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KNESER'S THEOREM FOR DIFFERENTIAL

EQUATIONS IN BANACH SPACES

NIKOLAOS S, PAPAGEORGIOU

We consider the Cauchy problem x(t) = f(t,x{t)) , x(O) = x.

defined in a nonreflexive Banach space and with the vector field

f : T x X •*• X being weakly uniformly continuous. Using a

compactness hypothesis that involves the weak measure of

noncompactness, we prove that the solution set of the above

Cauchy problem is nonempty, connected and compact in Cv {T) .
XW

1. Introduction

It is well-known by now that Peano's theorem on the existence of

solutions for ordinary differential equations does not hold when the under-

lying Banach space is infinite dimensional. This was i l lustrated with

concrete examples constructed by Dieudonne' [70] (for X = e_) and Yorke

[2 7] (for X = £_) . Then came Cellina [5], who showed that given any

nonreflexive infinite dimensional Banach space, using James' theorem we can

set up a Cauchy problem that does not have a solution. Finally i t was

Godunov [73], who proved that Peano's theorem characterizes finite

dimensional Banach spaces. Since then ordinary differential equations in

infinite dimensional Banach spaces, with strongly continuous vector fields,

have been studied extensively and several interesting results have appeared
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4 2 0 Nikolaos S. Papageorgiou

(see Deimling [ S ] , Martin [7 7] and references t he r e in ) .

However the study of the Cauchy problem in a Banach space r e l a t ive to

the weak topology i s lagging behind. Recently Faulkner [72] showed tha t

the weak cont inui ty of the vector f ie ld / ( • , • ) i s insuf f ic ien t for the

ex is tence of weak so lu t i ons . Before tha t there were a few papers dealing

with t h i s problem, but several of them had wrong proofs. One of the f i r s t

r e s u l t s was due to Browder [ 4 ] , but i t was shown by Knight [74] to be

i n c o r r e c t . Unfortunately the proof of [74] a lso contains a flaw. Namely

a t a ce r t a in po in t there i s an erroneous appl icat ion of the dominated

convergence, which as we know i t is always val id for sequences but in

general i t i s not va l id for n e t s , unless the net i s countably determined,

t h a t i s i t possesses a countable cofinal subset . To i l l u s t r a t e tha t we

include the following counterexample taken from Bourbaki [ 3 ] . Let F

denote the family of f i n i t e subsets of [0 ,1] ordered by inclusion and

l e t Xr,(") b e the c h a r a c t e r i s t i c function of k e F . Then Xt. "*" 1 b u t

= 0 for all k e F . The mistake of Knight can be easily

J

remedied by proving a version of the Schauder-Tichonoff fixed point theorem

which i s val id for weakly sequential ly continuous maps. Also i t should be

noted t h a t [74] contains another inaccurate statement. Namely in

Corol lary 6 he claims tha t i f / ( ' , • ) i s a vector f ie ld weakly continuous

in x and X has the Radon-Nikodym property then every weak solution i s a

s t rong so lu t ion . This i s not correct and we can eas i ly construct counter-

examples in the nonseparable Hilbert space JZ._CO, 1 ] . What i s needed for

Corol lary 6 of [74] to be cor rec t i s e i t he r t ha t X i s separable (in

p a r t i c u l a r X to be separable reflexive) or t ha t / ( • , • ) i s s t rong- to -

weak continuous (in p a r t i c u l a r weakly continuous) in both va r iab les . Note

by the way tha t separable dual or reflexive spaces are only a subclass of

the family of Banach spaces possessing the Radon-Nikodym property

(Dunford-Pettis theorem and P h i l l i p s ' theorem, see Diestel-Uhl [ 9 ] , 79-82).

Since then, there appeared also the works of Szep [79] , Boudourides [2]

(whose proof a l so has a flaw as was pointed out in [7S]) and the more

general r e s u l t of Cramer-Lakshmikantham-Mitchell [ 6 ] . All those r e s u l t s

were extended by the very recent theorem of the author [ I S ] , which appears

to be the most general r e s u l t in this d i rec t ion .
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The purpose of the present note is to complete the work initiated in

[7 8] by proving a Kneser's theorem concerning the solution set of a Cauchy

problem with a weakly continuous vector field in a nonreflexive Banach

space. Earlier results in that direction were obtained by Szufla [20] and

Kubiaczyk [75]. Our theorem goes beyond the above mentioned papers.

2. Kneser's theorem for weak solutions
*

Let X be a Banach space, with X i t s topological dual . Let

T = [0,2?], a bounded closed i n t e rva l in J? . By w we w i l l denote the

weak topology on X .

In [7] DeBlasi introduced the following measure of noncompactness in

the weak topology. Let A be a nonempty bounded subset of X . We define

BiA) = i n f { t > 0 : a(XePf c (JO) (A£K+tB±)}

where P , (X) = {B s X : B =j= <(> and B i s weakly compact} and B i s t h e

u n i t b a l l i n X .

The p r o p e r t i e s of $(•) a re o u t l i n e d i n Lemmata 2 . 1 and 2.2 of [ I S ] .

Those p r o p e r t i e s show t h a t 3 ( - ) i s what Banas-Goebel [ I ] c a l l a " s u b -

l i n e a r measure of noncompactness" .

Given a v e c t o r f i e l d f : T * X •*• X , we c o n s i d e r t he fo l lowing Cauchy

problem:

" x(t) = f(t,x(t))}
<*)

X{0) = XQ j

By a s o l u t i o n of (*) we u n d e r s t a n d a func t ion x ( - ) e C^{.T) = cont inuous

func t ions from T i n t o X , which i s once weakly d i f f e r e n t i a b l e and

s a t i s f i e s (*) wi th x(-) deno t ing t h e weak d e r i v a t i v e . I f / ( • , • ) i s

cont inuous from T x Xw i n t o X ( t h a t i s / ( • , - ) i s weakly c o n t i n u o u s ) ,

then from what we s a i d i n S e c t i o n 1 , we g e t t h a t every weak s o l u t i o n x(-) i s

almost everywhere d i f f e r e n t i a b l e and s a t i s f i e s (*) almost everywhere wi th

x ( - ) deno t ing the s t r o n g d e r i v a t i v e ( t h a t i s x ( - ) i s a s t r o n g s o l u t i o n ) .

In [ JS ] we proved the fo l lowing e x i s t e n c e theorem concern ing (* ) .
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THEOREM 2 .1 US']. If f: T x X -*• X is a function such that

(1) / ( • , * ) is continuous from T x X into X (that is / ( • , • ) is

weakly continuous),

(2) for all (t,x) £ T * X , B/(t,x)n < M ,

(3) /or all A s X bounded we have that

l i m B ( / ( 2 \ . X 4 ) ) < u ( t , B L 4 ) ) almost everywhere

where T. = [t,t+r] and « ( - , • ) t e a Kamke function,v ,r

then (*) admits a solution.

Now we are going to examine the topological properties of the solution

set SQ of (*) . We have the following Kneser's theorem concerning this

set.

THEOREM 2 . 2 . If f: T x X ->• X is a function such that

(1) /(•»") is weakly uniformly continuous,

(2) for all (t,x) e T x X , 0/(t,x)ll < M ,

(3) for all A s X bounded we have that

l i m B ( / ( T . x/4)) < u ( t , B C 4 ) ) almost everywhere

where T, = [t,t+r] and w(-,-) is a Kamke function,
£ i r

then S is a nonempty, compact and connected subset of CY (T) .
w

Proof. That SQ i s nonempty follows from Theorem 2 .1 .

For X > 0 we define the set S. of a l l X-approximate solutions of

the Cauchy problem (*) to be a l l x : T -*• X continuous such that

(i) x(0) = xQ , ix(t')-x{t)i < M\f-t\ for f , t e T , strong

derivative exists almost everywhere,
t'

(ii) Bx(f) - x(t) - f f{8,x(s))dsl < \\t'-t\ for all

0 < t < f < b , *
t

(ii i) supla:(t) - x - / /(e,x(e))dsl < X .
teT 0

Next let e e [0,&] and define the family E = {x£ (•) } of e-Euler

polygons by
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x£{t) = xQ for 0 < t < z

= xe(tk) + (t-tk)f(tk,xz(tk)) for

where t , = fee with k e { l , 2 , . . . , n £ } , n = [-] and *„ + 1 = & •

Clearly x(-) ex i s t s almost everywhere. Let t' , t e T . Assume

t € Lt.,t. ] and t 1 e [ t . , t . ] with i < j . Then we have:

C — 1

Next we wi l l show tha t given any X > 0 we can find e(X) > 0 such

tha t for e < e(X) we have tha t a; (•) e 5. .

We have already ver i f ied condition (i) in the def in i t ion of 5, .

Next l e t us verify condition ( i i i ) .

Let t £ [ t . , t . n ] . From the Hahn-Banach theorem we know tha t we can

find x* e. X* such that D ar*B = 1 and

t t
|(x*,x£(*) - xQ - / /(e,xe(s))ds)| = lxE(t) - xQ - / f(s,xe(s))<is! .

A l s o l e t \x > 0 a n d 6' > 0 b e s u c h t h a t \iM + &'b < \ . B e c a u s e / ( • , • )

i s by h y p o t h e s i s w e a k l y u n i f o r m l y c o n t i n u o u s we c a n f i n d e (X) 2 p s u c h

t h a t

| ( x * , / ( 8 , x ( 8 ) ) - f(t.,xAt.))\ < 6'
fc. lr fc. U

fo r t . < e < t . . and e <> z (X) . Hence we can w r i t e t h a t :
•t- u+JL
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424 N i k o l a o s S . P a p a g e o r g i o u

t t
\(x*.x (t) - x - / / ( s , x ( s ) ) d s ) | < / \(x*,f(s,x (s)))\ds

0

- f(s,xe(s))\de
k - 1 j_ a t r. Z

t

j | (x*,f(t.,xAt.)) - f(s,x(s)))\de

\ S'b < \

which implies
t

Ox£(t) - xQ-//(6,a;e(

and so we have verified condition (iii) in the definition of 5. .

Finally we will verify condition (ii) . Let t' , t e T , with

t e [£ . ,£ . . ] and t' e [* . ,* . . ] , i < j . Again by the Hahn-Banach
7, "L-r± J t7"*"J-

theorem we can find x* e X* with llx*U = 1 such tha t

t' t'
Bx (f) - x (*) - / / ( s , x (s))dsll = |(x*,x {f) - xc(t) - jf(s,x (e))ds)

G E , E £ £ , £

Then we have:

(x ,x£(t j xe(rj ^ £

s / | (x*,f(t.,x It.)) - f(8,x{e))\ds

+ , - - | - i * '

fe=l

(x*,f(t.,x (t.)) - f(s,xc(s))\ds

x | t - - t | .

Therefore we conclude that x (•) e S as claimed.
A
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Now we wi l l show tha t e •> x (•) i s continuous from [O,e(A)] in to

CY (T) . To see tha t we proceed as follows:
Xw

Let t e [ * . , * . . , ] , t . = iz and t e C t . , t . . ] , *• = j& . Also l e t
t' U-TX. 1* J J + -L d

6 •*• e . Then clearly t . •+ t- and so x.(t.) § x (t.) .

Take x* e Z*\{0} . We have:

(x*,x&(t) -

(x*,/(t.,x6(t.)))

- (t-t.)

= \(x*,xAt.) - xAt.))\ + (t-t.) (x*,f(t.,x ( £ • ) ) )0 J b *• J 0 3

- t.{x*,f(t.,xAt.))) + t.(x*,f(t.,xAt.)))
T, J ° J *• J o J

< \(x*,xf.(t;j) -xAti))\ + l ^ - t j . M s

+ ( t - t . ) | (x*,f(t.,xAt.)) - f(t.,xAt.))) |

t' J 0 j / Z» E t-

< | ( x * , « . ( * . ) - ^ ( t . ) ) ! + | t . - £ . | »x*ll M+ (t-t.)\(x*,f{t.,x,(t.))

- f{t.,x ( t . ) ) ) I .
t- t Is

Recall tha t / ( • , • ) i s a weakly uniformly continuous vector f i e ld .

So passing to the l imi t as 6 •*• e we get tha t

uniformly i n t . So (x*, » . ( • ) ) >• (x*,x (•)) as 6 •* e . But the

topology of weak uniform convergence on C« (21) i s de te rmined by the b a s i s
W

m
e cx {T) '• s u p l ( x r 3 ( t ) - X ^ ) H < e
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426 N i k o l a o s S . P a p a g e o r g i o u

where x(-) e C' (T) , x*.. .x* e X* , e > 0 , m = 1 , 2 , . . . .
A J- Til

w

Knowing that we can now say that e -»• x (•) is continuous from

CO , E ( X ) ] into CY (T) . Hence if A = {x (•)} rn ,,>n , then this set
A £ ££LU,£(AJJ
W

is connected in C« (T) , because it is the image under the continuous map

e -»• x (•) of the connected set [0,E(X)] .

Next let p e T and y (•) e S We define the (z,p,y (•)) -Euler

polygon as follows. Fix E < y .

y (t) = y(t) for 0 < t < p= yip) for 0 < t S ([2-]+l)e = t

V ' f o r t £ Ctk

for k = [|-]+l,[|-]+2,...,[|] = nz , tn + 1 = b . We let r = ^

We are going to show that */„(•) £ S. . Since y (•) £ S, , we can
P A A

e a s i l y see tha t ^ (•) e x i s t s almost everywhere and

t
O j / ( t ) - xQ - I / t e , y ( s ) ) d e l l < X

for a l l t e T . Fix t £ T and as before pick x* e X* with Da;*ll = 1

such that

t t
| (x*,y[t) - x - f / ( e , t / ( s ) )de) | = lj/(t) - x - / /(e,j/(e))<fel .

0 0

Let 6 > 0 and J/(x*,6) = {zeX : I (x*,3) | < 5} 6 N (0) = f i l t e r of weak
w

neighbourhoods of the origin in X . Then due to weak uniform continuity of

/(•,') we can find V e W^tO) such that | (x*,f(t,x) - f(t,z))\ < 6 for

all x - z e V . Let 0 < e < y be such that for t,e e T, \ts\ < e

y (t) - y Is) e V and for all t e. T

t
ly(t) - xQ - j f(s,y(e))dsl + Mz + 6b < X .
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Now we examine separately what happens when t i s in one of the

in te rva l s involved in the def in i t ion of y (•) .

F i r s t l y , for 0 < t < p -.

t t
\y it) - xQ - J f(s,y (s))dsi = tyit) - xQ - / fi8,yis))dsi < X

Secondly, for p < t < p + e :

t
iy it) - x - j f(s,y (8))dell

F 0 r
p t

= I yip) - x - j f(s,y(s))ds - J f (s ,y is)) dsi
0 p

p t
< iyip) - x - j f(s,yis))dsi + »/ fis.yis)

0 p

p
< Oy(p) - x - j fis,yis))dsi + Me < X .

0

Thirdly, for p + e < t < b :

Assume that t e [ t . ,t. .,] . We have

t

t
= | ix*,ypit) - xQ - /

,ypiti)) - xQ - j fie,ypis))ds\

p *r
/ f(s,y is))dsi + 8 / fis.y is) »
0 P P

X I (x>flk,yp(tk)) - fis,ypis)))
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:>yp{ti]) ~ fis,yp(s))\de

p

< Dz/(p) - xn - \ / ( 8 , w (8) JdeH + Me + Sb < A .
0 0 ?

Thus we can f i n a l l y say t h a t y (*) e 5 .
p A

Next we will show that p •*• y {.') is continuous into CY (T) . So

let q -*• p in T . We will prove that y (•)-*• y (•) in C (ff) .
7̂ P 11

F o r t h i s p u r p o s e l e t 0 < p < q < b . F o r t i p ,
112/ ( * ) - 2/ ( t ) 1 1 = n y f * ) - 2 / < * ) o = 0 .

If p < t and since q + p , we can take q such t h a t p < q < t and

[£.] = [2.] . Let t e [ t - , ^ . t n ] and x* e Z*\{0} . We have:
£ £ t'

l

I ^ l l t e ,f(tk,yq(tk)) -

Passing to the l i m i t as q •* p and exploi t ing the fact tha t / ( • ,•)

i s weakly uniformly continuous we get tha t

I lx*.yqlt) - y p ( t ) ) \ -> o

uniformly in t e T . Hence we have shown that p -*• y (') is continuous

from T into CY (T) . Set B = {y (• ) } _ . Then B is connected in
A

w y P PeI y
Cv (T) .

Xw

https://doi.org/10.1017/S0004972700004007 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004007


Kneser's theorem in Banach spaces 429

Now note t h a t 2/Q(") i-s an e -Eu le r polygon for (*) t h a t i s ,

j / . ( - ) e A . Therefore A n B ? $ . So A u B i s connec ted i n Cy (T)

and s i n c e t h i s i s t r u e fo r a l l y(-) e S we g e t t h a t R = u [A UB ]

is connected in Cv (T) (see Dugundji [/I].) Clearly S, t S. . On the
U

other hand by what we proved earlier A £ S. and for all u (•) e 5. ,
A A

B £ 5 . Hence we deduce that R. c S . Therefore we can finally say
W A A A

tha t i? = S. and so 5. i s connected in (?„ (T) .
W

Next l e t 5 , ( t ) = ( y ( t ) : ! / ( • ) e S } . Se t q (t) = g (5 ( t ) ) . Using
A A A

the fact that 6(5,(t) ) < diam (S, (t) ) and property (i) in the definition of
A A

S we get thatA

\q(t') - q(t) | < M\t'-t\

for t',t e T. This implies tha t q (• ) i s absolutely continuous and so

dif ferent iable a t a l l po in ts t e T\N , \(N ) = 0 . Let N be the

exceptional se t of measure zero or ig inat ing from hypothesis 3 of Theorems

2.1 and 2.2. Set N = N U N and fix t e T\N , e > 0 . We know tha t we

can find 6 > 0 such tha t

\w(t,q(t)) - w(t,z)\ < e w h e r e \q{t) - z\ < 6 .

Also choose y > ° such tha t My < 6 and t + y < b .

From hypothesis 3 we know that we can find r > 0 such tha t

6 ( f ( 2 \ * £ ) > s w ( t , 6 ( L ) ) + ev 1

where L = {x(s) : x ( - ) e 5 , , t < s < t + y ) » Tj. = [ i , £ + r ] , 0 < r < y .
A t , V

Observe tha t by def in i t ion S. i s an equicontinuous, bounded family.

So we can apply Lemma 2.2 of [7SI and get tha t

B(L) = sup{B(£(s)) : 8 e [ t , t + y ] } = q(i)

for some £ e [ t , t + y ] . Then we have:

0 < 6(i) - q(t) = q(i) - q(t) < M\i-t\ < 6 .
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This, then, from the choice of 6 > 0 , implies that

| < e .

N e x t l e t 0 < r 1 < r . T h e n f o r a n y x{-) e S we h a v e t h a t
A

t+r' t+r'
x{t+r') = x(t) + / (x(s) - f(s,x(s)))ds + j f(s,x(s))ds

t t

and so
t+r'

S.(t+r') g S^it) + QAt,r') + j f(s,S.(e))ds

where

Q%(t,r') = { f ( x ( s ) - f(s,x(e)))ds •. x(-) e 5 . ) .
x t k

Note t h a t sup lldl < Xr1 . Thus B(Q, (t,r') < diam Q.(t,r') < 2\r'

rt+r ' -I
qit+r1) <, q(t) + 2\r' + 6 / f(s,S. (s) )ds\ .

V + A )

and this then gives us that

rt+r'

t

But r e c a l l tha t since / ( • , • ) i s weakly continuous, we have

t+r'
>,{e)]ds g r 1 conv f(T.

t X t.i

and so

6 / fie,S. (s))ds) < B ( r ' conv f{T

= r ' B ( c o n v f ( y . £ ) ) r 3 ( f ( r , ,,t,r c , r

Therefore we get t h a t

C7 (t+r1) < q(t) + 2\v< £))
,r

< q{t) + 2Xi" + r ' u ( t , B ( D ) + r ' e

2Xr" + 2r ' e +

Thus
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^ +w{tiq(t))

and so

q(t) < 2(X+E) + w(t,q(t)) .

Letting e + 0 we get that

'q(t) < 2X + W(t,q(t)) .

Consider z(t) = w(t,z(t)) + 2X and l e t 3 i ( ' ) b e i t s maximal

s o l u t i o n . Then from Theorem 1 .4 .1 of Lakshmikantham-Leela [ J 6 ] we deduce

Cro
t h a t q{t) < s ( t) fo r a l l t e T . Note t h a t *:..(•) * 0 as X + 0

A A

Since by Lemma 2.2 of [IS] we know tha t 3(5,) = sup 6(S (t)) £ Os 1 ,

we get tha t lim B(SJ = limls II = 0 . But S~ £ 5, for a l l X > 0 .
XM)+ X X °° OX

So 6(5n) S 6(S . ) =» 3 ( 5 . ) = l im e(S-) = 0 =» 5 n i s compact i n Cy (T) .
0 X 0 X-K) X 0 Xw

I t remains to show that S i s connected in Cv (T) . To see this

note that

and we already saw in an earlier part of the proof that each S . is

connected in Cv (T) . Suppose Sn was not connected in Cv {T) . ThenXW ° w
we can find nonempty, disjoint sets A , B closed in Cv (T) such that

XW

Sn = A u 5 . Let y be open in Cv (T) such that 4 c y and

w
U n B = <j> . Because each 5. . is connected we have that

1/n

S. , n U j- d> and
1/n

which imply that

5 n W ± 4> ,
\/n

3i/ being the boundary of U . Let D = S n 3y . Then
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Invoking Theorem 3 of DeBlasi [7] we get that

- •

and so

( n S ) n 3 i / ^ ,

a contradiction to the choice of U . Therefore S~ is also connected in

Cv (T) and this completes the proof.

Remarks.

( 1) The above proof gives us also the existence of a weak solution

for (*). Just note that S = n S and lim B (5 . ) = 0 . Then apply
n>l n-x»

Theorem 3 of DeBlasi [7]. So we do not need to call upon Theorem 2.1 to

guarantee existence of solutions of (*) .

(2) If X is reflexive, then hypothesis (3) in our theorem is

automatically satisfied since every bounded set is relatively weakly

compact. So we recover as a corollary to our theorem the result of

Szufla [203.

(3) If instead of hypothesis (3) we have the following stronger one:

"8(f(TxA)) < k&(A) for A c X bounded and 0 < b,k < 1"

then we get as a corollary Theorem 3 of Kubiaczyk [75], which was presented

there without a proof.
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