Correspondence

DEAR EDITOR,

In my article [1], the wave is assumed to be travelling in deep water, meaning that the depth h and wavelength λ are such that h/λ is large. If this restriction is abandoned, in the notation used in the article the velocity components of a water particle with mean position (\bar{x}, \bar{y}) are (Ramsay [2])

$$\dot{x} = an \frac{\cosh m (\bar{y} + h)}{\sinh mh} \sin (m\bar{x} - nt),$$

$$\dot{y} = -an \frac{\sinh m (\bar{y} + h)}{\cosh mh} \cos (m\bar{x} - nt).$$

At and below a wave crest, $\dot{y} = 0$, $\cos(m\bar{x} - nt) = 0$, $\sin(m\bar{x} - nt) = 1$, and $\dot{x} = an \frac{\cosh m(\bar{y} + h)}{\cos m(\bar{y} - h)}$.

$$x = an \frac{1}{\sinh mh}$$

From the surface to the depth h beneath a crest, the rate of forward transport of water volume (per unit length normal to the plane Oxy) is

$$\dot{V} = \int_{-h}^{0} \dot{x} \, d\bar{y} = \frac{an}{\sinh mh} \int_{-h}^{0} \cosh m(\bar{y} + h) \, d\bar{y}$$
$$= \frac{an}{\sinh mh} \left[\frac{1}{m} \sinh m(\bar{y} + h)\right]_{-h}^{0}$$
$$= \frac{an}{m}.$$

This is the same value as for deep water, which is not surprising because continuity of rate of transport of mass requires it.

Yours sincerely,

MAURICE N. BREARLEY

85 Dandarriga Drive, Clifton Springs, Victoria, Australia 3222

References

- 1. Maurice N. Brearley, About tsunamis, *Math. Gaz.* **89** (November 2005), pp. 437-440.
- 2. A.S. Ramsey, A treatise on hydromechanics, Part II, Bell (1960).

Articles in the July 2006 Gazette:	
The tercentenary of π ?	Ll. G Chambers
Viete, Descartes and the cubic equation	R. W. Nickalls
The arithmetic of cuckoldry in family trees	Roger Voles
On generalised Fibonaccian and Lucasian number	s J. Pedersen and P. Hilton
Counting zeros of generalised polynomials	G. Jameson
Magic hexagons – magic moments	John Baker and David King
Interlinked loops	Geoffrey Shephard
Facetting diagrams	Guy Inchbald