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KNESER'S THEOREM FOR DIFFERENTIAL

EQUATIONS IN BANACH SPACES

NikoLaos S. PAPAGEORGIOU

We consider the Cauchy problem x(t) = f(t,x(t)) , x(0) = Z,

defined in a nonreflexive Banach space and with the vector field
f:T x X > X being weakly uniformly continuous. Using a
compactness hypothesis that involves the weak measure of
noncompactness, we prove that the solution set of the above

Cauchy problem is nonempty, connected and compact in CX T .
w

1. Introduction

It is well-known by now that Peano's theorem on the existence of
solutions for ordinary differential equations does not hold when the under-
lying Banach space is infinite dimensional. This was illustrated with

concrete examples constructed by Dieudonné [10] (for X = e,) and Yorke

[21] (for X = 2,) . Then came Cellina (5], who showed that given any

nonreflexive infinite dimensional Banach space, using James' theorem we can
set up a Cauchy problem that does not have a solution. Finally it was
Godunov [13], who proved that Peano's theorem characterizes finite
dimensional Banach spaces. Since then ordinary differential equations in
infinite dimensional Banach spaces, with strongly continuous vector fields,

have been studied extensively and several interesting results have appeared
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(see Deimling [8], Martin [17] and references therein).

However the study of the Cauchy problem in a Banach space relative to
the weak topology is lagging behind. Recently Faulkner [1Z] showed that
the weak continuity of the vector field f(:,-) is insufficient for the
existence of weak solutions. Before that there were a few papers dealing
with this problem, but several of them had wrong proofs. One of the first
results was due to Browder [4], but it was shown by Knight [14] to be
incorrect. Unfortunately the proof of [14] also contains a flaw. Namely
at a certain point there is an erroneous application of the dominated
convergence, which as we know it is always valid for sequences but in
general it is not valid for nets, unless the net is countably determined,
that is it possesses a countable cofinal subset. To illustrate that we
include the following counterexample taken from Bourbaki [3]. Let F
denote the family of finite subsets of [0,1] ordered by inclusion and

let xk(-) be the characteristic function of k ¢ F . Then X 1 but

f xk(s)ds =0 for all k ¢ F . The mistake of Knight can be easily
I

remedied by proving a version of the Schauder-Tichonoff fixed point theorem
which is valid for weakly sequentially continuous maps. Also it should be
noted that [14] contains another inaccurate statement. Namely in
Corollary 6 he claims that if f(-,*) 1is a vector field weakly continuous
in £ and X has the Radon-Nikodym property then every weak solution is a
strong solution. This is not correct and we can easily construct counter-

examples in the nonseparable Hilbert space 22[0,1] . What is needed for

Corollary 6 of [14] to be correct is either that X* is separable (in
particular X to be separable reflexive) or that f£(-,+) 1is strong-to-
weak continuous (in particular weakly continuous) in both variables. Note
by the way that separable dual or reflexive spaces are only a subclass of
the family of Banach spaces possessing the Radon-Nikodym property
(Dunford-Pettis theorem and Phillips' theorem, see Diestel-Unhl (9], 79-82).
Since then, there appeared also the works of Szep [19], Boudourides [2]
(whose proof also has a flaw as was pointed out in [78]) and the more
general result of Cramer-Lakshmikantham-Mitchell [6]. All those results
were extended by the very recent theorem of the author [18], which appears

to be the most general result in this direction.
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The purpose of the present note is to complete the work initiated in
[18] by proving a Kneser's theorem concerning the solution set of a Cauchy
problem with a weakly continuous vector field in a nonreflexive Banach
space. Earlier results in that direction were obtained by Szufla [20] and

Kubiaczyk [15]. oOur theorem goes beyond the above mentioned papers.

2. Kneser's theorem for weak solutions

*
Let X be a Banach space, with X its topological dual. Let
T = [0,b], a bounded closed interval in R, . By w we will denote the

weak topology on X .
In [7] DeBlasi introduced the following measure of noncompactness in
the weak topology. Let A be a nonempty bounded subset of X . We define

B{A) = inf{t>0: H(KePwk(X)) (AEKH‘:B]_)}

where P, (X) = {BcX:B 4+ ¢ and B is weakly compact} and B, is the
unit ball in X .

The properties of 8(-) are outlined in Lemmata 2.1 and 2.2 of [18].
Those properties show that B(:) is what Banas-Goebel [1] call a "sub-

linear measure of noncompactness”.

Given a vector field f:T x X X, we consider the following Cauchy

problem:

k() = flt,x(t))

{*)

xX

x(0) o

By a solution of (*) we understand a function x(:) € CX(T) = continuous

functions from 7T into X , which is once weakly differentiable and

satisfies (*) with &(-) denoting the weak derivative. If f(-,-) is
continuous from T x Xb into Xb (that is f(-,-) is weakly continuous),
then from what we said in Section 1, we get that every weak solution x(*) is

almost everywhere differentiable and satisfies (*) almost everywhere with

x(+) denoting the strong derivative (that is «(-) is a strong solution).

In [18] we proved the following existence theorem concerning (*).
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THEOREM 2.1 [18]. If f:T x X+ X 48 a function such that

(1) f(-,*) <is continuous from T x X, into X, (that is f(-,-) 18
weakly continuous),

(2) for all (t,x) e Tx X ,Uf(t,x)0 <M,

(3) for all A < X bounded we have that

lim B(f(T, ,x4)) < w(t,B(A)) almost everywhere
0 !

where Tt r= [¢t,t+r] and w(-,*) 18 a Kamke function,

then (*) admits a solution.

Now we are going to examine the topological properties of the solution

set So of (*). We have the following Kneser's theorem concerning this

set.

THEOREM 2.2. If f:T x X > X s a function such that
(1) F(,-) <8 weakly uniformly continuous,

(2) for all (t,x) e TxX,ifiz,o)l <=,

(3) for all A c X bounded we have that

lim B(f(T, ,,*x4)) < w(t,B(4)) almost everywhere
0 ’

where Tt = [¢t,t+r] and w(-,*) <& a Kamke function,
then Sy 18 a nonempty, compact and connected subset of Cy (I
w

Proof. That S, is nonempty follows from Theorem 2.1.

For X > 0 we define the set SA of all A-approximate solutions of
the Cauchy problem (*) to be all x:7T > X continuous such that
(1) x(0) = Ty le(t)y-x )b < M|t'-t] for t' , te T , strong

derivative exists almost everywhere,

tl
(1i) Bz(t') - z(t) - [ fls,x(e))dsl < Alt'-t| for all
0<ts<st <=b, ¢
t
(ii1) suplx(s) -z, - [ fle,x(e))dsh < A .
tel 0

Next let ¢ € [0,b] and define the family E = {xe(')} of e€-Euler
polygons by
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xe(t) = x, for 0 <t <c¢e
= me(tk) + (t-tk)f(tk,xe(tk)) for t e [tk'tk+l]
where t, = ke with Ke {L,2,...m) , n = [?E-] and b, =b.

+1
€

Clearly X(-) exists almost everywhere. ILet ' , t € T . Assume

t e [ti’ti+l] and t' € [tj’tj+l] with ¢ < j . Then we have:

J-1 ..
bz, + kzl (tp o1t FlEg 2 (5)) + (t'—tj)f(tj,xs (tj))

ﬂxe(t')—xs(t)“

i-1
-z, - kzl (Eppq~tp) F g (E)) = (£t fE,,z (g1

It-tiﬂlﬂf(ti,xe (t;))1

A

j=1
L B B G B+ I f it i e

-+

IA

M{t'-t] .

Next we will show that given any A > O we can find e(\) > 0 such

that for € < e()) we have that xe(-) € SA .
We have already verified condition (i) in the definition of SA .
Next let us verify condition (iii}).

let t e [ti’ti+1] . From the Hahn-Banach theorem we know that we can

find x* € X* such that flx*l =1 and

t t
| @z _(8) -z - g fle,x_te))ds)| = Bz _(£) - =z - g fls,z_(s))dsl .

Also let u >0 and 6' > 0 be such that wM + 8'b < A . Because f(:,*)
is by hypothesis weakly uniformly continuous we can find e()A) < u such
that

I(x*,f(s,xe(s)) - f(ti’xe(ti))' < &8

for ti < g < ti+l and £ <€ ¢(A) . Hence we can write that:
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t t
| @tz (&) -z - [fis,a@de)| < [1] @, fle,x () ]ds
0

0
-1 tk+1
+ 3 I(x*,f(tk,xg(tk)) —f(s,xe(s))lds
k=1 tk

+

t
tfl(x*’f(ti"re(ti)) - fls,z(s))) |de

7

A

laxiMp+ 85 < A
which implies

t
lz_(t) - xo—é'f(s,xe(s))ds" <A

and so we have verified condition (iii) in the definition of SA .

Finally we will verify condition (ii). Let %' , t € T , with
. . . . _
t e [ti,ti+l] and t' € [tj’tj+l] , © £ J . Again by the Hahn-Banach

theorem we can find z* ¢ X* with lxz*l = 1 such that

t £
lz_(£') - x_(£) - £f(s,xe(s))dsll = [ @z (") -z _(8) - if(s,xe(s))ds)l.
Then we have:
tl
| c*,z_(£') - z_(t) - {f'(s,xe(s))ds)l
ti+l
< ft | @t _(£)) - fis,z_(s))|ds
G-i-1 Fisksl
+ kZl tf [@*, Fit; 00m, (;,)) - Fle.z_(8))) |ds
- i+k

t
+-g'[(x*,f(tj,xs(tj)) - f(s,xe(s))[ds
J

< Altr-¢] .

Therefore we conclude that x (*) € SA as claimed.
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Now we will show that € - xe(-) is continuous from [0,e(A)] into

CX (T) . To see that we proceed as follows:
w

J, t. =8 . Also let

Let te [t.,t. .7, ti =4¢ and ¢t € [tj,t ;

7' 74+l J+1
§ » € . Then clearly tj > ti and so xé(tj) g xe(ti)

Take x* ¢ X*\{0} . We have:

| (z*,25(8) - ) |

I(x*,xé(tj) A D l(t—tj) (*, f (5,25 ()

- (-t @r (e ()]

lar @t - @ ) |+ (-t @+ flt,z )

ti(x*’f(tj’xd(tj))) + ti(x*'f(tj'xé(tj)))

(=) (x*, f(t; 2 (£,))) |

IA

|(x*,x5(tj) - xs(ti)H + “ti'tj) (x*,f(tj,m6<tj))|

+

(t-t,) | (@*, fts @) - fiE,,z (£)) |

In

I(x*,xa(tj) - xs(ti))l + |ti—tj| Tz*l M + (t—ti)|(x*,f‘(tj,x6(tj))

fitg,x )] .

Recall that f(-,*) 1is a weakly uniformly continuous vector field.
So passing to the limit as &8 + € we get that
[ (x*,x () -z (£))] » 0
§ €

C
uniformly in ¢t . So (x*, xé(')) ___li_, (x*,xe(’)) as 6 - € . But the

topology of weak uniform convergence on CX (I) is determined by the basis
w

m
Uty .arse’) = N{z() e Cy (D) : sup| (%,2(8) - x(t))] <¢
w teT
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where x(-) € CX T , xI...x% e X* ,e>0,m=1,2,...

Knowing that we can now say that ¢ - xe(-) is continuous from

[0,e(x)] into CXb(T) . Hence if 4 = {xe(.)}ee[o,e(k)] , then this set
is connected in CX (T') , because it is the image under the continuous map
w

€ > xe(-) of the connected set [0,e(A)]
Next let p e T and y(-) € SA . We define the (e,p,y(*))-Euler

polygon as follows. Fix € < py .

yp(t) = y(¢) for 0 ¢t <p
= y(p) for 0 <t < ((Bl+l)e = ¢
€ p
= [B41,[B by - - &
for k= [21+1,[51+2,...,[5] = n_, t"e“ b . We let r=[Z+l .
We are going to show that yp(-) € SA . Since y(-) € SA , we can

easily see that yp<-) exists almost everywhere and

t
ly@) -z, - [ fls,ye)dsh < a
4]
for all teT . Fix t e T and as before pick x* € X* with lg*l =1
such that
t t
[@*y(t) -2y - | fle,y(s))de)| = by(t) - xz, - | fle.,yts))dsl
0 0

Let 6 >0 and Ulx*,8) = {zeX: |(z*,2)] < 8} ¢ N (0) = filter of weak

neighbourhoods of the origin in X . Then due to weak uniform continuity of

fC,") we can find V ¢ Nw(O) such that I(x*,f(t,x) - f(t,z))| < § for

all x-2z€V . Let O <eg <y be such that for t,s ¢ T, |t-s] < ¢
y (£} -y (8) ¢ V and for all t e T
p p

t

by (t) - xy - | fis,y(8))dsl + Me + 6b < & .
0
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Now we examine separately what happens when ¢t is in one of the
intervals involved in the definition of yp(')

Firstly, for 0 < ¢t <p :

t t
|yp(t) -z, - (f) f(s,yp(s))dsll =y -z, - (f) fle,y(e))dsl < x .
Secondly, for p <t <p + ¢ :

t
by, @) - =z, - (f) Fs.y,(8))dsl

p t
=lyp) -z, - ({ fis.y(e))ds - [ fls,y(s))dsl
p

IA

p t
lyp) -z, - [ fle.ytsndsl + 1f fis,y(e))dsl
0 p

IA

D
ly@p) -z, - [ fle.y(e)dsl + Me < .
0

Thirdly, for p+ e <t <b :

Assume that ¢ € [ti’ti+l] . We have

t
ﬂyp(t) -z, - é’ f(s,yp(s))dsﬂ

t
= |(x*,yp(t) -y - é f(s,yp(s))ds)|

i-1
= | @y + er (tey =t £ By, (Eg)

t
+ (t-ti)f(ti,yp(ti)) -z, - cf) f(s,yp(s))dsl

t

p r
lyp) -, - [ fle,y_(e))del +1f f(s,y (s))dsl
o 5 p P p

IA

i-1 Pke1
) | @ fty (8)) = fia,y (1)) ]

k=r tk p P
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+ [ I(x*,f(ti,yp(ti)) - f(s,yp(s))lds

p
slyp) -z, - )] f(s,yp(s))dsﬂ +Mec + 8b < A .
0

Thus we can finally say that yp(’) € S)\ .

Next we will show that p > yp(') is continuous into CX (Ty . so
W
let g +p in T . We will prove that yq(') —»yp(-) in CX ()
’ w

For this purpose let 0 <p<qgs<b. For t<p,
ly (&) - ol =ly@) -yl =0 .
yq yp( Y Y
If p <t and since g +p , we can take g such that p £ q < ¢ and

(B) = (43 . et telt;t;, )] and a*c XA\(0} . We have:

xT* t - t
’L—l

= | (x*,y(q) + kzr (tk+l-tk)f(tk,yq(tk)) + (t—ti)f(ti,yq(ti)))

-1

- @,y + kzr(tkﬂ-tk)f(tk,yp(tk)) + et g, () |

* i-1 *
[ ,y@-y@EH| + kzr(tkﬂ-tk)“x ,f(tk,quk)) —f(tk,yp(tk)))l

Ly (E)) = ft.,y ()] .

+(E-t) + |(x*,f(t7, s 'Y g

Passing to the limit as q > p and exploiting the fact that f(-,*)

is weakly uniformly continuous we get that

(*l t) - t O
| (x yq( yp())|->

uniformly in ¢ € T . Hence we have shown that p - yp(') is continuous
from T into C, (T) . Set B = {y ()} . Then B 1is connected in
X y ~ Yp" per y
CX (1)
w
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Now note that yo(-) is an e-Euler polygon for (*) that is,

yo(-) € A . Therefore A n By #¢. So Awvu By is connected in CX (1)

w
and since this is true for all y(-) € S, we get that R, = u [AuB]
A A y
y{-)eS
is connected in CX (T) (see Dugundji [11].) Clearly SA < Rk . On the
w

other hand by what we proved earlier A4 ¢ SA and for all y(*) € SA'

B S. . Hence we deduce that £R
y A A

that RA =3

in

= SA . Therefore we can finally say

and so SA is connected in (€, (T) .

X

A w

Next let §,(¢) = {yt) :y-) € Sx} . Set q(t) = B(S,(8)) . Using
the fact that Bua‘t)) < diam(Sk(t)) and property (i) in the definition of

Sk we get that

lgt")y - q&)| < Mt -¢|

for ¢',f € T. This implies that ¢(-) is absolutely continuous and so

differentiable at all points ¢t e¢ T\N A(Nl) =0 . Let N2 be the

1
exceptional set of measure zero originating from hypothesis 3 of Theorems
2.1 and 2.2. Set N = Nl U N2 and fix t € T\N , € > 0 . We know that we
can find 6 > 0 such that

[wit,q(£)) - w(t,z)| <e where |q(t) - 2| < 8§
Also choose y >0 such that My < 8§ and € +y <b .

From hypothesis 3 we know that we can find r > 0 such that

B(f(Tt,rxL)) s w(t,BL)) + ¢

where L={x(s):x(-)eS>\,t38st+Y},T r=[t,t+r],0<z=<y.

t,
Observe that by definition SA is an equicontinuous, bounded family.
So we can apply Lemma 2.2 of [18] and get that
B(L) = sup{B(L(8)) : 8 ¢ [t,t+y]} = q(%)

for some £ e [t,t+y] . Then we have:

0 < B(L) - q(t) = q(E) - q(t) < M|E-t] < 6
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This, then, from the choice of & > 0 , implies that
lw(t,B(L) -wit,p@E))]| <e .
Next let O < r' < r . Then for any x(-) € S)\ we have that

t+r'! t+r'

x(t+r') = x(t) + [ (z(e) - fle,x(8)))ds + [ fls,x(e))de

t t

and so
t+r'
5, (t+r') < 5, (B) + (£, ") + { fie,5, (6))ds
where
t+r' .
Q, (&) = { | @) - fls,z@))ds s x(+) € 5,1 .

t

Note that sup lel < Ar' . Thus B(Qk(t,r') < diam Qx(tlr') < 2ar’

Il '
x EQ)\(t,r* )
and this then gives us that
t+r'
qt+r') < q(&) + 2xr' + 8| | fe,5, (s))ds
t
But recall that since f{:,-) is weakly continuous, we have

t+r!
{f(s,SA(s))ds c r' conv F@, %D

and so

t+r'
Bl [ f(s,S)\(s))ds)] SB(r' conv f(T, xL))
t 1

= r'B(conv f(Tt,rxL)) = r"B(f(TtlrxL))

Therefore we get that

q(t+r') < q(t) + 2xr' + r’B(f(Tt <IN

A

qt) + 2xr' + r'w(t,B8(L)) + r'e
S qlt) + 2xr' + 2r'e + r'w(t,q(t))

Thus
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"y -
gtr) 2 gl < 50me) + wlt,q(8)
and so
q{t) € 2(x+e) + w(t,q(t)) .
Letting € + 0 we get that
qE) < 2x + w(t,q(t)) .
Consider z(t) = w(t,3(¢)) + 21 and let 2,(') be its maximal
solution. Then from Theorem 1.4.1 of Lakshmikantham-Leela [16] we deduce
c
that q () < zx(t) for all ¢ € T . Note that zk(') —E, 0 as A+ 0.
Since by Lemma 2.2 of [18] we know that B(SX) = sup B(Sk(t)) < ﬂle]°° ,
teT
we get that 1lim B(S,) = mnlllel°° =0. But S,€6, forall A>0.
A0
So B(SO) < B(SA) = B(So) = llq_B(SA) =0= So is compact in CX M
A>0 w
It remains to show that So is connected in CX (T) . To see this
w
note that
5. = nS
] 1 1/n
and we already saw in an earlier part of the proof that each Sl/n is
connected in CX () . sSuppose So was not connected in CX () . Then
w
we can find nonempty, disjoint sets A , B closed in CX () such that
w
SO =AuB . Let U be open in CX (T) such that 4 ¢ U and
w
UnB=¢ . Because each Sl/n is connected we have that

S nU#¢ and Sl

Un \U # ¢

/m
which imply that

Sl/n nal#é¢,

aU being the boundary of U . Let Dl =S n 3V . Then

/m 1/n
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) < B(S

1/m ) >0

B(D

Invoking Theorem 3 of DeBlasi [7] we get that

npD 7 ¢
n2l i/n
and so
( nsS ) nal #¢
l ’
ne1 M7
a contradiction to the choice of U . Therefore SO is also connected in
CX (T) and this completes the proof.
W
Remarks.
(1) The above proof gives us also the existence of a weak solution
* = i =
for (*). Just note that SO n Sl/n and lim B(Sl/n) 0 . Then apply

nzl e
Theorem 3 of DeBlasi [7]. So we do not need to call upon Theorem 2.1 to
guarantee existence of solutions of (*).

(2) If X 1is reflexive, then hypothesis (3) in our theorem is
automatically satisfied since every bounded set is relatively weakly
compact. So we recover as a corollary to our theorem the result of
szufla [20].

(3) If instead of hypothesis (3) we have the following stronger one:
"B(f(TxA)) < kB(A) for Ac X bounded and 0 < b,k < 1"

then we get as a corollary Theorem 3 of Kubiaczyk [75], which was presented

there without a proof.
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