ∈ M∗1 (MF,w ×MF,w). Throughout this sec-
tion we assume that (X1,X2) is an arbitrary solution of the martingale problem Mλ with
P(X1

0 ,X
2
0)−1 = ν.
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First, we define the martingales that arise from the martingale problem Mλ for the pro-
cess (X1,X2).

Lemma 8.1 Suppose µ ∈ S̃ ′
ρ

and T > 0. Then

(a)

e−〈X
1
t ,VT−t (µ)〉−〈X2

t ,VT−t (µ)〉

= e−〈X
1
0 ,VT (µ)〉−〈X2

0 ,VT (µ)〉

+

∫ t

0
e−〈X

1
s ,VT−s(µ)〉−〈X2

s ,VT−s(µ)〉2λKs(X1,X2)
(
V 1

T−s(µ)
)

ds

+

∫ t

0

∫
Rd

e−〈X
1
s ,VT−s(µ)〉−〈X2

s ,VT−s(µ)〉

×
(
VT−s(µ)(x) M1(ds, dx) + VT−s(µ)(x) M2(ds, dx)

)
, 0 ≤ t < T,

where Ml(ds, dx) (l = 1, 2) are the martingale measures defined in Remark 2.5.
(b) For each x ∈ Rd, T1,T2 > 0,

e−〈X
1
t ,VT1−t (µ)〉−〈X2

t ,VT1−t (µ)〉ST2−t (X1
t )(x)ST2−t (X2

t )(x)

−

∫ t

0
e−〈X

1
u,VT1−u(µ)〉−〈X2

u,VT1−u(µ)〉

×

{
2λ〈Ku(X1,X2),V 1

T1−u(µ)〉ST2−u(X1
u)(x)ST2−u(X2

u)(x)

+ λ
(
ST2−u(X1

u)(x) + ST2−u(X2
u)(x)

)
ST2−u

(
Ku(X1,X2)

)
(x)

+

(∫
Rd

VT1−u(µ)(y)pT2−u(x − y)X1
u (dy)

)
ST2−u(X2

u)(x)

+

(∫
Rd

VT1−u(µ)(y)pT2−u(x − y)X2
u(dy)

)
ST2−u(X1

u)(x)

}
du

is a martingale on [0,T) where T = T1 ∧ T2.

Proof By routine arguments (see e.g. Exercise 5.1 in [20], or calculations around (4.14)

in [12] for similar results) we get that for each ψ ∈ C
1,2

(R+ × Rd)

X j
t (ψt ) ≡ X j

0(ψ0) +

∫ t

0
X j

s

(
1

2
∆ψs +

∂

∂s
ψs

)
ds− λ

∫ t

0

∫
Rd

ψs(x)L(X1,X2) (dx, ds)

+

∫ t

0

∫
Rd

ψs(x)Mk (dx, ds), j = 1, 2.

By choosing functions ψ1
t = VT−t (µ), ψ2

t = VT−t (µ) in (a) and ψ1
t = VT1−t (µ), ψ2

t =
VT1−t (µ), ψ3

t = pT2−t (x− ·), ψ4
t = pT2−t (x− ·) in (b), and then applying Itô’s formula on

the interval [0,T) one can readily complete the proof of the lemma.
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In the following two lemmas we establish some simple properties of the process (X1,X2)
that we will use later. Let L(X1,X2) denote the random measure on B(R+ × Rd) given by
L(X1,X2)([0, t]× B) = Lt (X1,X2)(B).

Lemma 8.2 Let ψ be any bounded random function which is in C (R+ × Rd) P-a.s. Then
for each s < t

∫ t

s

∫
Rd

Sε(X1
u)(x)Sε(X2)(x)ψ(u, x) dx du

P
→

∫ t

s

∫
Rd

ψ(u, x)L(X1,X2) (du, dx)(8.1)

and in L1 as ε ↓ 0.

Proof Our definition of Lt (X1,X2) and L(X1,X2) implies that

Sε(X1
u)(x)Sε(X2)(x) dx du⇒ L(X1,X2) (du, dx)

in probability and therefore convergence in probability in (8.1) is immediate. The L1 con-
vergence follows from uniform integrability condition which one can check easily.

Lemma 8.3 For each t > 0, P-a.s. (X1
t ,X

2
t ) ∈ Mρ

F ×Mρ
F .

Proof By the domination property, it suffices to prove that for each t > 0 the dominating
superprocesses Y l

t (l = 1, 2) are in Mρ
F P-a.s. But this follows immediately from Lemma 6.5

(X ′ in Lemma 6.5 is a superprocess).

In the following let P̃t be as in Lemma 7.17.

Lemma 8.4 For any t, ε > 0

P × P̃0[exp{−〈X1
t ,Vε(H0)〉 − 〈X2

t ,Vε(H0)}]

− P × P̃t [exp{−〈X1
0 ,Vε(Ht )〉 − 〈X

2
0 ,Vε(Ht )〉}]

= 2λ

∫ t

0
P × P̃t−s

[
exp{−〈X1

s ,Vε(Ht−s)〉 − 〈X
2
s ,Vε(Ht−s)〉}

×

{
〈Ks(X1,X2),V 1

ε (Ht−s)〉

−

∫
Rd

Uε(Ht−s, x)(X1
s )Uε(Ht−s, x)(X2

s )X̃t−s (dx)

}]
ds.

Proof Fix any T > 0 and define three functions: h1, h2, f by
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f (t, s) = P × P̃s[exp{−〈X1
t ,VT−t−s(Hs)〉 − 〈X

2
t ,VT−t−s(Hs)〉}]

h1(t, s) = 2λP × P̃s[exp{−〈X1
t ,VT−t−s(Hs)〉 − 〈X

2
t ,VT−t−s(Hs)〉}

× 〈Kt (X1,X2),V 1
T−t−s(Hs)〉]

h2(t, s) = 2λP × P̃s

[
exp{−〈X1

t ,VT−t−s(Hs)〉 − 〈X
2
t ,VT−t−s(Hs)〉}

×

∫
Rd

UT−t−s(Hs, x)(X1
t )UT−t−s(Hs, x)(X2

t ) X̃s(dx)

]

for 0 ≤ s + t < T. By Lemma 8.1 we have

f (t, s) = f (0, s) +

∫ t

0
h1(u, s) du, ∀ t, s ≥ 0 : t + s < T.

By Lemma 8.3 and Theorem 7.2 we obtain

f (t, s) = f (t, 0) +

∫ s

0
h2(t, u) du, ∀ t, s ≥ 0 : t + s < T.

From Lemma 4.4.10 of [10] (see e.g. [17, Lemma 4.17]) it follows that

f (t, 0)− f (0, t) =

∫ t

0
h1(s, t − s)− h2(s, t − s) ds(8.2)

for almost every t , 0 ≤ t < T. We leave to the reader to check that the right side of (8.2)
is continuous on [0,T) (this requires only continuity of P̃t ,X1

t ,X
2
t ,Vt and Ut ). Using the

continuity of the right side of (8.2) we show that the equality in (8.2) is satisfied for each
0 < t < T. Take T = t + ε and the proof is complete.

Our main goal now is to prove the following lemma.

Lemma 8.5

lim
ε↓0
{P × P̃t [exp{−〈X1

t ,Vε(H0)〉 − 〈X2
t ,Vε(H0)〉}]

− P × P̃t [exp{−〈X1
0 ,Vε(Ht )〉 − 〈X

2
0 ,Vε(Ht )〉}]} = 0.
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The rest of this section is devoted to the proof of this lemma. The main idea of the proof
is based on applying Itô’s formula to functions of X1

s , X2
s while considering X̃t−s and Ỹt−s

to be fixed.

Let P be any probability measure on MF. If the measure µ̂ ∈ MF defined by µ̂(A) =∫
MF
µ(A)P (dµ) has a density, this density, with a slight abuse of notation, will be denoted

by P[µ(x)].

Fix δ ′ such that 0 < δ ′ < t/2. Now rewrite the result of the previous lemma in the
following way:

|P × P̃t [exp{−〈X1
t ,Vε(H0)〉 − 〈X2

t ,Vε(H0)〉}]

− P × P̃t [exp{−〈X1
0 ,Vε(Ht )〉 − 〈X

2
0 ,Vε(Ht )〉}]|

≤

∣∣∣∣2λ∫ δ ′

0
P̃t−s × P

[
exp{−〈X1

s ,Vε(Ht−s)〉 − 〈X
2
s ,Vε(Ht−s)〉}

×

{
〈Ks(X1,X2),V 1

ε (Ht−s)〉

−

∫
Rd

Uε(Ht−s, x)(X1
s )Uε(Ht−s, x)(X2

s ) X̃t−s(dx)

}]
ds

∣∣∣∣
+ 2λ

∣∣∣∣limε ′↓0

∫ t

δ ′
P̃t−s × P

[
exp{−〈X1

s ,Vε(Ht−s)〉 − 〈X
2
s ,Vε(Ht−s)〉}

×

{
〈Sε ′(X1

s )Sε ′(X2
s ),V 1

ε (Ht−s)〉

−

∫
Rd

Sε(X1
s )(x)Sε(X2

s )(x) X̃t−s(dx)

}]
ds

∣∣∣∣
+ 2λ

∣∣∣∣∫ t

δ ′
P̃t−s × P

[
exp{−〈X1

s ,Vε(Ht−s)〉 − 〈X
2
s ,Vε(Ht−s)〉}

×

{∫
Rd

∫ ε

0
〈Sε−u

(
Uu(Ht−s, x)

)
,X2

s 〉Sε−u

× 〈Sε−u

(
Uu(Ht−s, x)Vu(Ht−s)

)
,X1

s 〉 du X̃t−s(dx)

+

∫
Rd

∫ ε

0
Sε−u

(
Uu(Ht−s, x)

)
(X1

s )

× 〈Sε−u

(
Uu(Ht−s, x)Vu(Ht−s)

)
,X2

s 〉 du X̃t−s(dx)

}]∣∣∣∣
≡ Iε,δ ′ + IIε,δ ′ + IIIε,δ ′ ,

(8.3)

where for the inequality we use Lemma 8.2, the definition of Uε as a solution of the evolu-
tion equation and integration by parts formula.
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We have to show that Iε,δ ′ approach 0 as δ ′ ↓ 0 uniformly in ε, and IIε,δ ′ , IIIε,δ ′ approach
0 as ε ↓ 0 for each δ ′ > 0.

We start with IIε,δ ′ . For each ε, ε′ > 0, ε ′ ′ ≥ 0, δ < δ ′, we define

M1
s (δ, ε, ε ′, ε ′ ′)

≡ 2λ

∫ s

s−δ
e−〈X

1
u,Vs+ε−u(Ht−s)〉−〈X

2
u ,Vs+ε−u(Ht−s)〉

× 〈Ku(X1,X2), 2V 1
s−u+ε(Ht−s)〉〈Ss+ε ′−u(X1

u)Ss+ε ′−u(X2
u),V 1

ε ′ ′(Ht−s)〉 du

M2
s (δ, ε, ε ′, ε ′ ′)

≡ λ

∫ s

s−δ
e−〈X

1
u,Vs+ε−u(Ht−s)〉−〈X

2
u,Vs+ε−u(Ht−s)〉

× 〈
(
Ss+ε ′−u(X1

u) + Ss+ε ′−u(X2
u)
)
Ss+ε ′−u

(
Ku(X1,X2)

)
,V 1

ε ′′(Ht−s)〉 du

M3
s (δ, ε, ε ′, ε ′ ′)

≡

∫ s

s−δ
e−〈X

1
u,Vs+ε−u(Ht−s)〉−〈X

2
u,Vs+ε−u(Ht−s)〉

×

∫
Rd

(∫
Rd

Vs+ε−u(Ht−s)(y)ps+ε ′−u(x − y) X1
u(dy)

)
× Ss+ε ′−u(X2

u)(x)V 1
ε ′ ′(Ht−s)(x) dx du,

M4
s (δ, ε, ε ′, ε ′ ′)

≡

∫ s

s−δ
e−〈X

1
u,Vs+ε−u(Ht−s)〉−〈X

2
u,Vs+ε−u(Ht−s)〉

×

∫
Rd

(∫
Rd

Vs+ε−u(Ht−s)(y)ps+ε ′−u(x − y) X2
u(dy)

)
× Ss+ε ′−u(X1

u)(x)V 1
ε ′ ′(Ht−s)(x) dx du.

From Lemma 8.1(b) it follows that

IIε,δ ′

= 2λ

∣∣∣∣limε ′↓0

∫ t

δ ′
P̃t−s × P

[
exp{−〈X1

s−δ,Vε+δ(Ht−s)〉 − 〈X
2
s−δ,Vε+δ(Ht−s)〉}

×

{
〈Sε ′+δ(X1

s−δ)Sε ′+δ(X2
s−δ),V

1
ε (Ht−s)〉 −

∫
Rd

Sε+δ(X1
s−δ)(x)Sε+δ(X2

s−δ)(x) X̃t−s(dx)

}
+ M1

s (δ, ε, ε ′, ε) + M2
s (δ, ε, ε ′, ε) + M3

s (δ, ε, ε ′, ε)

+ M4
s (δ, ε, ε ′, ε)−M1

s (δ, ε, ε, 0)−M2
s (δ, ε, ε, 0)−M3

s (δ, ε, ε, 0)−M4
s (δ, ε, ε, 0)

]
ds

∣∣∣∣.
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Recall that if µ = µ1 + iµ2 ∈ S̃ ′
ρ
, then by Theorem 5.8 V·(µ)(·) ∈ C ([δ,T] × Rd) for

each 0 < δ < T, and V 1
ε (µ)⇒ µ1 as ε ↓ 0. Therefore

lim
ε↓0

lim
ε ′↓0

exp{−〈X1
s−δ,Vε+δ(Ht−s)〉 − 〈X

2
s−δ,Vε+δ(Ht−s)〉}

×

{
〈Sε ′+δ(X1

s−δ)Sε ′+δ(X2
s−δ),V

1
ε (Ht−s)〉

−

∫
Rd

Sε+δ(X1
s−δ)(x)Sε+δ(X2

s−δ)(x)X̃t−s(dx)

}
= 0

(8.4)

P̃t−s × P-a.s. for each δ ′ ≤ s ≤ t . Furthermore,

P̃t−s × P[|〈Sε+δ(X1
s−δ)Sε+δ(X2

s−δ),V
1
ε ′ ′(Ht−s)〉|

2]

≤ pδ(0)2P̃t−s[|〈1,V
1
ε ′′(Ht−s)〉|

2]× P[X1
s−δ(1)2X2

s−δ(1)2], ε ′ ′ ≥ 0.
(8.5)

By (8.5), Lemma 3.1 and Corollary 7.23 the second moment of 〈Sε+δ(X1
s−δ)Sε+δ(X2

s−δ),
V 1
ε ′ ′(Ht−s)〉 is bounded uniformly in ε, ε′ ′ and δ ′ ≤ s ≤ t . This gives the uniform in-

tegrability condition for {〈Sε+δ(X1
s−δ)Sε+δ(X2

s−δ),V
1
ε ′ ′(Ht−s)〉, ε > 0, ε ′ ′ ≥ 0, δ ′ ≤ s ≤ t},

which together with (8.4) shows that

lim
ε↓0

IIε,δ ′ = 2λ lim
ε↓0

∣∣∣∣limε ′↓0

∫ t

δ ′
P̃t−s × P[M1

s (δ, ε, ε ′, ε) + M2
s (δ, ε, ε ′, ε)

+ M3
s (δ, ε, ε ′, ε) + M4

s (δ, ε, ε ′, ε)−M1
s (δ, ε, ε, 0)

−M2
s (δ, ε, ε, 0)−M3

s (δ, ε, ε, 0)−M4
s (δ, ε, ε, 0)] ds

∣∣∣∣.

(8.6)

To prove that limε↓0 IIε,δ ′ = 0 it suffices to show that for each k = 1, 2, 3, 4 limδ↓0 P̃t−s ×
P[Mk

s (δ, ε, ε ′, ε ′′)] = 0 uniformly in ε, ε′, ε ′ ′ and s ∈ [δ ′, t]. Without loss of generality, we
will, henceforth, assume that

0 ≤ ε + ε ′ + ε ′ ′ ≤ 1.

We introduce several functions and constants which will be frequently used throughout the
remainder of this section.

c0 ≡ P
[
X1

0(1)X2
0(1) + X1

0(1)2X2
0(1)2 + X1

0(1)X2
0(1)
(
X1

0(1) + X2
0(1)
)]
,

https://doi.org/10.4153/CJM-1999-019-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-019-x


Uniqueness for a Competing Species Model 417

c1
t ≡ sup

s≥t

(
ps(0) + ps(0)2

)
= pt (0) + pt (0)2, ∀ t > 0,

c2 ≡ ‖H0‖∞ + ‖H0‖
2
∞,

c2,1 ≡ ‖H0‖1 + ‖H0‖
2
2,

c3
t ≡

∫ t

0

∫ t

0
(v1 + v2)−d/2 dv1 dv2,

κd(u) ≡


u−1/2, d = 3

− ln(u), d = 2,

u1/2, d = 1,

and let c̃ be a constant that does not depend on s, t , δ, δ ′, ε, ε ′, ε ′′ and may change from
line to line.

Lemma 8.6

lim
δ↓0

P × P̃t−s[M1
s (δ, ε, ε ′, ε ′′)] = 0

uniformly in ε, ε ′, ε ′ ′ and s ∈ [δ ′, t].

Proof It is easy to check that

|P × P̃t−s[M1
s (δ, ε, ε ′, ε ′ ′)]|

≤

∫ s

s−δ
P × P̃t−s[〈Ku(X1,X2), 2V 1

s−u+ε(Ht−s)〉

× 〈Ss+ε ′−u(X1
u)Ss+ε ′−u(X2

u),V 1
ε ′ ′(Ht−s)〉] du.

(8.7)

By (7.42) (Lemma 7.21)

P̃t−s[V
1
s−u+ε(Ht−s)(x)V 1

ε ′ ′(Ht−s)(x1)]

≤ St−u+ε(|H0|)(x)St−s+ε ′ ′(|H0|)(x1)

+ λ

∫ t−s

0

∫
Rd

pt−u+ε−v(x − y)pt−s−v+ε ′′(x1 − y)Sv(|H0|)(y) dy dv

≤ ‖H0‖
2
∞ + c̃‖H0‖∞

∫ t−s

0
p2t−u−s+ε+ε ′′−2v(x − x1) dv

≤ c2

(
1 + c̃

∫ t−s

0
(2t − u− s− 2v)−d/2 dv

)
≤ c2
(

1 + c̃
(
|κ(s− u)| + |κ(2t − u− s)|

))
, a.e.-(x, x1).

(8.8)

https://doi.org/10.4153/CJM-1999-019-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-019-x


418 Leonid Mytnik

X j ≤ Y j , j = 1, 2, where (Y 1,Y 2) is a dominating pair of superprocesses. Therefore we
have

P[X j
u(x)Ss+ε ′−u(X j

u)(x1)]

≤ P[Y j
u(x)Ss+ε ′−u(Y j

u)(x1)]

= P

[
Su(X j

0)(x)Ss+ε ′(X j
0)(x1)

+

∫ u

0

∫
Rd

Sv j (X j
0)(y j)ps+ε ′−v j (x1 − y j)pu−v j (x − y j) dy j dv j

]
, j = 1, 2.

Recall that

sup
δ≤u
‖Su(µ)‖∞ ≤ µ(1) sup

δ≤u
c1

u ≤ µ(1)c1
δ , ∀µ ∈ MF, δ > 0.(8.9)

Therefore by (3.6) (Lemma 3.4) we get

P

[∫
Rd

∫
Rd

Ku(X1,X2)(x)Ss+ε ′−u(X1
u)(x1)Ss+ε ′−u(X2

u)(x1) dx dx1

]
≤ P

[∫
Rd

∫
Rd

(
Su(X1

0)(x)Ss+ε ′(X1
0)(x1)

+

∫ u

0

∫
Rd

Sv1 (X1
0)(y1)ps+ε ′−v1 (x1 − y1)pu−v1 (x − y1) dy1 dv1

)
×

(
Su(X2

0)(x)Ss+ε ′(X2
0)(x1)

+

∫ u

0

∫
Rd

Sv2 (X2
0)(y2)ps+ε ′−v2 (x1 − y2)pu−v2 (x − y2) dy2 dv2

)
dx1 dx

]
≤ c1

δ ′−δP[X1
0(1)2X2

0(1)2]

+ c1
δ ′−δP

[
X1

0(1)X2
0(1)

∫ u

0
X2

0(1) dv1 + X1
0(1)X2

0 (1)

∫ u

0
X1

0(1) dv2

]
+ P

[∫ u

0

∫ u

0

∫
Rd

∫
Rd

Sv1 (X1
0)(y1)p2s+2ε ′−v1−v2 (y1 − y2)

× Sv2 (X2
0)(y2)p2u−v1−v2 (y1 − y2) dy1 dy2 dv1 dv2

]
≤ c1

δ ′−δc
0(1 + t)

+ P

[
c̃

∫ u

0

∫ u

0
(2s + 2ε ′ − v1 − v2)−d/2

×

∫
Rd

∫
Rd

Sv1 (X1
0)(y1)Sv2 (X2

0)(y2)p2u−v1−v2 (y1 − y2) dy1 dy2 dv1 dv2

]
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where the second inequality follows from (8.9). The last term is bounded by

P

[
c̃

∫ s

0

∫ s

0
(2s− v1 − v2)−d/2

∫
Rd

∫
Rd

p2u(z1 − z2)X1
0(dz1)X2

0(dz2) dv1 dv2

]
≤ c1

2δ ′−2δP[X1
0(1)X2

0(1)]

∫ s

0

∫ s

0
(v1 + v2)−d/2 dv1 dv2

≤ c1
2δ ′−2δc

0c3
t ≤ c1

δ ′−δc
0c3

t ,

where, again, the first inequality follows from (8.9) and the last inequality follows from
monotonicity of c1

t . This yields

P

[∫
Rd

∫
Rd

Ku(X1,X2)(x)Ss+ε ′−u(X1
u)(x1)Ss+ε ′−u(X2

u)(x1) dx dx1

]
≤ c1

δ ′−δc
0(1 + t + c3

t )

for all s− δ ≤ u ≤ s ≤ t . Combining the last bound with (8.7) and (8.8) we get

|P × P̃t−s[M1
s (δ, ε, ε ′, ε ′′)]|

≤

∫ s

s−δ
P × P̃t−s[〈Ku(X1,X2), 2V 1

s−u+ε(Ht−s)〉

× 〈Ss+ε ′−u(X1
u)Ss+ε ′−u(X2

u),V 1
ε ′ ′(Ht−s)〉] du

≤ c1
δ ′−δc

0(1 + t + c3
t )

∫ s

s−δ

(
|κ(s− u)| + |κ(2t − u− s)|

)
du→ 0,

as δ ↓ 0 uniformly in s ∈ [δ ′, t]. The last bound does not depend on ε, ε′, ε ′ ′, and the
lemma follows.

Lemma 8.7
lim
δ↓0

P × P̃t−s[M2
s (δ, ε, ε ′, ε ′′)] = 0

uniformly in ε, ε ′, ε ′ ′ and s ∈ [δ ′, t].

Proof As in the previous lemma, we have

|P × P̃t−s[M2
s (δ, ε, ε ′, ε ′ ′)]|

≤

∫ s

s−δ
P × P̃t−s

[
〈
(
Ss+ε ′−u(X1

u) + Ss+ε ′−u(X2
u)
)

× Ss+ε ′−u

(
Ku(X1,X2)

)
,V 1

ε ′′(Ht−s)〉
]

du.

(8.10)

By (7.39) we have

P̃t−s[V
1
ε ′ ′(Ht−s)(x) dx] ≤ ‖H0‖∞ dx ≤ c2 dx.
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Combining this with (3.5) (Lemma 3.4) we obtain

P × P̃t−s

[
〈Ss+ε−u(X j

u)Ss+ε ′−u

(
Ku(X1,X2)

)
,V 1

ε ′ ′(Ht−s)〉
]

≤ c2P

[∫
Rd

∫
Rd

Ss+ε ′−u(SuX j
0)(x1)ps+ε ′−u(x1 − x)Su(X1

0)(x)Su(X2
0)(x) dx dx1

+

∫
Rd

∫
Rd

∫
Rd

∫ u

0
Sv1 (X j

0)(y1)ps+ε ′−v1 (x1 − y1)pu−v1 (x − y1)

× ps+ε ′−u(x1 − x)Su(Xk
0)(x) dx dx1 dy1 dv1

]
≡ c2(I + II),

(8.11)

where j = 1, k = 2 or j = 2, k = 1. Consider I first.

I ≤ P

[∫
Rd

S2s+2ε ′−2u(X j
0)(x)Su(X1

0)(x)Su(X2
0)(x) dx

]
≤ c1

δ ′−δP

[
X1

0(1)X2
0(1)

∫
Rd

S2s+2ε ′−2u(X j
0)(x) dx

]
≤ c1

δ ′−δP[X1
0 (1)X2

0(1)X j
0(1)] ≤ c1

δ ′−δc
0.

(8.12)

Now consider II in (8.11). Integrating with respect to x1 and proceeding with simple cal-
culations, we obtain

II= P

[∫
Rd

∫
Rd

∫ u

0
Sv1 (X j

0)(y1)p2s+2ε ′−u−v1 (x − y1)pu−v1 (x − y1)Su(Xk
0)(x) dx dy1, dv1

]
≤ c̃P

[∫ u

0
(2s + 2ε ′ − u− v1)−d/2

∫
Rd

∫
Rd

Sv1 (X j
0)(y1)pu−v1 (x − y1)Su(Xk

0)(x) dx dy1, dv1

]
≤ c̃

∫ u

0
(2s− u− v1)−d/2P

[∫
Rd

Su(X j
0)(x)Su(Xk

0)(x) dx dv1

]
≤ c̃
(
|κ(2s− 2u)| + |κ(2s− u)|

)
P

[∫
Rd

∫
Rd

p2u(z1 − z2) X1
0(dz1) X2

0(dz2)

]
≤ c̃
(
|κ(2s− 2u)| + |κ(2s− u)|

)
P[X1

0(1)X2
0(1)] sup

2δ ′≤2u≤2t
p2u(0)

≤ c̃c1
δ ′−δc

0
(
|κ(2s− 2u)| + |κ(2s− u)|

)
.

The last bound and equations (8.10)–(8.12) imply that

|P × P̃t−s[M2
s (δ, ε, ε ′, ε ′′)]| ≤ c2c1

δ ′−δc
0

∫ s

s−δ
1 + c̃
(
|κ(2s− 2u)| + |κ(2s− u)|

)
du→ 0,

as δ ↓ 0 uniformly in s ∈ [δ ′, t]. The last bound does not depend on ε, ε′, ε ′ ′ and the
lemma follows.
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Lemma 8.8 Define

M5
s (δ, ε, ε ′, ε ′′) ≡

∫ s

s−δ
P̃t−s

[∫
Rd

|Vs+ε−u(Ht−s)(y)|Ss+ε ′−u

(
V 1
ε ′ ′(Ht−s)

)
(y) dy

]
du.

Then

M5
s (δ, ε, ε ′, ε ′ ′) ≤ 2c2,1

∫ s

s−δ
1 + c̃
(
|κ(s− u)| + |κ(t − u)|

)
du, ∀ ε, ε ′, ε ′ ′,(8.13)

and

lim
δ↓0

M5
s (δ, ε, ε ′, ε ′′) = 0(8.14)

uniformly in s ∈ [δ ′, t] and ε, ε ′, ε ′ ′.

Proof (8.14) is immediate from (8.13). Now consider (8.13). Use Hölder inequality to
bound M5

s (δ, ε, ε ′, ε ′ ′) by

√∫ s

s−δ
P̃t−s

[∫
Rd

|Vs+ε−u(Ht−s)(y)|2 dy

]
du

√∫ s

s−δ
P̃t−s

[∫
Rd

Ss+ε ′−u

(
V 1
ε ′ ′(Ht−s)

)
(y)2 dy

]
du.

(8.15)

Recall that c2,1 = ‖H0‖1 + ‖H0‖2
2. Use (7.41) (take ψ = δy) to see that∫

Rd

P̃t−s[|Vs+ε−u(Ht−s)(y)|2] dy

≤ 2

∫
Rd

St+ε−u(|H0|)(y)2 dy

+ 2λ

∫ t−s

0

∫
Rd

∫
Rd

pt+ε−u−v(x − y)2Sv(|H0|)(x) dx dy dv

≤ 2‖H0‖
2
2 + c̃

∫ t−s

0
‖H0‖1(t + ε− u− v)−d/2 dv

≤ 2c2,1

(
1 + c̃

∫ t−s

0
(t − u− v)−d/2 dv

)
≤ 2c2,1

(
1 + c̃
(
|κ(s− u)| + |κ(t − u)|

))
.

(8.16)

Turning to P̃t−s

[∫
Rd Ss+ε ′−u

(
V 1
ε ′ ′(Ht−s)

)
(y)2 dy

]
, we may use (7.41) again to bound it by∫

Rd

Ss+ε ′−u

(
St−s+ε ′ ′(|H0|)

)
(y)2 dy

+ λ

∫ t−s

0

∫
Rd

∫
Rd

pt+ε+ε ′−u−v(x − y)2Sv(|H0|)(x) dx dy dv.
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Argue as in (8.16) to bound the above by

c2,1
(

1 + c̃
(
|κ(s− u)| + |κ(t − u)|

))
.(8.17)

Combining (8.15), (8.16) and (8.17) we are done.

Lemma 8.9 For k = 3, 4,

lim
δ↓0

P × P̃t−s[Mk
s (δ, ε, ε ′, ε ′ ′)] = 0

uniformly in ε, ε ′, ε ′ ′ and s ∈ [δ ′, t].

Proof We will only prove the assertion about M3
s (δ, ε, ε ′, ε ′ ′) since the proof of the asser-

tion about M4
s (δ, ε, ε ′, ε ′ ′) is the same. Routine arguments similar to those used in the

proof of Lemma 8.6 and Lemma 8.7 show that

|P × P̃t−s[M3
s (δ, ε, ε ′, ε ′′)]|

≤

∫ s

s−δ
P̃t−s

[∫
Rd

∫
Rd

|Vs+ε−u(Ht−s)(y)|ps+ε ′−u(x − y)

× P[X1
u(dy)Ss+ε ′−u(X2

u)(x)]V 1
ε ′ ′(Ht−s)(x) dx

]
du

≤

∫ s

s−δ
P̃t−s

[∫
Rd

∫
Rd

|Vs+ε−u(Ht−s)(y)|ps+ε ′−u(x − y)

× P
[
Su(X1

0)(y)Ss+ε ′−u

(
Su(X2

0)
)

(x)
]
×V 1

ε ′ ′(Ht−s)(x) dy dx

]
du

≤ c1
δ ′−δP[X1

0(1)X2
0 (1)]

∫ s

s−δ
P̃t−s

[∫
Rd

∫
Rd

|Vs+ε−u(Ht−s)(y)|ps+ε ′−u(x − y)

×V 1
ε ′ ′(Ht−s)(x) dy dx

]
du

≤ c1
δ ′−δc

0

∫ s

s−δ
P̃t−s

[∫
Rd

|Vs+ε−u(Ht−s)(y)|Ss+ε ′−u

(
V 1
ε ′ ′(Ht−s)

)
(y) dy

]
du

= c1
δ ′−δc

0M5
s (δ, ε, ε ′, ε ′′).

Now we are done by Lemma 8.8.

Lemma 8.10 For each δ ′ > 0, limε↓0 IIε,δ ′ = 0.

Proof Recall that by (8.6)

lim
ε↓0

IIε,δ ′ = 2λ lim
ε↓0

∣∣∣∣limε ′↓0

4∑
k=1

∫ t

δ ′
P̃t−s × P[Mk

s (δ, ε, ε ′, ε)−Mk
s (δ, ε, ε, 0)] ds

∣∣∣∣(8.18)
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for each δ < δ ′ < s. Applying Lemmas 8.6, 8.7, 8.9 it is easy to make

∣∣∣∣ 4∑
k=1

∫ t

δ ′
P̃t−s × P[Mk

s (δ, ε, ε ′, ε)−Mk
s (δ, ε, ε, 0)] ds

∣∣∣∣
arbitrarily small uniformly in ε, ε ′ by choosing δ sufficiently small. This finishes the proof
of the lemma.

Lemma 8.11 limδ ′↓0 Iε,δ ′ = 0 uniformly in 0 < ε ≤ 1.

Proof

Iε,δ ′ ≤

∣∣∣∣2λ∫ δ ′

0
P̃t−s × P

[
〈Ks(X1,X2),V 1

ε (Ht−s)〉

+

∫
Rd

|Uε(Ht−s, x)(X1
s )Uε(Ht−s, x)(X2

s )| X̃t−s(dx)

]
ds

∣∣∣∣.
(8.19)

By (7.39) we obtain∫ δ ′

0
P̃t−s × P[〈Ks(X1,X2),V 1

ε (Ht−s)〉] ds

≤

∫ δ ′

0
P

[∫
Rd

Ss(X1
0)(x)Ss(X2

0)(x)

]
St−s+ε(|H0|)(x) dx ds

≤ c2

∫ δ ′

0
P

[∫
Rd

p2s(x − y) X1
0(dx) X2

0(dy)

]
ds.

(8.20)

The last integral is finite (and therefore approaches 0 as δ ′ ↓ 0) since P(X1
0 ,X

2
0)−1 ∈

M∗1 (MF,w × MF,w). Turning to the second term in (8.19), we may use Corollary 7.22 to
see that ∫ δ ′

0
P̃t−s × P

[∫
Rd

|Uε(Ht−s, x)(X1
s )Uε(Ht−s, x)(X2

s )| X̃t−s(dx)

]
ds

≤

∫ δ ′

0
P̃t−s × P

[∫
Rd

Sε(X1
s )(x)Sε(X2

s )(x)St−s(|H0|)(x) dx

]
ds

≤ c2

∫ δ ′

0
P

[∫
Rd

p2s+2ε(x − y) X1
0(dx) X2

0(dy) dx dy

]
ds

≤ c2

∫ ε+δ ′

ε

P

[∫
Rd

p2s(x − y) X1
0(dx) X2

0(dy) dx dy

]
ds.

As in (8.20), the last expression approaches 0 as δ ′ ↓ 0 uniformly in 0 < ε ≤ 1 and the
lemma follows.
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Lemma 8.12 For each δ ′ > 0, limε↓0 IIIε,δ ′ = 0.

Proof

IIIε,δ ′ ≤ 2λ

∫ t

δ ′
P̃t−s × P

[∫
Rd

∫ ε

0
〈Sε−u

(
|Uu(Ht−s, x)|

)
,X2

s 〉

× 〈Sε−u

(
|Uu(Ht−s, x)| |Vu(Ht−s)|

)
,X1

s 〉 du X̃t−s(dx)

]
ds

+ 2λ

∫ t

δ ′
P̃t−s × P

[∫
Rd

∫ ε

0
〈Sε−u

(
|Uu(Ht−s, x)|

)
,X1

s 〉

× 〈Sε−u

(
|Uu(Ht−s, x)| |Vu(Ht−s)|

)
,X2

s 〉 du X̃t−s(dx)

]
ds.

We will only prove that the first term converges to 0 as δ ′ ↓ 0 since the proof of the conver-
gence for the second term is the same.∫ t

δ ′
P̃t−s × P

[∫
Rd

∫ ε

0
〈Sε−u

(
|Uu(Ht−s, x)|

)
X2

s 〉

× 〈Sε−u

(
|Uu(Ht−s, x)| |Vu(Ht−s)|

)
,X1

s 〉 du X̃t−s(dx)

]
ds

≤

∫ t

δ ′
P̃t−s × P

[∫
Rd

∫ ε

0
〈Sε−u

(
pu(x − ·)

)
,X2

s 〉

× 〈Sε−u

(
pu(x − ·)|Vu(Ht−s)|

)
,X1

s 〉 du X̃t−s(dx)

]
ds

≤

∫ t

δ ′
P̃t−s × P

[∫
Rd

∫ ε

0
Sε(X2

s )(x)

× 〈pu(x − ·)|Vu(Ht−s)|, Sε−uX1
s 〉 du X̃t−s(dx)

]
ds

≤

∫ t

δ ′
P̃t−s × P

[∫ ε

0
‖Sε+s(X2

0)‖∞ ‖Sε+s−u(X1
0)‖∞

×

∫
Rd

|Vu(Ht−s)|(y)Su(X̃t−s)(y) dy du

]
ds

≤ c1
δ ′c

0

∫ t

δ ′
P̃t−s

[∫ s+ε

s

∫
Rd

|Vs+ε−u(Ht−s)|(y)Ss+ε−u(X̃t−s)(y) dy du

]
ds

= c1
δ ′c

0

∫ t

δ ′
M5

s+ε(ε, 0, 0, 0) ds.

The first inequality follows from (5.18) and the fact that X̃s ∈ Mρ
F (and hence does not

charge sets of nil capacity). The derivation of the other inequalities is straightforward.
Now apply Lemma 8.8 to complete the proof.
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Recall we are proving Lemma 8.5.

Proof of Lemma 8.5

lim
ε↓0
{P × P̃t [exp{−〈X1

t ,Vε(H0)〉 − 〈X2
t ,Vε(H0)〉}]

− P × P̃t [exp{−〈X1
0 ,Vε(Ht )〉 − 〈X

2
0 ,Vε(Ht )〉}]} = 0.

The limit equals to
lim
ε↓0

(Iε,δ ′ + IIε,δ ′ + IIIε,δ ′)

for each δ ′ > 0. By Lemma 8.11 we can make Iε,δ ′ arbitrarily small uniformly in ε by fixing
δ ′ sufficiently small. By Lemma 8.10 and Lemma 8.12 IIε,δ ′ and IIIε,δ ′ approach 0 as ε ↓ 0
for the chosen fixed δ ′ and this finishes the proof of the lemma.

Corollary 8.13

P[exp{−〈X1
t , φ〉 − 〈X

2
t , φ〉}] = lim

ε↓0
P × P̃t [exp{−〈X1

0 ,Vε(Ht )〉 − 〈X
2
0 ,Vε(Ht )〉}],

where φ = H0.

Proof Since φ, φ ∈ S̃(Rd), we have that limε↓0 ‖Vε(φ)−φ‖∞ = 0, limε↓0 ‖Vε(φ)−φ‖∞ =
0. Now we are done by Lemma 8.5.

Remark 8.14 ν = P(X1
0 ,X

2
0)−1 ∈ M∗1 (MF,w×MF,w) and φ ∈ S̃(Rd) were arbitrary. There-

fore by Corollary 8.13 and Lemma 4.3 the proof of Theorem 2.6 is now finished.

A Appendix

Proof of Theorems 5.8, 5.9

A.1 Proof of Theorem 5.8

We start with some notation. For any interval I ∈ R+ and any measure ν ∈ MF(R+ × Rd)
(the set of finite measures on R+ × Rd) let ‖ · ‖p,I and ‖ · ‖p,ν be the norms on the spaces
Lp(I × Rd) and Lp

(
R+ × Rd, ν(ds, dx)

)
respectively.

Let us introduce two more spaces:

L2
loc ≡ { f ∈ L2

(
(0,T]× Rd

)
, ∀T > 0},

L2,p
c,loc ≡

{
f ∈ C

(
(0,∞)× Rd

)
: ‖ f ‖2

2,(0,T],p

≡

∫ T

0+
s−p‖ f (s, ·)‖2

2 ds <∞, ∀T > 0

}
, p ≥ 0.

In what follows, in order to simplify notation, we will write
∫ ·

0 instead of
∫ ·

0+.

It is clear that if f ∈ L2,p
c,loc for some p > 0, then f ∈ L2,q

c,loc for any q < p and in particular

f ∈ L2
loc.

Let p > 0. We say that f (n) → f in L2,p
c,loc if
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(i) f (n) → f uniformly on compact subsets of (0,∞)× Rd,
(ii) limε↓0 lim supn ‖ f (n)‖2,(0,ε],p = 0,
(iii) lim supn→∞ supε≤s≤T ‖ f (n)(s, ·)‖∞ <∞, ∀ 0 < ε < T.

Recall that ρ, ρ̂ are constants that satisfy(
d

2
− 1 ∨ 0

)
< ρ <

(
1 ∧

3

2
−

d

4

)
,(A.1)

0 < ρ̂ <

(
3−

d

2
− 2ρ ∧ 1− ρ

)
.(A.2)

Recall that for any r > 0, κ ∈ CR(R+)+ and f ∈ S̃(Rd) Vr,t ( f , κ) denotes the solution of
the following evolution equation:

vt = St−r f +

∫ t

r
St−s(v2

s )κ(s) ds, t > r.(A.3)

Given T > 0, V·,T(·, ·)(·) may be considered as a mapping

[0,T)× S̃(Rd)×CR

(
[0,T)

)
+
× Rd 7→ C.

Our main concern in this subsection is to prove that V·,T(·, ·) may be extended to the
mapping [0,T) × S̃ ′

ρ
× L∞R

(
[0,T)

)
+
× Rd 7→ C (where we induce weak∗ topology on

L∞R
(
[0,T)

)
+

) and this mapping is continuous. For the definition of S̃ ′
ρ

and the definitions

and basic properties of w(s, µ), wρ(δ, µ), w̃ρ(s, µ) (with µ ∈ S̃ ′) the reader is referred to
Section 5.

The following lemma will be extensively used.

Lemma A.1 Let f (n) → f in S̃ ′
ρ
. Then

lim
ε↓0

lim sup
n→∞

∫ ε

0
t−ρ̂
(
w(t, f (n)) + w̃ρ(t, f (n))2t2− d

2−2ρ
)

dt = 0,(A.4)

lim
n→∞

∫ T

0
t−ρ̂
(
w(t, f (n)) + w̃ρ(t, f (n))2t2− d

2−2ρ
)

dt

=

∫ T

0
t−ρ̂
(
w(t, f ) + w̃ρ(t, f )2t2− d

2−2ρ
)

dt <∞, ∀T > 0.

(A.5)

Proof (A.5) is an easy consequence of (A.4). The derivation of (A.4) is straightforward
from our assumptions on ρ and ρ̂ and the definition of convergence in S̃ ′

ρ
. The details are

left to the reader.

Observe that for each r > 0, Vr,r+t ( f , κ) = V0,t

(
f , κ(r + ·)

)
, therefore many properties

of Vr,t may be expressed via the properties of V0,t . For simplicity (but with a slight abuse of
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notation), set Vt ( f , κ) ≡ V0,t ( f , κ), that is, Vt ( f , κ) solves the following evolution equa-
tion

vt = St f +

∫ t

0
St−s(v2

s )κ(s) ds, t > 0.(A.6)

In the sequel for given f , κ, if we consider V·( f , κ)(·) as a function defined on (0,∞)×Rd,
then this function will be denoted by V ( f , κ). As we will see later, Theorem 5.8 is an easy
consequence of the following proposition.

Proposition A.2

(a) For each µ ∈ S̃ ′
ρ

and κ ∈ L∞R (R+)+, there exists a unique solution Vt (µ, κ) for (A.6)
such that

V(µ, κ) ∈ L2,ρ̂
c,loc,

Vε+·(µ, κ) ∈ C
(
[0,T]× Rd

)
+
, ∀T > 0, ε > 0,

Vt (µ, κ) ∈ Lq(Rd)+, ∀ t > 0, q ≥ 2,

V 1
t (µ, κ) ∈ L1

R(Rd)+, ∀ t > 0.

If κ ∈ CR(R+)+, then Vt (µ, κ) is a strong solution for (A.6).
(b) Let κ(n) → κ weakly∗ in L∞R (R+)+ and µ(n) → µ in S̃ ′

ρ
. Then

V(µ(n), κ(n))→ V(µ, κ) in L2,ρ̂
c,loc,

as n→∞.
(c) Let ψ ∈ S(Rd), and let A be any compact subset of

(
S̃ ′
ρ
× L∞R (R+)

)
+

(as usual, the
topology on L∞R (R+)+ is weak∗). Then

lim
ε↓0

sup
s<ε,(µ,κ)∈A

|〈ψ,Vs(µ, κ)〉 − 〈ψ, µ〉| = 0.

We will prove this proposition via a series of lemmas.

Lemma A.3 Let ψ(n) ∈ C ([ε,T]× Rd) for some 0 < ε < T. Suppose that

sup
n
‖ψ(n)‖∞,[ε,T] <∞

and ψ(n) → ψ uniformly on compact subsets of [ε,T]×Rd. Then, for all (t, x) ∈ [ε,T]×Rd,
St−·

(
ψ(n)(·, ·)

)
(x)→ St−·

(
ψ(·, ·)

)
(x) uniformly on [ε, t].

Proof Let {sn} be a sequence such that sn → s in [ε, t]. We need to show that

lim
n→∞

∣∣∣∣∫
y∈Rd

pt−sn (x − y)ψ(n)(sn, y)− pt−s(x − y)ψ(s, y) dy

∣∣∣∣ = 0.

But the sequence of measures pt−sn (x − y) dy converges weakly to the measure
pt−s(x − y) dy (or δx in the special case s = t). By our assumptions on ψ(n) the result
follows from standard theorems on weak convergence.
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Lemma A.4 Let ψ(n) ∈ C
(

(0,∞)× Rd
)
. Define

G(ψ(n))(t, x) =

∫ t

0
St−s

(
ψ(n)(s, ·)

)
(x) ds, ∀ (t, x) ∈ (0,∞)× Rd.

Suppose that

lim
ε↓0

lim sup
n
‖ψ(n)‖1,(0,ε] = 0,(A.7)

and, for each T > 0,

lim sup
n
‖ψ(n)‖∞,[ε,T] <∞, ∀ 0 < ε < T.(A.8)

Then G(ψ(n)) is relatively compact in C
(
(0,∞)×Rd

)
, that is, for each subsequence of G(ψ(n)),

there is a further subsequence that converges uniformly on compact subsets of (0,∞)× Rd.

Proof Let (t, x) be an arbitrary point in (0,∞)× Rd. Choose ε > 0 such that ε < t . Then

|G(ψ(n))(t, x)| ≤

∫ ε

0

∫
Rd

|pt−u(x − z)| |ψ(n)(u, z)| dz du

+

∫ t

ε

∫
Rd

|pt−u(x − z)| |ψ(n)(u, z)| dz du

≤ ‖pt−·(x − ·)‖∞,(0,ε]‖ψ
(n)‖1,(0,ε] + |t − ε| ‖ψ(n)‖∞,[ε,t] <∞

(A.9)

uniformly in n. Let us check equicontinuity condition. For any (t, x), (s, y) ∈ (0,∞)×Rd,
ε > 0 (without loss of generality, we assume that s ≤ t , 0 < ε < s)

|G(ψ(n))(t, x)− G(ψ(n))(s, y)|

≤

∫ ε

0

∫
Rd

|pt−u(x − z)− ps−u(y − z)| |ψ(n)(u, z)| dz du

+

∫ s

ε

∫
Rd

|pt−u(x − z)− ps−u(y − z)| |ψ(n)(u, z)| dz du

+

∣∣∣∣∫ t

s
St−u(ψ(n))(u, x) du

∣∣∣∣
≤ ‖pt−·(x − ·)− ps−·(y − ·)‖∞,(0,ε]‖ψ

(n)‖1,(0,ε]

+ ‖ψ(n)‖∞,[ε,s]‖pt−·(x − ·)− ps−·(y − ·)‖1,[ε,s] + |t − s| ‖ψ(n)‖∞,[s,t].

Using (A.7), it is easy to make the first term arbitrarily small by fixing ε sufficiently small.
Observe that pt−·(x − ·) converges to ps−·(y − ·) in L1([ε, s]× Rd) as (t, x)→ (s, y). This
together with (A.8) implies that the second term may be made arbitrarily small uniformly
in n for all (t, x) sufficiently close to (s, y). The same happens to the third term. Therefore
{G(ψ(n))n ≥ 1} is equicontinuous at (s, y) (for s > t the arguments are the same). By (A.9)
it is also bounded at (s, y). Since (s, y) was an arbitrary point in (0,∞)× Rd, we are done
by Arzela-Ascoli theorem.
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Lemma A.5 Let µ(n) → µ in S ′. Then, for any T > ε > 0 and any compact set Γ ⊂ Rd,

lim
n→∞

sup
ε≤t≤T,x∈Γ

|Stµ
(n)(x)− Stµ(x)| = 0.

Proof By definition, Stµ
(n)(x) = 〈pt (x − ·), µ(n)〉. The set of functions {pt (x − ·) : ε ≤

t ≤ T, x ∈ Γ} is a bounded compact set in S(Rd), and, as µ(n) → µ in the strong topology
of S ′, we are done.

Lemma A.6 Let Γ ⊂ S ′ be compact. Then for any ψ ∈ S(Rd)

lim
ε→∞

sup
µ∈Γ
|〈ψ, Sεµ〉 − 〈ψ, µ〉| = 0.

Proof Since 〈ψ, Sεµ〉 = 〈Sεψ, µ〉, Sεψ → ψ in S(Rd) as ε → 0, and Γ is a compact set of
linear continuous functionals on S(Rd), the result follows.

Lemma A.7 Let f ∈ S̃(Rd), κ ∈ CR(R+)+. Denote υt,T = Vt,T( f , κ). Then

|υt,T(x)| ≤ |ST−t ( f )(x)|

+ ‖κ‖∞

∫ T

t

∫
Rd

ps−t (x − y)|ST−s( f )(y)|2 dy ds, ∀ 0 ≤ t < T, x ∈ Rd.

Proof The author suspects that the lemma may be proved by using tools from PDE-s. But
here we will apply probability methods.

For ε > 0 let Xε
t be a super-Brownian motion started at εδx defined on the time interval

[0,T] such that
e−ευt,T (x) = Pεδx [e−Xε

T−t ( f )], 0 ≤ t < T.

By Taylor expansion we have

e−Xε
t ( f ) = 1− Xε

t ( f ) +

∫ 1

0
e−θXε

t ( f )Xε
t ( f )2(1− θ) dθ,

where 0 ≤ θ ≤ 1 is some random number. Therefore∣∣∣∣1ε (1− e−ευT−t,T (x))

∣∣∣∣ = ∣∣∣∣1εPεδx [Xε
t ( f )]−

1

ε
Pεδx

[∫ 1

0
e−θXε

t ( f )Xε
t ( f )2(1− θ) dθ

]∣∣∣∣
≤ |St ( f )(x)| +

1

ε
Pεδx

[
|Xε

t ( f )|2
∫ 1

0
θ dθ

]
= |St ( f )(x)| +

1

2ε
Pεδx [Xε

t ( f )Xε
t ( f )]

= |St ( f )(x)| +
ε

2
|St ( f )(x)|2

+
1

2

∫ t

0

∫
Rd

ps(x − y)|St−s( f )(y)|2 dy 2κ(T − s) ds,
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≤ |St ( f )(x)| +
ε

2
|St ( f )(x)|2

+ ‖κ‖∞

∫ t

0

∫
Rd

ps(x − y)|St−s( f )(y)|2 dy ds

where the last equality follows from the moment formula for superprocess.
Letting ε→ 0 and using a simple change of variables, we are done.

The proof of the uniqueness of solution to (A.3) is based on the following lemma.

Lemma A.8 Let υ(t) satisfy the following evolution equation

υ(t) = −

∫ t

0
St−s

(
υ(s)u(s)

)
κ(s) ds,

υ(s, ·) ∈ C (Rd), ∀ s > 0,

u(s, ·) ∈ C (Rd)+, ∀ s > 0,

κ ∈ L∞R (R+)+.

(A.10)

Then, for all t > 0, υ(t) = 0.

Proof For each x ∈ Rd,∫ t

0
St−s

(
υ(s)u(s)

)
(x)κ(s) ds =

∫ t

0

∫
Rd

pt−s(x − y)υ(s, y)u(s, y)κ(s) dy ds

is well defined, therefore∫ t

0

∫
Rd

pt−s(x − y)|υ(s, y)u(s, y)| |κ(s)| dy ds <∞

for all x ∈ Rd. Hence, for all t > 0,

lim
s↓0

∫ s

0
St−z

(
|υ(z)u(z)|

)
(x)|κ(z)| dz = 0.

Combining this with (A.10) we obtain

lim
s↓0

St−s

(
|υ(s)|

)
(x) ≤

∫ s

0
St−z

(
|υ(z)u(z)|

)
(x)|κ(z)| dz = 0, ∀ t > 0, x ∈ Rd.(A.11)

By the semigroup property, υ(t) can be represented as

υ(t) = St−sυ(s)−

∫ t

s
St−z

(
υ(z)u(z)

)
κ(z) dz,
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for each 0 < s < t . Noting that υ(s), u(s) ∈ C (Rd) for each s > 0, we use Feynman-Kac
formula to obtain

υ(t, x) = Ex

[
υ
(
s,B(t − s)

)
e−
∫ t

s u(z,B(t−z))κ(z) dz
]
, ∀ t > s,

where B is a Brownian motion starting at x. Since Re(us) ≥ 0, we obtain

|υ(t, x)| ≤ Ex

[
|υ
(
s,B(t − s)

)
|
]
= St−s

(
|υ(s)|

)
(x), ∀ t > s.

Therefore by (A.11) we get

|υ(t, x)| ≤ lim
s↓0

St−s

(
|υ(s)|

)
(x) = 0,

and we are done since (t, x) ∈ (0,∞)× Rd was arbitrary.

Lemma A.9 For each f ∈ S̃ ′ and κ ∈ L∞R (R+)+, (A.6) has at most one solution v such that
v(s, ·) ∈ C (Rd)+ for all s > 0.

Proof For any two solutions v1, v2 of (A.6) we define vt = v1
t − v2

t and ut = v1
t + v2

t . Then
it is easy to check that v satisfies (A.10). Therefore, by Lemma A.8, vt = 0 for each t > 0,
and the result follows.

Assumptions and Notation

(i) Fix arbitrary f ∈ S̃ ′
ρ
, κ ∈ L∞R (R+)+. Let { f (n) = f (n)

1 + i f (n)
2 } ∈ S̃(Rd), {κ(n)} ∈

CR(R+)+, and f (n) → f in S̃ ′, κ(n) → κ weakly∗ in L∞ as n→∞. Denote

v(n)
t ≡ Vt ( f (n), κ(n)), t > 0.

(ii) limh↓0 lim supn→∞

∫ h
0 sρ−1w(s, f (n)) ds = 0;

(iii) limh↓0 lim supn→∞ wρ(h, f (n)) = 0.

Remark A.10 (iii) follows from (ii) by Lemma 5.5.

Remark A.11 Assumptions (i)–(iii) clearly imply that f (n) → f in S̃ ′
ρ
. We introduced

assumptions (ii)–(iii) (instead of just saying f (n) → f in S̃ ′
ρ
) with the only purpose of

making the future references more convenient.

Lemma A.12 Let f (n), f , v(n)
t satisfy (i)–(iii). Then for all n ≥ 1

‖v(n)
t ‖

2
2 ≤ C(d, ρ, κ(n))

(
w(t, f (n)) + w̃ρ(t, f (n))2t2− d

2−2ρ
)
, ∀ t > 0,(A.12)

‖v(n)‖2
2,(0,T],ρ̂ ≤ C(d, ρ, κ(n))

∫ T

0
t−ρ̂
(
w(t, f (n)) + w̃ρ(t, f (n))2t2− d

2−2ρ
)

dt, ∀T > 0,

(A.13)

where C(d, ρ, κ(n)) is the constant that depends only on d, ρ, κ(n).
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Proof (A.13) is immediate from (A.12).
Let us check (A.12). By Lemma A.7 we obtain∫

Rd

|v(n)
t (y)|2 dy

≤ 2

∫
Rd

|St ( f (n))(y)|2 dy

+ 2‖κ(n)‖∞

∫
Rd

∣∣∣∣∫ t

0

∫
Rd

ps(y − z)|St−s( f (n))(z)|2 dz ds

∣∣∣∣2 dy, ∀ t > 0.

(A.14)

Consider the second term in (A.14). For each j = 1, 2 we have∫
Rd

(∫ t

0

∫
Rd

ps(y − z)
(

St−s( f (n)
j )(z)

)2
dz ds

)2

dy

=

∫ t

0

∫ t

0

∫
Rd

∫
Rd

∫
Rd

ps(y − z)St−s( f (n)
j )(z)2

× ps1 (y − z1)St−s1 ( f (n)
j )(z1)2 dy dz dz1 ds ds1

=

∫ t

0

∫ t

0

∫
Rd

∫
Rd

ps+s1 (z1 − z)
(

St−s( f (n)
j )(z)

)2(
St−s1 ( f (n)

j )(z1)
)2

dz dz1 ds ds1

≤ Cd

∫ t

0

∫ t

0
(s + s1)−d/2w(t − s, f (n)

j )w(t − s1, f (n)
j ) ds ds1

≤ Cdwρ(t, f (n)
j )2

∫ t

0

∫ t

0
(s + s1)−d/2(t − s)−ρ(t − s1)−ρ ds ds1

= Cdwρ(t, f (n)
j )2t2− d

2−2ρ

∫ 1

0

∫ 1

0
(u + u1)−d/2(1− u)−ρ(1− u1)−ρ du du1

≤ Cd,ρw̃ρ(t, f (n)
j )2t2− d

2−2ρ,

where Cd,ρ = Cd

∫ 1
0

∫ 1
0 (u + u1)−d/2(1 − u)−ρ(1 − u1)−ρ du du1 and the last inequality

follows from Lemma 5.5. Cd,ρ is finite since ρ < 1, d ≤ 3. Since, by definition, we also have∫
Rd |St ( f (n))(y)|2 dy = w(t, f (n)), (A.14) shows that

‖v(n)
t ‖

2
2 ≤ 2w(t, f (n)) + 2‖κ(n)‖∞Cd,ρw̃ρ(t, f (n)

j )2t2− d
2−2ρ, ∀ t > 0,

and (A.12) follows.

Corollary A.13 Let f (n), f , v(n)
t be as in Lemma A.12. Then

lim sup
n→∞

sup
ε≤s≤T

‖v(n)
s ‖2 <∞, ∀ 0 < ε < T,(A.15)

lim
ε↓0

sup
n
‖v(n)
· ‖2,(0,ε] = 0,(A.16)

sup
n
‖v(n)
· ‖

2
2,(0,T] <∞, ∀T > 0.(A.17)
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Proof (A.15) is immediate from Assumptions (ii), (iii) and the previous lemma. By (A.1),∫ ε
0 t2− d

2−2ρ dt is finite and this together with (A.12) and Assumptions (i)–(iii) yields (A.16).
(A.17) is an easy consequence of (A.15), (A.16).

Lemma A.14 Let f (n), f , v(n)
t and vt be as in Lemma A.12. Then, for each 0 < ε < T,

sup
n

sup
ε≤t≤T

‖v(n)
t ‖q <∞, ∀ 2 ≤ q ≤ ∞,(A.18)

sup
ε≤t≤T

‖v(n)
t ‖q

≤
√

C(d, ρ, κ(n)) ‖pε/4‖ 2q
q+2

×
√

w(ε/4, f (n)) + w̃ρ(ε/4, f (n))2(ε/4)2− d
2−2ρ, ∀ 2 ≤ q ≤ ∞, n ≥ 1.

(A.19)

Proof By the semigroup property of V·,·

v(n)
t = Vt ( f (n), κ(n)) = Vε/2,t

(
V0,ε/2( f (n), κ(n)), κ(n)

)
and, so, by Lemma 5.2 we have

‖v(n)
t ‖q ≤ ‖V0,ε/2( f (n), κ(n))‖q ≡ ‖Vε/2( f (n), κ(n))‖q, ∀ ε ≤ t ≤ T.

Again using the semigroup property of V·,· and applying Lemma 5.2 we obtain

‖Vε/2( f (n), κ(n))‖q ≤ ‖Vε/4,ε/2

(
V0,ε/4( f (n), κ(n)), κ(n)

)
‖q

≤ ‖pε/4‖ 2q
q+2
‖Vε/4( f (n), κ(n))‖2.

By Corollary A.13 ‖Vε/4( f (n), κ(n))‖2 is bounded uniformly in n and (A.18) follows. (A.19)
is also immediate from Lemma A.12.

Lemma A.15 {v(n), n ≥ 1} is relatively compact in C
(
(0,∞)× Rd

)
.

Proof Let ψ(n)(t, x) ≡ v(n)
t (x)2κ(n)(t). Then

v(n)
t = St ( f (n)) + G(ψ(n))(t, ·), ∀ t ∈ (0,∞),

where G(ψ(n)) is defined as in Lemma A.4. By Lemma A.5, S·( f (n))(·)→ S·( f )(·) uniformly
on compact subsets of (0,∞) × Rd as n → ∞. By Corollary A.13, Lemma A.14 and
Lemma A.4, G(ψ(n)) is relatively compact in C

(
(0,∞)× Rd

)
and we are done.
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Corollary A.16 Let v be a limit point of v(n). Then

vt = Vt ( f , κ), ∀ t > 0,(A.20)

sup
ε≤t≤T

‖Vt ( f , κ)‖q

≤
√

C(d, ρ, κ) ‖pε/4‖ 2q
q+2

×
√

w(ε/4, f ) + w̃ρ(ε/4, f )2(ε/4)2− d
2−2ρ, ∀ 2 ≤ q ≤ ∞, ∀ 0 < ε < T,

(A.21)

‖V ( f , κ)‖2
2,(0,T],ρ̂ ≤ C(d, ρ, κ(n))

×

∫ T

0
t−ρ̂
(
w(t, f ) + w̃ρ(t, f )2t2− d

2−2ρ
)

dt <∞, ∀T > 0,

(A.22)

V ( f , κ) ∈ L2,ρ̂
c,loc,+,(A.23)

Vε+·(µ, κ) ∈ C
(
[0,T]× Rd

)
+
, ∀T > 0, ε > 0,(A.24)

Vt (µ, κ) ∈ Lq(Rd)+, ∀ t > 0, q ≥ 2,(A.25)

V 1
t (µ, κ) ∈ L1

R(Rd)+, ∀ t > 0,(A.26)

lim
n→∞

v(n) = V ( f , κ), in C
(
(0,∞)× Rd

)
.(A.27)

Proof Let v(nk) be a subsequence of v(n) which converges to v. In order to prove that v
satisfies (A.6) (and this means (A.20)), we need to show that

lim
nk→∞

(
St ( f (nk))(x) +

∫ t

0

∫
Rd

pt−s(x − y)v(nk)
s (y)2κ(nk)(s) dy ds)

)
= St ( f )(x) +

∫ t

0

∫
Rd

pt−s(x − y)vs(y)2κ(s) dy ds, ∀ t > 0.

Convergence of the first term follows immediately from Lemma A.5. Consider the second
term. By Lemma A.15, v(nk) converges to v uniformly on compact subsets of (0,∞) × Rd

and by Lemma A.14 supn ‖v
(nk)‖∞,[ε,T] < ∞ for all 0 < ε < T. Now apply Lemma A.3 to

see that, for all 0 < ε < t ,

lim
nk→∞

sup
ε≤s≤t

∣∣St−s

(
(v(nk)

s )2
)
(x)− St−s(v2

s )(x)
∣∣ = 0.(A.28)

Since κnk → κ weakly∗ in L∞(R+), (A.28) immediately yields

lim
nk→∞

∫ t

ε

∫
Rd

pt−s(x − y)v(nk)
s (y)2κ(nk)(s) dy ds =

∫ t

ε

∫
Rd

pt−s(x − y)vs(y)2κ(s) dy ds.
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By choosing ε sufficiently small,∫ ε

0

∫
Rd

pt−s(x − y)v(nk)
s (y)2κ(nk)(s) dy ds

and ∫ ε

0

∫
Rd

pt−s(x − y)vs(y)2κ(s) dy ds

may be made arbitrarily small (uniformly on nk) by Corollary A.13 and Fatou’s lemma
respectively. This shows that

lim
nk→∞

∫ t

0

∫
Rd

pt−s(x − y)v(nk)
s (y)2κ(nk)(s) dy ds =

∫ t

0

∫
Rd

pt−s(x − y)vs(y)2κ(s) dy ds,

and (A.20) follows. (A.21) follows immediately by passing to the limit in (A.19) and then
from Fatou’s lemma. To get (A.22) pass to the limit in (A.13) and use Fatou’s lemma. Our
conditions on ρ and ρ̂ together with Assumptions (ii), (iii) yield convergence of the right
hand side of (A.13) to the finite right side of (A.22).

(A.22) together with the fact that V ( f , κ) is in C
(
Rd × (0,∞)

)
(which is an immediate

consequence of the convergence of v(nk) to V ( f , κ) in C
(
Rd×(0,∞)

)
) yields (A.23). (A.24),

(A.25) follow from (A.21). We leave to the reader to check the inequality ‖V 1
t ‖1 ≤ 〈V 1

0 , 1〉+
‖κ‖∞‖V‖2

2,(0,t]. This inequality together with (A.22) yields (A.26).

We proved that for each subsequence of v(n) there exists a further subsequence v(nk)

which converges to V ( f , κ) uniformly on compact sets in (0,∞) × Rd. However, by
Lemma A.9,

(
Vt ( f , κ), t > 0

)
is unique, therefore each convergent subsequence converges

to V ( f , κ). This implies that, in fact, v(n) converges to V ( f , κ) and (A.27) follows.

Proof of Proposition A.2 For each f ∈ S̃ ′
ρ
, κ ∈ L∞R (R+)+, the existence and all the

properties of Vt ( f , κ) are proved in Corollary A.16. The uniqueness of Vt ( f , κ) is given by
Lemma A.9. For κ ∈ CR(R+)+ use the smoothness properties of St to check that Vt ( f , κ) is
a strong solution of (A.6).

(b) Let {µ(n)} ∈ S̃ ′
ρ
, µ(n) → µ in S̃ ′

ρ
and κn → κ weakly∗ in L∞R (R+)+. Let Γ be an

arbitrary compact set in (0,∞)× Rd. We need to prove that

lim
n→∞

sup
(t,x)∈Γ

|Vt (µ
(n), κn)(x)−Vt (µ, κ)(x)| = 0.(A.29)

In Corollary A.16 we proved the following. If { f (n)} in S(Rd) and {κ̃(n)} in CR(R+)+ are
such that f (n) → f in S̃ ′

ρ
and κ̃(n) → κ weakly∗ in L∞R (R+)+, then

lim
n→∞

sup
(t,x)∈Γ

|Vt ( f (n), κ̃(n))(x)−Vt ( f , κ)(x)| = 0.(A.30)

For each ε > 0 one can choose { f (n)} in S(Rd) and {κ̃(n)} in CR(R+)+ such that f (n) → µ
in S̃ ′

ρ
, κ̃(n) → κ weakly∗ in L∞R (R+)+ and

sup
(t,x)∈Γ

|Vt ( f (n), κ̃(n))−Vr,t (µ
(n), κ(n))(x)| ≤ ε(A.31)

https://doi.org/10.4153/CJM-1999-019-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-019-x


436 Leonid Mytnik

for all n. This yields

lim
n→∞

sup
(t,x)∈Γ

|Vt (µ
(n), κ(n))(x)−Vt (µ, κ)(x)|

≤ lim
n→∞

sup
(t,x)∈Γ

|Vt (µ
(n), κ(n))−Vt ( f (n), κ̃(n))|

+ lim
n→∞

sup
(t,x)∈Γ

|Vt ( f (n), κ̃(n))(x)−Vt (µ, κ)(x)|

≤ lim
n→∞

sup
(t,x)∈Γ

|Vt (µ
(n), κ(n))(x)−Vt ( f (n), κ̃(n))(x)| ≤ ε,

where the last inequality follows by (A.30), (A.31). Since ε was arbitrary, we get (A.29).
From (A.22) and Lemma A.1 we obtain

lim
ε↓0

lim sup
n→∞

‖V (µ(n), κ(n))‖2,(0,ε],ρ̂ = 0.(A.32)

From (A.21) we get

lim sup
n→∞

sup
ε≤s≤T

‖Vs(µ
(n), κ(n))‖∞ <∞, ∀ 0 < ε < T.(A.33)

(A.29), (A.32), (A.33) imply that V (µ(n), κ(n)) converges to V (µ, κ) in L2,ρ̂
c,loc,+.

(c) Let us take arbitrary µ(n) → µ in S̃ ′
ρ
, κ(n) → κ weakly∗ in L∞R (R+)+ and εn → 0.

We have to check that

lim
n→∞

sup
s<εn

|〈ψ,Vs(µ
(n), κ(n))〉 − 〈ψ, µ(n)〉| = 0.

By definition

|〈ψ,Vεn (µ(n), κ(n))〉 − 〈ψ, µ(n)〉| ≤ |〈ψ, Sεn (µ(n))− µ(n)〉|

+

∣∣∣∣〈ψ, ∫ εn

0
Sεn−u

(
Vu(µ(n), κ(n))2

)〉
κ(n)(u) du

∣∣∣∣.
By Lemma A.6, the first term converges to 0 as n→∞. The second term is bounded by

‖ψ‖∞ ‖κ
(n)‖∞

∫ εn

0
‖Vu(µ(n), κ(n))‖2

2 du = ‖ψ‖∞‖κ
(n)‖∞‖V(µ(n), κ(n))‖2

2,(0,εn]

≤ ‖ψ‖∞‖κ
(n)‖∞‖V(µ(n), κ(n))‖2

2,(0,εn],ρ̂

→ 0 as n→∞

by (A.32).

Proof of Theorem 5.8 (a) For r ≥ 0, µ ∈ S̃ ′
ρ
, κ ∈ L∞R

(
[r,∞)

)
+

, define

κ(r)(t) ≡ κ(r + t), ∀ t ≥ 0.
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Then Vr,t (µ, κ) = Vt−r(µ, κ(r)) for all t > r, and (a) follows from Proposition A.2.
(b), (d) Fix arbitrary µ ∈ S̃ ′

ρ
, t ∈ [0,T), κ ∈ L∞R (R+)+, x ∈ Rd and let {µ(n)}, {tn},

{κ(n)}, {x(n)} be arbitrary sequences in S̃ ′
ρ
, [0,T), L∞R (R+)+, Rd respectively such that

µ(n) → µ in S̃ ′
ρ
, tn → t , κ(n) → κ weakly∗ in L∞R (R+)+ and x(n) → x in Rd, as n→∞. For

(b), (d) it is sufficient to show that

lim
n→∞

|Vtn,T(µ(n), κ(n))(x(n))−Vt,T(µ, κ)(x)| = 0.(A.34)

and

sup
y∈Rd

|Vtn,T(µ(n), κ(n))(y)| <∞.(A.35)

But

Vtn,T(µ(n), κ(n))(x(n)) = VT−tn (µ(n), κ(n,tn))(x(n)),(A.36)

where κ(n,tn)(s) ≡ κ(n)(tn + s) for all s ≥ 0. Letting n → ∞, it is easy to check that
κ(n,tn) → κ(t) weakly∗ in L∞R (R+)+. Then Proposition A.2 (b) implies that V(µ(n), κ(n,tn))→
V(µ, κ(t)) in L2,ρ̂

c,loc,+. (A.36) and the definition of convergence in L2,ρ̂
c,loc,+ immediately gives

(A.34), (A.35).
(c) Let {µ(n)}, {εn} be arbitrary sequences in S̃ ′

ρ
and R+ respectively such that µ(n) → µ

in S̃ ′
ρ

and εn → 0. Then it is sufficient to show that

lim
n→∞

sup
|t−s|<εn,s≤T

|〈ψ,Vs,t (µ
(n), κ(n))〉 − 〈ψ, µ(n)〉| = 0

uniformly in n. As in (b) it suffices to show that

lim
n→∞

sup
u<εn,s≤T

|〈ψ,Vu(µ(n), κ(n,s))〉 − 〈ψ, µ(n)〉| = 0.

But {κ(n,s), n ≥ 1, s ∈ [0,T]} is weakly∗ compact in L∞R (R+)+, therefore we are done by
Proposition A.2 (c).

A.2 Proof of Theorem 5.9

We will prove a slightly more general result than Theorem 5.9; Theorem 5.9 will be an easy
consequence of our more general setting.

Recall basic definitions from Section 5 and introduce some new notation.

ν̂(ds, dy) ≡ sρ̂p1(dy)1(0 ≤ s ≤ 1) ds dy

G f (x) ≡

∫ 1

0

∫
Rd

f (s, y)ps(x − y) ν̂(ds, dy).

For any function f ∈ L2
(
Rd × R+, ν̂(ds, dy)

)
we define ‖ f ‖2,ν̂ by setting

‖ f ‖2
2,ν̂ =

∫ 1

0

∫
Rd

| f (s, y)|2 ν̂(ds, dy).
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The capacity of a set is given by

C(B) = inf{‖ f ‖2,ν̂ : G f (x) ≥ 1, ∀ x ∈ B}, ∀B ∈ B(Rd).

Let E be a metric space. Then Cq(E × Rd) (resp. Cq(E × Rd)) is the space of functions on

E × Rd such that

(a) for q.e. x ∈ Rd, f (·, x) ∈ C (E) (resp. C (E)),
(b) for all y ∈ E, f (y, ·) is quasicontinuous.

We say that a sequence of functions { f (n)(·, ·)} in B(E × Rd) converges to f (·, ·) almost
uniformly q.e. if

f (n)(y, x)→ f (y, x), ∀ y ∈ E, for q.e. x,

and, moreover, for each δ > 0, there exists an open set Bδ ⊂ Rd with C(Bδ) ≤ δ such that

sup
x∈Bc

δ

| f (n)(·, x)− f (·, x)| → 0

uniformly on compact subsets of E. The notation f (n)(·, ·)
q.e.
−→ f (·, ·) stands for this con-

vergence. We say that { f (n)(·, ·)} in B(E × Rd) converges to f (·, ·) in C if, for each ε > 0,

C
(
x : | f (n)(·, x)− f (·, x)| > ε

)
→ 0,

uniformly on compact subsets of E.
C
→ stands for this type of convergence.

Remark A.17 There is some possible confusion over the above definitions since functions
are defined on the product space E×Rd and most of their properties are verified “for every”
y in E and q.e. x in Rd. In order to help the reader to distinguish between E and Rd (since
in many cases E will be Rd as well!), we reserve the letter x for an element in the space Rd

over which functions and their properties are defined q.e.

Let v·(·) ∈ L2,ρ̂
c,loc,+ and κ ∈ L∞R (R+)+. Then Wt (v, κ, x)(·) denotes a solution (if it exists)

of the following evolution equation:

u(t, y) = pt (x − y)−

∫ t

0
2κ(s)St−s

(
v(s)u(s)

)
(y) ds, t > 0, y ∈ Rd.(A.37)

For µ ∈ MF , Wt (v, κ, µ)(·) denotes a solution (if it exists) of the following equation

u(t, y) = Stµ(y)−

∫ t

0
2κ(s)St−s

(
v(s)u(s)

)
(y) ds, t > 0, y ∈ Rd.(A.38)

As we will see later Theorem 5.9 is an easy consequence of the following proposition.

Proposition A.18
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(a) For each v ∈ L2,ρ̂
c,loc,+, κ ∈ L∞R (R+)+ and q.e. x, there exists unique solution Wt (v, κ, x)(·)

for (A.37) such that

W·(v, κ, x)(·) ∈ C
(
(0,∞)× Rd

)
,

Wt (v, κ, x)(·) ∈ C (Rd), ∀ t > 0.

For each t > 0 and y ∈ Rd, the function Wt (v, κ, ·)(y) is quasicontinuous and there
exists N ⊂ Rd with C(N) = 0 such that

|Wt (v, κ, x)(y)| ≤ pt (x − y), ∀ (t, y, x) ∈ (0,∞)× Rd × (Rd \N).

(b) For each µ ∈ Mρ
F(Rd),

W·(v, κ, µ)(·) =

∫
Rd

W·(v, κ, x)(·)µ(dx),

that is, the solution for (A.38) is given by the integration of the fundamental solution with
respect to initial condition.

(c) Let {κ(n)} in L∞R (R+)+ and {v(n)} in L2,ρ̂
c,loc,+ be such that κ(n) → κ weakly∗ in L∞R (R+)+

and v(n) → v in L2,ρ̂
c,loc,+. Then

C
(
x : |W·(v(n), κ(n), x)(·)−W·(v, κ, x)(·)| > ε

)
→ 0,

uniformly on compact subsets of (0,∞) × Rd, that is, according to our notation

W·(v(n), κ(n), ·)(·)
C
→W·(v, κ, ·)(·).

We will prove this proposition via a series of lemmas. We start with the lemma that gives
the “uniqueness” part of the proposition.

Lemma A.19 (A.38) (and therefore also (A.37)) has at most one solution such that, for each
s > 0, u(s, ·) ∈ C (Rd)+.

Proof Immediately from Lemma A.8 (see also the proof of Lemma A.9).

In the following lemmas we investigate some properties of convergence q.e. and in C.

Lemma A.20 Let { f (n)} be a sequence in Cq(E × Rd) such that f (n) q.e.
−→ f as n → ∞.

Then f ∈ Cq(E × Rd).

Proof For each δ > 0, there exists an open set Bδ ⊂ Rd with C(Bδ) ≤ δ such that, for each
compact set Γ ⊂ E, limn→∞ f (n) = f uniformly on Γ × Bc

δ . The convergence is uniform,
hence f � Γ× Bc

δ ∈ C (Γ× Bc
δ). Since Γ and Bδ were arbitrary, we are done.

Lemma A.21 Let { f (n)} be a sequence in B(E×Rd) such that f (n) q.e.
−→ f as n→∞. Then

f (n) C
→ f .
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Proof Fix any δ > 0. Let Bδ ⊂ Rd be a set such that C(Bδ) < δ and

sup
x∈Bc

δ

| f (n)(·, x)− f (·, x)| → 0

uniformly on compact subsets of E. Let Γ be an arbitrary compact set in Rd. Then

sup
y∈Γ

C
(
x : | f (n)(y, x)− f (y, x)| > ε

)
≤ sup

y∈Γ
C(Bδ) + sup

y∈Γ
C
(
x : | f (n)(y, x)− f (y, x)| > ε, x ∈ Bc

δ

)
.

Since f (n) q.e.
−→ f , there exists N such that, for any n > N , the second term equals to 0. The

first term is less than δ. Since δ was arbitrary, we are done.

Lemma A.22 Let { f (n)} be a sequence in Cq(E × Rd). Suppose that, for each subsequence

{ f (nk)}, there exists a further subsequence { f (n ′k )} such that f (n ′k ) q.e.
−→ f as n ′k → ∞. Then

f (n) C
→ f as n→∞.

Proof Let f (n)
C

6→ f . This means that, for any ε > 0, there exists { f (nk)} and 0 < a ≤ ∞
such that

sup
y∈Γ

C
(

x : | f (nk)(x, y)− f (x, y)| > ε
)
→ a > 0.(A.39)

{ f (nk)} contains a further subsequence { f (n ′k )} such that f (n ′k ) q.e.
−→ f . Then the previous

lemma implies that f (n ′k ) C
→ f and this contradicts (A.39).

Lemma A.23 Let { f (n)}, {g(n)}, f , g be in B(E×Rd) and suppose that f (n) C
→ f , g(n) C

→ g
as n→∞. Define

h(n)(y, z, x) ≡ f (n)(y, x)g(n)(z, x) ∈ B(E × E × Rd),

h(y, z, x) ≡ f (y, x)g(z, x) ∈ B(E × E × Rd).

Then h(n) C
→ h.

Proof Trivial.

Lemma A.24 Let { f (n)} be a sequence in B(E × Rd) such that f (n) C
→ f as n → ∞.

Suppose that there exist sets N(n),N ⊂ Rd of nil capacity with the following properies. For any
compact set Γ ∈ E there exists a function gΓ ∈ S(Rd)+ such that

sup
y∈Γ
| f (n)(y, x)| ≤ gΓ(x), ∀ x ∈ Rd \N(n)

sup
y∈Γ
| f (y, x)| ≤ gΓ(x), ∀ x ∈ Rd \N.
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Let {µ(n)} be a sequence in Mρ
F(Rd) such that µ(n) ⇒ µ in Mρ

F(Rd). Then∫
Rd

| f (n)(·, x)− f (·, x)|µ(n) (dx)→ 0 as n→∞

uniformly on compact subsets of E.

Proof Let ε > 0 be arbitrary. For each n ≥ 1, y ∈ E, set

By,n,ε ≡ {x : | f (n)(y, x)− f (y, x)| > ε}.

Take an arbitrary compact set Γ ⊂ Rd. Since gΓ ∈ S(Rd)+ and µ(n) converges in Mρ
F(Rd),

therefore for each ε ′ > 0 we can choose another compact set Γε ′ ⊂ Rd such that∫
Γc
ε ′

gΓ(x)µ(n) (dx) ≤ ε ′, ∀ n.

Then

sup
y∈Γ

∫
Rd

| f (n)(y, x)− f (y, x)|µ(n)(dx)

≤ sup
y∈Γ

∫
By,n,ε

| f (n)(y, x)− f (y, x)|µ(n)(dx)

+ sup
y∈Γ

∫
Bc

y,n,ε∩Γε ′

| f (n)(y, x)− f (y, x)|µ(n)(dx)

+ sup
y∈Γ

∫
Bc

y,n,ε∩Γ
c
ε ′

| f (n)(y, x)− f (y, x)|µ(n)(dx)

≤ sup
y∈Γ

∫
By,n,ε

| f (n)(y, x)− f (y, x)|µ(n)(dx)

+ ε sup
y∈Γ

µ(n)(Bc
y,n,ε ∩ Γε ′) + 2µ(n)(gΓ · ∩Γc

ε ′)

≤ sup
y∈Γ

∫
By,n,ε

| f (n)(y, x)− f (y, x)|µ(n)(dx) + εµ(n)(Γε ′) + 2ε ′.

(A.40)

By fixing ε ′ and using the fact that µ(n)(Γε ′) is bounded uniformly in n we can make the
second term less than ε ′ by choosing ε sufficiently small. By Lemma 5.7, µ(n) ∈ Mρ

F(Rd)
does not charge sets of nil capacity, hence we obtain

sup
y∈Γ

∫
By,n,ε

| f (n)(y, x)− f (y, x)|µ(n)(dx)

= sup
y∈Γ

∫
By,n,ε\(N(n)∪N)

| f (n)(y, x)− f (y, x)|µ(n)(dx)

≤ sup
y∈Γ,x∈Rd\(N(n)∪N)

(
| f (n)(y, x)| + | f (y, x)|

)
sup
y∈Γ

µ(n)(By,n,ε).
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By Theorem 2.5.1 [1] (see inequality (2.5.1) there)

µ(n)(By,n,ε) ≤ ‖S·µ
(n)‖2,ν̂

√
C(By,n,ε).

µ(n) ⇒ µ in Mρ
F(Rd), hence ‖S·µ(n)‖2,ν̂ is bounded uniformly in n. f (n) C

→ f , therefore

sup
y∈Γ

√
C(By,n,ε)→ 0 as n→∞

by definition of By,n,ε. This together with our assumptions on f (n), f , N(n), N yields

lim
n→∞

sup
y∈Γ,x∈Rd\(N(n)∪N)

(
| f (n)(y, x)| + | f (y, x)|

)
sup
y∈Γ

µ(n)(By,n,ε)

≤ lim
n→∞

‖gΓ‖∞ sup
y∈Γ

µ(n)(By,n,ε)

= 0,

and it follows that the first term in (A.40) approaches 0 as n → ∞. Since ε ′ was arbitrary
we are done.

Lemma A.25 Let {g(n)} be in L2,ρ̂
c,loc,+ and suppose that g(n) → g in L2,ρ̂

c,loc,+. Define

f (n)(s, ·) ≡ g(n)(s, ·)s−ρ̂. Then there exists { f (nk)} such that G f (nk) q.e.
−→ G f . (To be con-

sistent with our definition of q.e. convergence, one can set E = ∅ in this case.)

Proof f (n) → f uniformly on compact subsets of (0,∞) × Rd. ν̂ is a finite measure on
(0, 1]× Rd; the fact that g(n) → g in L2,ρ̂

c,loc,+ easily gives the uniform integrability condition

for the sequence { f (n)} with respect to measure ν̂. This yields f (n) → f in L2
(
(0,∞) ×

Rd, ν̂(ds, dx)
)
. Now the result follows from [1, Proposition 2.3.8].

Throughout the rest of the proof of Proposition A.18 the following assumptions are
used.

Assumptions

(i) Let v ∈ L2,ρ̂
c,loc,+ and κ ∈ L∞R (R+)+ be arbitrary.

(ii) Let {v(n)} be a sequence of functions in C
(
[0,∞)×Rd

)
+

such that v(n) → v in L2,ρ̂
c,loc,+

as n→∞. For each n define ṽ(n)(s, ·) ≡ s−ρ̂v(n)(s, ·).
(iii) Let {κ(n)} ∈ C (R+), κ(n) → κ weakly∗ in L∞R (R+)+ as n→∞.

Since v(n), κ(n) are bounded continuous functions, it follows from the theory of parabolic
equations that the solution W·(v(n), κ(n), x)(·) to (A.37) exists for each x ∈ Rd, and
W·(v(n), κ(n), ·)(·) ∈ C

(
(0,∞) × Rd × Rd

)
⊂ Cq

(
(0,∞) × Rd × Rd

)
. The following

simple lemma will be frequently used.

Lemma A.26 |Wt (v(n), κ(n), x)(y)| ≤ pt (x − y), ∀ (t, y, x) ∈ (0,∞)× Rd × Rd, ∀ n ≥ 1.
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Proof Fix x ∈ Rd. Take a sequence of functions {ψ(k)} in CR(Rd)+ such that ψ(k) ⇒ δx as
k→∞. Apply Feynman-Kac formula to see that

|Wt (v(n), κ(n), ψ(k))(y)| = |Ey[ψ(k)(Bt )e−
∫ t

0 v(z,B(t−z)) dz]|

≤ St (ψ
(k))(y),

where the inequality follows from our assumption Re(v) ≥ 0. Then passing to the limit as
k→∞, one can easily complete the proof. We leave the details to the reader.

We wish to prove that W·(v(n), κ(n), ·)(·)
C
→W·(v, κ, ·)(·) ∈ Cq(R+ × Rd × Rd), where

(a) for q.e. x ∈ Rd, W·(v, κ, x)(·) ∈ C
(

(0,∞)× Rd
)
,

(b) for all (t, y) ∈ (0,∞)× Rd, Wt (v, κ, ·)(y) is quasicontinuous.

First, by Lemma A.25, we can choose a subsequence {v(nk)} such that Gṽ(nk) q.e.
−→ Gṽ. Fix

δ > 0 and choose an open set Bδ ⊂ Rd such that C(Bδ) ≤ δ and Gṽ(nk) → Gṽ uniformly on
Bc
δ . Take any xnk → x in Bc

δ . Then the definition of G and the fact that Gṽ(nk)(xnk )→ Gṽ(x)
yield

lim
ε↓0

lim sup
nk→∞

∫ ε

0

∫
Rd

ṽ(nk)(s, y)ps(xnk − y)sρ̂p1(y) dy ds = 0.

Using the definition of {ṽ(n)} one can easily check that, in fact, for each compact Γ ∈ Rd

and for each ε ′ > 0,

lim
ε↓0

lim sup
nk→∞

sup
z∈Γ,t≥ε ′

∫ ε

0

∫
Rd

v(nk)(s, y)ps(xnk − y)pt−s(y − z) ds dy = 0.(A.41)

In what follows set
u(n)(·, ·) ≡W·(v(n), κ(n), x(n))(·).

Lemma A.27 Setψ(nk) ≡ v(nk)u(nk)κ(nk) and Gε(ψ(nk))(t, z) =
∫ t
ε

St−s

(
ψ(nk)(s)

)
(z) ds. Then

G0(ψ(nk))(·, ·) is relatively compact in C
(

(0,∞)× Rd
)
.

Proof One can represent G0(ψ(nk))(t, z) as

G0(ψ(nk))(t, z) =

∫ ε

0
St−s

(
ψ(nk)(s)

)
(z) ds + Gε(ψ

(nk))(t, z).(A.42)

By Lemma A.26 |u(n)(s, z)| ≤ ps(x(n) − z). Therefore, using (A.41) it is easy to make∫ ε
0 St−s

(
ψ(nk)(s)

)
(z) ds arbitrarily small on compact subsets of Rd by taking ε sufficiently

small. To show relative compactness of the second term at the right side of (A.42), change
the variables to get that Gε

(
ψ(nk)(·)

)
(t, z) = G0

(
ψ(nk)(ε + ·)

)
(t − ε, z). Then Lemma A.4

gives the relative compactness of G0

(
ψ(nk)(ε + ·)

)
(t − ε, z) in C

(
(ε,∞)× Rd

)
.

The proof of the following corollary is completely analogous to the proof of Corol-
lary A.16 and hence omitted.
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Corollary A.28 u(nk) is relatively compact in C
(
(0,∞) × Rd

)
and if u is any limit point of

u(nk) then u(t, ·) =Wt (v, κ, x)(·) for any t > 0.

Lemma A.29 W·(v(nk), κ(nk), ·)(·)
q.e.
−→W·(v, κ, ·)(·) as nk →∞.

Proof Recall that {x(nk)} was an arbitrary sequence in Bc
δ such that limnk→∞ xnk = x.

Therefore, for any compact set Γ ∈ Rd,

sup
x∈Γ∩Bc

δ

|W·(v(nk), κ(nk), x)(·)−W·(v, κ, x)(·)| → 0 as nk →∞

uniformly on compact subsets of (0,∞) × Rd. Using |W·(v(nk), κ(nk), x)(·)| ≤ p·(x − ·), it
is easy to verify that, in fact,

sup
x∈Bc

δ

|W·(v(nk), κ(nk), x)(·)−W·(v, κ, x)(·)| → 0 as nk →∞

uniformly on compact subsets of (0,∞)× Rd.

Lemma A.30 There exists N ⊂ Rd with C(N) = 0 such that

|Wt (v, κ, x)(y)| ≤ pt (x − y), ∀ (t, y, x) ∈ (0,∞)× Rd × (Rd \N).

Proof Lemma A.29 implies that there exists set N ⊂ Rd with C(N) = 0 such that

Wt (v, κ, x)(y) = lim
nk→∞

Wt (v(nk), κ(nk), x)(y), ∀ (t, y, x) ∈ (0,∞)× Rd × (Rd \N).

By Lemma A.26 |Wt (v(nk), κ(nk), x)(y)| ≤ pt (x − y) for all n ≥ 1, and the result follows.

Lemma A.31 u(n) C
→Wt (v, κ, ·)(·) as n→∞.

Proof In Lemma A.29 we proved that there is a subsequence {u(nk)} such that u(nk) q.e.
−→

Wt (v, κ, ·)(·) as nk → ∞. But the same arguments say that for any subsequence {u(n ′)}

of {u(n)} there exists a further subsequence {u(n ′k )} such that u(n ′k ) q.e.
−→ Wt (v, κ, ·)(·) as

n ′k →∞. Hence the desired result follows from Lemma A.22.

Proof of Proposition A.18 (a) Follows from Lemma A.19, Lemma A.20, Lemma A.29,
Lemma A.30.

(b) For q.e. x Wt (v(n), κ(n), x)(·) solves (A.37), which means that

Wt (v(n), κ(n), x)(y) = pt (x − y)−

∫ t

0

∫
Rd

2κ(s)pt−s(y − z)v(s, z)Ws(v(n), κ(n), x)(z) dz ds,

∀ (t, y) ∈ (0,∞)× Rd, for q.e. x.
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Since any µ ∈ Mρ
F does not charge sets of capacity nil, we have∫

Rd

Wt (v(n), κ(n), x)(y)µ(dx)

= Stµ(y)−

∫
Rd

∫ t

0

∫
Rd

2κ(s)pt−s(y − z)v(s, z)Ws(v(n), κ(n), x)(z) dz dsµ(dx),

∀ (t, y) ∈ (0,∞)× Rd.

Using Fubini’s theorem and putting

Wt (v(n), κ(n), µ)(y) ≡

∫
Rd

Wt (v(n), κ(n), x)(y)µ(dx), ∀ t > 0,

we are done.
(c) Let {v(n)} in L2,ρ̂

c,loc,+ and {κ(n)} in L∞R (R+)+ be arbitrary sequences such that v(n) → v

in L2,ρ̂
c,loc,+, κ(n) → κ weakly∗ in L∞R (R+)+. It is sufficient to show that, for any ε > 0 and any

compact set Γ ⊂ (0,∞)× Rd, we have

lim
n→∞

sup
(t,y)∈Γ

C
(
x : |Wt (v(n), κ(n), x)(y)−Wt (v, κ, x)(y)| > ε

)
= 0.(A.43)

Lemma A.31 shows that, for any {ṽ(n)} in C
(
(0,∞) × Rd

)
+

and {κ̃(n)} in CR(R+)+ such

that ṽ(n) → v in L2,ρ̂
c,loc,+ and κ(n) → κ weakly∗ in L∞R (R+)+, we have

lim
n→∞

sup
(t,y)∈Γ

C
(
x : |Wt (ṽ(n), κ̃(n), x)(y)−Wt (v, κ, x)(y)| > ε

)
= 0.(A.44)

For each compact Γ ⊂ (0,∞) × Rd and ε, ε′ > 0 choose {ṽ(n)} in C
(
(0,∞) × Rd

)
+

and

{κ̃(n)} in CR(R+)+ such that ṽ(n) → v in L2,ρ̂
c,loc,+, κ(n) → κ weakly∗ in L∞R (R+)+ and

sup
(t,y)∈Γ

C
(
x : |Wt (ṽ(n), κ̃(n), x)(y)−Wt (v(n), κ(n), x)(y)| > ε

)
≤ ε ′,(A.45)

for all n. This yields

lim
n→∞

sup
(t,y)∈Γ

C
(
x : |Wt (v(n), κ(n), x)(y)−Wt (v, κ, x)(y)| > ε

)
≤ lim

n→∞
sup

(t,y)∈Γ
C
(
x : |Wt (ṽ(n), κ̃(n), x)(y)−Wt (v(n), κ(n), x)(y)| > ε

)
+ lim

n→∞
sup

(t,y)∈Γ
C
(
x : |Wt (ṽ(n), κ̃(n), x)(y)−Wt (v, κ, x)(y)| > ε

)
≤ lim

n→∞
sup

(t,y)∈Γ
C
(
x : |Wt (ṽ(n), κ̃(n), x)(y)−Wt (v(n), κ(n), x)(y)| > ε

)
≤ ε ′,
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where the last inequality follows from (A.44), (A.45). Since ε′ was arbitrary, (A.43) follows
and this finishes the proof of Proposition A.18.

With Proposition A.18 it is easy to accomplish the

Proof of Theorem 5.9 (a), (b) Let µ ∈ S̃ ′
ρ
(Rd), r > 0, κ ∈ L∞R (R+)+. For arbitrary r > 0

define

κ(r)(t) ≡ κ(r + t), ∀ t ≥ 0,

vt ≡ Vr,r+t (µ, κ), ∀ t > 0.

Now we have the following representation for v and Ur,t

(
Vr,·(µ, κ), x

)
:

vt = Vt (µ, κ
(r)), ∀ t > 0,

Ur,t

(
Vr,·(µ, κ), x

)
=Wt−r

(
v, κ(r + ·), x

)
, ∀ t > r.

By Proposition A.2 v ∈ L2,ρ̂
c,loc,+, therefore parts (a) and (b) of the theorem follow trivially

from Proposition A.18 (a), (b).
(c) Let T > 0 and ψ1, ψ2 ∈ C∞c,R(Rd)+, µ(n) → µ in S̃ ′

ρ
(Rd), rn → r in [0,T) and

κ(n) → κ weakly∗ in L∞R (R+)+. {µ(n)}, µ, {rn}, r are arbitrary, hence the proof of part (c)
of the theorem will be finished if we show that

lim
n→∞

∣∣∣∣∫
Rd

Urn,T

(
Vrn,·(µ

(n), κ(n)), x
)

(ψ1)Urn,T

(
Vrn,·(µ

(n), κ(n)), x
)

(ψ2)µ(n)
1 (dx)

−

∫
Rd

Ur,T

(
Vr,·(µ, κ), x

)
(ψ1)Ur,T

(
Vr,·(µ, κ), x

)
(ψ2)µ1(dx)

∣∣∣∣ = 0.

(A.46)

As in (a) and (b) we have

Urn,T

(
Vrn,·(µ

(n), κ(n)), x
)
=WT−rn (v(n), κ(n,rn), x), ∀T ≥ rn, q.e. x,

Ur,T

(
Vr,·(µ, κ), x

)
=WT−r(v, κ(r), x), ∀T ≥ r, q.e. x,

where

κ(r)(t) ≡ κ(r + t), κ(n,rn)(t) ≡ κ(n)(rn + t), ∀ t ≥ 0,

vt ≡ Vt (µ, κ
(r)), v(n)

t ≡ Vt (µ
(n), κ(n,rn)), ∀ t > 0.

Recall that Urn,T

(
Vrn,·(µ

(n), κ), x
)
= U rn,T

(
Vrn,·(µ

(n), κ), x
)

for all κ ∈ L∞R (R+)+. Hence
(A.46) is equivalent to

lim
n→∞

∣∣∣∣∫
Rd

WT−rn (v(n), κ(n,rn), x)(ψ1)W T−rn (v(n), κ(n,rn), x)(ψ2)µ(n)
1 (dx)

−

∫
Rd

WT−r(v, κ(r), x)(ψ1)W T−r(v, κ(r), x)(ψ2)µ(dx)

∣∣∣∣ = 0.

(A.47)
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Since rn → r, κ(n) → κ we obtain that κ(rn) → κ(r), κ(n,rn) → κ(r) weakly∗ in L∞R (R+)+.
From Proposition A.2 it follows that

v(n) → v = V(µ, κ(r)), in L2,ρ̂
c,loc,+ as n→∞.

Apply Proposition A.18 (c) to see that

W·(v(n), κ(n,rn), ·)(·)
C
→W·(v, κ(r), ·)(·).

Apply Lemma A.23, Lemma A.30, Lemma A.24 and triangle inequality to verify that

lim
n→∞

h̃(n) ≡ lim
n→∞

∣∣∣∣∫
Rd

W·(v(n), κ(n,rn), x)(·)W ·(v(n), κ(n,rn), x)(·)µ(n)
1 (dx)

−

∫
Rd

W·(v, κ(r), x)(·)W ·(v, κ(r), x)(·)µ1(dx)

∣∣∣∣ = 0,

(A.48)

uniformly on compact subsets of (0,∞) × Rd × Rd. Since ψ1, ψ2 ∈ C∞c,R(Rd)+, (A.47)
follows immediately.

(d) The proof of (d) is analogous to the proof of (c) and therefore is omitted.
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