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The Topological Interpretation of the Core
Group of a Surface in S4

Józef H. Przytycki and Witold Rosicki

Abstract. We give a topological interpretation of the core group invariant of a surface embedded in S4

[F-R], [Ro]. We show that the group is isomorphic to the free product of the fundamental group of the
double branch cover of S4 with the surface as a branched set, and the infinite cyclic group. We present
a generalization for unoriented surfaces, for other cyclic branched covers, and other codimension two
embeddings of manifolds in spheres.

It is shown in [Ya-1] (compare [Ka-1], [C-S-2], [Ya-2]) that the fundamental
group of the complement of an oriented surface, M, in S4 allows a Wirtinger type
presentation. In [Ro] the core group invariant of M was introduced (following [F-R],
[Joy]) and the topological interpretation of the group was promised. In the first sec-
tion we give this interpretation following the result of Wada’s [Wa] for classical knots
and the proof of Wada result presented in [Pr]. In the second section we general-
ize our results to unoriented surfaces, and codimension two embeddings of closed
n-manifolds in Sn+2.

1 Surfaces in S4

Let M be an oriented surface embedded in S4 = R4 ∪ {∞}. Let p : R4 → R3 be
a projection such that the restriction to M, p|M is a general position map. Define
the lower decker set (“invisible” set) [C-S-1], [C-S-2] as A = {x ∈ M | ∃y ∈ M,
p(x) = p(y) and x is the lower point, that is x is further than y in the direction of
the projection}. The set A separates M into regions (“visibility” regions), that is arc
connected components of M − A.

Theorem 1.1 ([Ya-1]) The fundamental group of S4 − M (ΠM = π1(S4 − M)) has
the following Wirtinger type presentation. Generators of the group, x1, x2, . . . , xn, corre-
spond to regions of M. Relations of the group correspond to double point arcs and are of
the form xixpx−1

i x−1
q or xix

−1
p x−1

i xq, depending on the orientations of p(M) at double
point arcs. Here xi corresponds to the higher region of the projection and xp, xq to lower
regions.

Similarly to the groupΠM , we define the core group, GM of a surface M in S4.

Received by the editors August 1, 2000.
The first author was supported by NSF grant DMS-9808955. The second author was supported by

UG grant BW-5100-5-0256-9.
AMS subject classification: Primary: 57Q45; secondary: 57M12, 57M05.
c©Canadian Mathematical Society 2002.

131

https://doi.org/10.4153/CMB-2002-016-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-016-0
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Definition 1.2 ([Ro]) The core group, GM of a surface M in S4, has the following,
quandle type, presentation. Generators of the group, y1, y2, . . . , yn, correspond to re-
gions of M. Relations of the group correspond to double point arcs and are of the form
yi y−1

p yi y−1
q . Here yi corresponds to the higher region of the projection and yp, yq to

lower regions.

The operation yp∗ yi = yi y−1
p yi defines a quandle. We will interpret topologically

the core group as follows. It is the analogue of the Wada result for classical links [Wa].

Theorem 1.3 The core group, GM of a surface M in S4, is isomorphic to the free prod-
uct of the fundamental group of the branched double cover of S4 with branching set M,
and the infinite cyclic group. That is GM = π1(M(2)) ∗ Z where M(2) is the considered
double branched cover.

Below we will prove a generalization of the theorem for any cyclic branched cover,
following the exposition of the classical case in [Pr].

Let f : M(k) → S4 be a cyclic k-fold branched covering with a branch set M. More
precisely M(k) is defined as follows: Let VM be a tubular neighborhood of M in S4. It
has a structure of a 2-disc bundle (over M). For a point x ∈ M the boundary of the
disk Dx of the bundle is called a meridian of M (at x), denoted byµx. It has the natural
orientation for oriented M. The first homology group of S4 −M is freely generated
by meridians of M (one for each connected component of M). Thus, we have a k-
fold cyclic covering of S4 − M given by an epimorphism H1(S4 − M) → Zk which
sends µx to 1. This covering can be uniquely extended to the cyclic k-fold branched
covering with a branch set M. Namely, we define the cover on each (meridian) disk
Dx as given by the function p : D ′x → Dx, p(z) = zk where z is a complex coordinate
of the disks.

Let Πk
M = π1(M(k)).

Proposition 1.4 Consider the epimorphism ĝk : π1(S4−M)→ Zk given by ĝk(xi) = 1
for any i. Then

Πk
M = ker(ĝk)/(xi)

k.

Proof Consider a regular neighborhood of M in S4 and its normal disk bundle.
Each disk in the bundle is covered by a disk (the center being a branch point). As
noted before the covering can be described by the map z → zk where z is a com-
plex coordinate of the disk. In the Wirtinger presentation of the fundamental group,
generators correspond to some meridians (that is, boundaries of disks of the normal
bundle).

Consider the unbranched k-covering of S4 −M obtained by removing the branch
set. The epimorphism ĝ : π1(S4−M)→ Zk corresponding to the covering sends each
meridian to 1 ∈ Zk, (ĝ(µx) = 1). The fundamental group of the unbranched cover is
equal to ker ĝ. To get a branched cover from the unbranched one we have to fill the
cover of every meridian. On algebraic level we add relations µk

x = 0. Because every
meridian is conjugated to a generator xi , the proposition is proved.
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Theorem 1.5 Π(k)
M ∗ Z ∗ · · · ∗ Z︸ ︷︷ ︸

k−1

= Π(k)
M�S2 has the following quandle type description

(in the disjoint sum M � S2, S2 is the unknotted component that can be separated by a
3-sphere from M).

To every (visible) region there correspond k − 1 generators τ j(yi) (0 ≤ j < k − 1)
and to each double point arc correspond k − 1 relations τ j

(
ypτ (yi)τ (y−1

q )y−1
i

)
or

τ j
(

yiτ (yp)τ (y−1
i )y−1

q

)
depending on a local orientation.

Lemma 1.6 Let Fn+1 = {x1, x2, . . . , xn+1 | } be a free group of n + 1 generators,
x1, x2, . . . , xn+1. Consider the epimorphism gk : Fn+1 → Zk such that gk(xi) = 1 for any
i. Let F(k) = ker(gk), and let F̄(k) = F(k)/(xk

i ). Let τ : Fn+1 → Fn+1 be an automor-
phism, defined by τ (xi) = xn+1xix

−1
n+1 and yi = xix

−1
n+1. Then

(i) F(k) is a free group of nk + 1 generators: xk
n+1 and τ j(yi) for 0 ≤ j ≤ k − 1,

1 ≤ i ≤ n.
(ii) F̄(k) is a free group on n(k− 1) generators τ j(yi) for 0 ≤ j < k− 1 , 1 ≤ i ≤ n.

Furthermore yiτ (yi) · · · τ k−1(yi) = 1 for any i.

(a) T4

(b) T̃(8)
4

Figure 1: The covering T̃(8)
4 → T4

Proof (i) Fn+1 = π1(Tn+1) where Tn+1 is a graph of one vertex and n + 1 loops
(Fig. 1(a)). gk : Fn+1 → Zk determines a k-fold covering space T̃(k)

n+1 of the graph
Tn+1 as shown in Fig. 1(b). Of course, the Euler characteristic χ(Tn+1) = −n and
χ(T̃(k)

n+1) = −kn. Thus, π1(T̃(k)
n+1) is freely generated by nk+1 generators. We can easily
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identify free generators of π1(T̃(k)
n+1) = ker gk; in particular, gk(xk

n+1) = gk

(
τ j(yi)

)
=

0 for 1 ≤ i ≤ n and 0 ≤ j ≤ k− 1.
(ii) yiτ (yi)τ 2(yi) · · · τ k−1(yi) = (xix

−1
n+1)(xn+1xix

−2
n+1) · · · (xk−1

n+1 xix
−k
n+1) = xk

i x−k
n+1.

Thus, in F(k)
n+1/(xk

n+1) we have y1 · · · τ k−1(yi) = xk
i and furthermore

F̄(k)
n+1 = {F

(k)
n+1 | xk

n+1, x
k
i ; 1 ≤ i ≤ n}

= {xk
n+1, τ

j(yi) | xk
n+1, yiτ (yi) · · · τ

k−1(yi), 1 ≤ i ≤ n, 0 ≤ j ≤ k− 1}

= {τ j(yi) | yiτ (yi) · · · τ
k−1(yi), 1 ≤ i ≤ n, 0 ≤ j ≤ k− 1}

= {τ j(yi) | 1 ≤ i ≤ n, 0 ≤ j < k− 1}

as required.

We will use an extension of Lemma 1.6 for a group with Wirtinger type relations.
Let G = {Fn | r1, . . . , rm} = {x1, . . . , xn | r1, . . . , rm} where any relation is of the

form r = xixεpx−1
i x−εq for ε = ±1, and 1 ≤ i, p, q ≤ n.

We have G ∗ Z = {x1, . . . , xn+1 | r1, . . . , rm}. The epimorphism gk : Fn+1 → Zk

yields the epimorphism ĝk : G∗Z → Zk. The epimorphism ĝk is well defined because
gk(ri) = 0. We use Lemma 1.6 to find a presentation of G(k) = ker ĝk and Ḡ(k) =
G(k)/(xk

i ).

Lemma 1.7

(i) G(k) = {F(k) | τ j(rs), 1 ≤ s ≤ m, 0 ≤ j ≤ k− 1}.
(ii) Ḡ(k) = {F̄(k) | τ j(rs), 1 ≤ s ≤ m, 0 ≤ j < k − 1} = {τ j(yi) | τ j(rs), 1 ≤ s ≤

m, 0 ≤ j < k− 1, 1 ≤ i ≤ n} where τ j(xixpx−1
i x−1

q ) = τ j
(

yiτ (yp)τ (y−1
i )y−1

q

)

and τ j(xix
−1
p x−1

i xq) = τ j
(

yi y−1
p τ

−1(y−1
i )τ−1(yq)

)
.

Proof (i) Because rs ∈ ker gk then the relations of ker ĝk are of the form wriw−1

for w ∈ Fn+1. We observe that if gk(w) = u (0 ≤ u ≤ k − 1) then w = xu
n+1w ′

where w ′ ∈ ker gk. Therefore relations of G(k) = ker ĝk are of the form τ u(rs) for
0 ≤ u ≤ k− 1, 1 ≤ s ≤ m. These yield the presentation of G(k). We have:

xixpx−1
i x−1

q = (xix
−1
n+1)
(

xn+1(xpx−1
n+1)x−1

n+1

)(
xn+1(xn+1x−1

i )x−1
n+1

)
(xn+1x−1

q )

= yiτ (yp)τ (y−1
i )y−1

q

xix
−1
p x−1

i xq = (xix
−1
n+1)(xn+1x−1

p )(x−1
i xn+1)(x−1

n+1xq)

= yi y−1
p

(
τ−1(yi)

)−1
τ−1(yq).

(ii) Adding relations (xi)k reduces F(k) to F̄(k) and G(k) to Ḡ(k) so Ḡ(k) = {F̄(k) |
τ j(rs), 1 ≤ s ≤ m, 0 ≤ j ≤ k − 1}. We can eliminate the relation τ k−1(rs) (ex-
pressing it using other relations). We use the identity yiτ (yi) · · · τ k−1(yi) = 1 in Ḡ(k)

(in particular τ k(yi) = yi). We can write our relations τ u
(

yiτ (yp)τ (y−1
i )y−1

q

)
as
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τ u+1(yp y−1
i ) = τ u(y−1

i yq). We assume it holds for 0 ≤ u < k − 1 and we will see
that τ k−1(rs) = 1 as well:

τ k−1
(

yiτ (yp)τ (y−1
i )y−1

q

)

= τ k−1(yi)τ
k(yp)τ k(y−1

i )τ k−1(y−1
q )

= τ k−1(yi)yp y−1
i τ

k−1(y−1
q )

= τ k−1(yi)yp(y−1
i yq)τ (yq) · · · τ k−2(yq)

= τ k−1(yi)ypτ (yp)
(
τ (y−1

i )τ (yq)
)
τ 2(yq) · · · τ k−2(yq)

= τ k−1(yi)ypτ (yp)τ 2(yp)
(
τ 2(y−1

i )τ 2(yq)
)
τ 3(yq) · · · τ k−2(yq)

= τ k−1(yi)ypτ (yp)τ 2(yp)τ 3(yp) · · · τ k−1(yp)τ k−1(y−1
i )

= 1

as required.

Theorem 1.5 follows from Proposition 1.4 and Lemma 1.7. In particular, Theo-
rem 1.3 follows because for k = 2 we have yiτ (yi) = 1 so τ (yi) = y−1

i . In the next
section, we show that the recent result of Kamada [Ka-2] allows us to extend The-
orem 1.5 to any closed oriented n-manifold in Sn+2. Similarly Theorem 1.3 can be
generalized to any closed unoriented n-manifold in Sn+2.

2 Higher Dimensional Case: Mn ⊂ Sn+2

We can extend our results to the case of a closed n-manifold M in Sn+2 (not necessary
oriented or connected). First we need an existence of the Wirtinger type presentation
of the fundamental group of Sn+2 − M for oriented M, described in [Ka-2] and its
variant for unoriented M.

Theorem 2.1 ([Kamada]) Let p : Rn+2 → Rn+1 be a projection and M be in general
position with respect to the projection. We can think that the base point is very high
above Rn+1 (say at∞ ∈ Sn+2). We have n−1 dimensional strata being the closure of the
(invisible) set {x ∈ M | ∃y ∈ M, p(x) = p(y) and x is the lower point}. These strata
cut M into n-dimensional regions (“visibility regions”). LetΠM denote the fundamental
group of Sn+2 −M (ΠM = π1(Sn+2 −M)).

(1) Assume that M is oriented.
Then ΠM has the following Wirtinger type presentation. Generators of the group,
x1, x2, . . . , xn, correspond to regions of M (and can be visualize by joining the base
point b to any meridian of the region; meridians are oriented so elements of ΠM are
well defined). Relations of the group correspond to double point strata and are of
the form xixpx−1

i x−1
q or xix

−1
p x−1

i xq, depending on orientations of p(M) at double
point strata. Here xi corresponds to the higher region of the projection and xp, xq to
lower regions.

https://doi.org/10.4153/CMB-2002-016-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-016-0
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(2) Consider now M not necessary oriented. Let generators, x1, x2, . . . , xn be chosen as
before (one for each region). Because a region may be unorientable we have to make
choices here. However, modulo relations x2

i = 1 (for 1 ≤ i ≤ n), the group has
Wirtinger type presentation. That is: ΠM/(x2

i ) has a presentation as in (1) with
additional relations x2

i = 1.

In the unoriented case meridians have no preferred orientation so only the
branched double cover is uniquely defined, so we can interpret the core group of
the embedded unoriented codimension two submanifold of Sn+2.

Kamada’s theorem allows us to generalize Theorems 1.3 and 1.5. The proof, as
before, bases on Lemma 1.7 (k = 2 yields an unoriented case), so we omit it.

Let p : Rn+2 → Rn+1 be a projection and M be an n-dimensional closed subman-
ifold of Rn+2 (and Sn+2 = Rn+2 ∪ ∞) being in general position with respect to the
projection. Using notation of Theorem 2.1 we have:

Theorem 2.2 Let M(k) denote the cyclic branched regular k-covering of Sn+2 with an
oriented manifold M as a branched set, and Π(k)

M its fundamental group. Then Π(k)
M ∗

Z ∗ · · · ∗ Z︸ ︷︷ ︸
k−1

= Π(k)
M�Sn has the following quandle type description.

To every region corresponds k − 1 generators τ j(yi) (0 ≤ j < k − 1) and
to each double point strata correspond k − 1 relations τ j

(
ypτ (yi)τ (y−1

q )y−1
i

)
or

τ j
(

yiτ (yp)τ (y−1
i )y−1

q

)
depending on a local orientation.

Theorem 2.3 Let M(2) denote the double branched regular 2-covering of Sn+2 with an
unoriented (possibly not orientable) manifold M as a branched set. Then π1(M(2))∗Z =
Π(2)

M�Sn has the following core (quandle type) description.
Generators of the group, y1, y2, . . . , yn, correspond to regions of M. Relations of the

group correspond to double point strata and are of the form yi y−1
p yi y−1

q .

In the case of a 3-manifold in S5, one can check invariantness of our groups, de-
fined combinatorically, using the Roseman moves [Ros-1].
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