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1. Introduction. An algebra L = (A; v , A, *, + , 0, 1) of type (2,2,1,1,0,0) is
called a distributive double p-algebra whenever its reduct (A, v , A, 0, 1) is a distributive
(0, l)-lattice that, for any a e A, contains a greatest element a* such that a A a* = 0 and a
least element a+ for which a v a+ = 1.

According to [2], any distributive double p-algebra L can be extended to a
congruence permutable algebra K in such a way that every congruence on L has a unique
extension to K. Since distributive double p-algebras enjoy the congruence extension
property, see Katrinak [4], it follows that the congruence lattice Con(L) of any
distributive double p-algebra L is isomorphic to the congruence lattice of a distributive
double p-algebra K whose congruences permute.

In [1], Adams and Beazer demonstrated that the congruence permutability of K is
equivalent to the absence of 4-element chains in its poset P{K) of prime ideals. The
present note grew from an attempt to construct an extension K of a distributive double
p-algebra L with the unique congruence extension property whose maximal prime ideal
chains have more uniform lengths and, in particular, from the question about the
existence of extensions with no singleton maximal prime ideal chains. Such algebras are
exactly those with a core element k, that is, an element such that k* = 0 and k+ = 1.

The present note shows that such extensions do not always exist and describes those
algebras for which they do.

To formulate our main result, Theorem 1.1, we need the following notions.
For any distributive double p-algebra L, the set rp of all pairs (a, b) e L2 satisfying

a* = b* is a congruence of the p-algebra reduct (A; v , A, *,0,1), and the dually defined
relation i//+ is a congruence of (A; v , A , + , 0, 1). Clearly, the meet <t> = xj>* A xp+ is the
determination congruence <I> e Con(L). It will be shown that the equivalence V = i/>* v
T//+ is a member of Con(L), namely the least congruence 0 of L for which the quotient
L/Q is a Boolean algebra. Since (a*, a+) e W for every a e L, the congruence V is total
for any algebra whose core is nonvoid.

In Theorem 1.1 below, the condition (2) is a reformulation of (3) in terms of the
Priestley dual X of L; Priestley duality will be briefly reviewed in the second section and
used throughout the paper.

THEOREM 1.1. Let L be a distributive double p-algebra and let X be its Priestley dual.
Then the following properties are equivalent:

(1) L has an extension K with nonvoid core such that every congruence of L uniquely
extends to a congruence of K;

(2) X has a decomposition X = V()D V, UJV(Jf), where VJ,a Min(A')\Max(Ar) and
V{ 2 Max(Ar)\Min(Ar) are open and N{X) = Max(A') n Min(A');

(3) there exist lattice congruences V><>— V* and Vi — %l>+ sucn tnat Vo v V'I = V** v

tp+ = yV and ipi)AXpi = co,the least congruence of L.
Furthermore, if L satisfies any of these conditions, then K is congruence permutable.
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Let L be a regular double p-algebra, that is, an algebra from the variety R
determined by the identity equivalent to x A X+ ^y v y*. An algebra L is regular exactly
when all chains of its prime ideals have at most two elements or, equivalently, when every
congruence of L is regular, that is, fully determined by any of its classes, see Varlet [9].
Since the determination congruence <I> of any regular algebra is trivial, the choice of
ip(* = ip^ and Vi = *l>+ satisfies (3) of Theorem 1.1, and we immediately obtain the first
claim of the following result.

COROLLARY 1.2. Any regular double p-algebra L has an extension K with nonvoid
core such that every congruence of L uniquely extends to a congruence of K. Moreover, K
is a regular algebra.

In other words, in the regular case, all maximal prime ideal chains of K have two
elements and all congruences of K permute.

For any element x in a double /?-algebra, define jc(l(*+) = x and, for any integer « > 0,
JC(n+D(*+) = ^«(*+y+_ A v a r i e ty \ of distributive double p-algebras is of finite range
n >0 if it satisfies the identity x"

(*+) = x(n + >)(*+). it is well known that every nonregular
variety of a finite range n contains the variety S of double Stone algebras, that is, the
variety generated by the 4-element chain algebra.

Following a brief review of Priestley duality, we prove Theorem 1.1 and conclude
with some examples of double Stone algebras that do not satisfy the extendability
conditions of Theorem 1.1. This will show that every nonregular variety V of finite range
fails to satisfy a varietal analogue of Corollary 1.2.

2. Preliminaries. Let (A', x, <) be an ordered topological space and let Y c.X. We
write (Y] = {x e X | x ^y for some y eY} and say that Y is decreasing if (Y] = Y. Dually,
we set [Y) = {x e X | v ̂  x for some y eY} and say that Y is increasing if [Y) = Y. If
Max(A') and Min(A') are the respective sets of all maximal or minimal elements of
(A', r, <), we write

= Max(J0UMin(J0, Mid(*) = A'NExtPO and N(X) = Max(A') n Min(Jf).

For any YcX we set Max(Y) = [y)DMax(A'), Min(Y) = (Y] HMin(A') and
Ext(Y) = Max(Y) U Min(Y). For Y = {x}, we write Max(jt) instead of Max(Y), etc.

A compact ordered space (A', r, <) is called a Priestley space whenever it is totally
order disconnected, that is, such that for any x^y there is a clopen decreasing C c X with
y eC and x $ C. Any Priestley space has the following separation property (cf. also [5]):

(S) if Y, Z c X are closed and such that Y n (Z] = 0 then (Z] c D and Y n D = 0
for some clopen decreasing D a X.

The category P of all continuous order preserving maps between Priestley spaces is
tied to the category D of all (0, l)-homomorphisms of distributive (0, l)-lattices by
contravariant functors D:V—*D and P:D—»P whose composites D°P and P°D are
naturally equivalent to the identity functors of their respective domains, see Priestley [6],
[7]. This pair of functors constitutes the Priestley duality. In this duality, for any object D
of D, the Priestley space P(D) consists of the prime ideals of D, ordered by inclusion and
suitably topologized, while D(P)eD is the set of all clopen decreasing sets of the
Priestley space P. Furthermore, surjective P-morphisms represent one-to-one (0,1)-
homomorphisms, while each lattice congruence xp of D is represented by a closed
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subspace FcP(D) so that (a,b)e xp if and only if the clopen subsets A, B of P(D)
corresponding to a, b, respectively, satisfy A D F = B D F, see Priestley [8].

We also recall that, for every x eX e¥, the sets Max(x) and Min(*) are nonvoid.
In [8] it is shown that Priestley duals of distributive double p-algebras, called

dp-spaces here, are exactly the Priestley spaces (X, r, <) such that
(D) the set [D) is clopen for any clopen decreasing DcX, and (E] is clopen

whenever E e X is clopen and increasing.
Thus if A' = (X, T, s ) is a dp-space and if a clopen decreasing set A c X represents

a e D{X), then a* is represented by the clopen decreasing set X\[A) = A^Min^) ) , while
a+ corresponds to the clopen decreasing set (ATX/l] = (Max(A")Y<4]. Since the subsets
Max(A') and Min(A') of any dp-space X are closed, they represent lattice congruences on
L; it is easy to see that Min(A') represents xjj0 while Max(A') represents i/;,.

According to [8], a continuous order preserving mapping f:(X, r, <)—»(y, a, <)
between dp-spaces is the Priestley dual of a morphism of the corresponding distributive
double p-algebras if and only if

(P) /(Max(jc)) = Max(/(*)) and /(Min(x)) = Min(/(jc)) for every xeX.

An alternative description of dp-spaces will be useful.

LEMMA 2.1. The following are equivalent for any Priestley space (X, x, <):
(1) (X, r, ̂ ) is a dp-space; _
(2) Min(S) c Min(S) and Max(5) c Max(5) for every ScX;
(3) Min(S) = Min(S) and Max(5) = Max(S) for every 5 c l

Proof. Assume (1). To prove the first claim of (2), let 5 c X be arbitrary and x e 5;
we need only show that Min(jr) c Min(S).

If m e Min(*)\Min(S), then (m] = {m} is disjoint with the closed set Min(S), so that
there exists a clopen decreasing set C such that m e C and C D Min(S) = 0 . Since A" is a
dp-space, the set [C) is open and, clearly, x e [C). But then x e S implies the existence of
elements ceC and seS such that c < s , and hence Min(c) e Min(s). Since C is
decreasing, the nonvoid set Min(c) is contained in C and, consequently, C n Min(S) 3
Cfl Min(s) s Min(c) ¥=0, in contradiction to the choice of C. Since the proof of the
second part of (2) is dual, this demonstrates (2).

To prove that (2) implies (1), let A c X be clopen and decreasing. We must show
that 5 = X\A) is closed. First we note that

(Q) S = {xeX\Mm(x)nA=0},

because A is decreasing. The set 5 is decreasing, so that Min(s) c S for every s e S; but
then (Q) implies that Min(5)cA\4 . The set A\4 is closed and, by (2), Min(5)c
Min(S) c A\4. For any xeS, we then have Min(x) C\A =0, and hence xeS by (Q).
Therefore S = S as claimed. Together with a dual argument, this implies (1).

Obviously, (3) implies (2).
Since Min(A") is closed in any dp-space X, the set Min(S) = (S] D Min(A') is closed

and contains Min(S), so that Min(S) cMin(5) as well. Together with the first section of
the proof and its dual, this shows that (1) implies (3).

The following result of [2] will be needed.
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THEOREM 2.2, [2]. For every distributive double p-algebra L there exists a congruence
permutable algebra L' containing L such that every congruence of L extends uniquely to
L'. The Priestley dual g:X'^>X of the inclusion LcL' is the identity map and the
subposet Mid(A") of X' is an antichain.

From [3] we recall that congruences of any distributive double p-algebra L
correspond to those closed subsets Z of the Priestley dual X = P(L) that satisfy
Min(z) c Z and Max(z) c Z for every z e Z. Following Davey [3], we call any such Z a
closed c-set or simply a cc-set.

Thus, for instance, the cc-set Ext(A') = Max(A') U Min(A') represents the determina-
tion congruence O = I | ; , A I / ) + of L. In another instance, the cc-set N(X) = Max(A') n
Min(A')—the unique maximal cc-set which is an antichain—simultaneously represents
both ip* v rp+ and the finest congruence V such that the quotient L/ty is a Boolean
algebra. Therefore i/;* v \p+ = V as claimed in the introductory section.

Suppose that X = VJ, U V, U N(X) is a decomposition as described by clause (2) of
Theorem 1.1. Then F,= V,\J N(X) are closed for / = 0,1, Ftt => Min(X) and F, => Max(A-),
so that Fo represents a lattice congruence tp() < ip* and Fs represents a lattice congruence
ipi ^ i/>+. Moreover, Fo n F, = N(X) yields i/>(, v ip, = V = i/;* v i/>+, and t/>0 A ipt = to
because ftUF, = A". This shows that, in Theorem 1.1, (2) implies (3).

To verify the converse, let (3) of Theorem 1.1 hold, and let Fj c X be the closed set
that represents the congruence i/>, for / = 0,1. Then F(t 2 Min(A') and F, 3 Max(A')
because ipo^ ip* and ip\ ^ \p+. Furthermore, F() U F\ = X follows from xp() AI/I, = W, and
F{)C\ Ft = N(X) because i | i o v ^ = W. For / = 0,1, the sets K = Ar\Fl_, are open and,
together with N(X), form a decomposition X = V{) U V, U N(X) of X that obeys all
requirements of clause (3) in Theorem 1.1.

3. Proof of Theorem 1.1. To demonstrate that (1)=>(2) in Theorem 1.1, let
/ : Y—>X be the surjective dp-map dual to the inclusion homomorphism LcK. First we
show that f(y) e Mid(A-) and f~x{f(y)} = {y} for every y e M\d(Y).

If yeMid(Y) and f(y) = a eExt(X), then Ext(Y) and Ext(Y)U{y} are distinct
cc-sets in Y whose /-image is the cc-set Ext(A')cA', which is impossible. Therefore
a=f(y) eM\d(X). If f{y') = a, then y'eMid(Y) because / is a dp-map. But then
Ext(Y) U {y} and Ext(K) U {y1} are cc-sets mapped by/onto the cc-set Ext(A') U {a}, so
that y' =y. Since / is surjective, we may assume that, up to the respective partial orders
on these sets, Mid(JQ = Mid(Y) = M.

Let C c.Y be a clopen decreasing set representing a core element of K, so that
Min(Y)cC and Max{Y)cY\C. Denoting M{) = MHC and A/,=M\C, we have C =
A/,,UMin(y) and Y\C = M) UMax(y). Since / i s a continuous surjective dp-map that is
the identity on M, the sets /(C) = M() U Min(A") and f(Y\C) = M, U Max(A') are closed.
Hence K, = X\(M{) U Min(A')) contains Max(Ar)\Min(Ar), the set V(} = X\(M{ U Max(A'))
contains Min(Ar)\Max(A'), and V{) and K, are open. Moreover, VoC\Vt=0 and
X\(VU U V,) = Max(A') fl Min(A"). Therefore (2) holds.

(2)=>(1): Assume (2). If g: A" ->• X is the identity dp-map from Theorem 2.2, then
g~'(VI)) is open and decreasing, while g~'(V,) is open and increasing.

Having used Theorem 2.2 in an initial extension step, we now assume that Mid(A') is
an antichain, V() is open and decreasing, while V{ is open and increasing.
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We define Y as the disjoint union Y = (X\N(X)) U N(X) x 2, where elements of
X\N(X) are incomparable to those from N(X) x 2, the order on X\N(X) c Y coincides
with that on X, and (n,i)<(n',j) exactly when n = n', i = 0 and y = l. A mapping
f:Y^X denned by f(n, 0) = / (« , 1) = n for all n e N(X) and f(x) = x for all x e yW(A-)
thus preserves the order, and satisfies Max(/(_y)) =/(Max(_y)) and Min(/(_y)) =
f(M'\n(y)) for all y eY. Furthermore, once we define a topology of Y so that / is
continuous, then Z cY will be a cc-set if and only if Z =f~l(T) for some cc-set T c X.

To do this, recall that clopen sets that are increasing or decreasing form an open
subbase of any Priestley space X.

Set Dj = VjU N(X) x {/} for / = 0,1. The topology a on Y will have an open subbase

¥= {/~'(C) | C c. X is clopen increasing or decreasing} U {D{), D,}.

Observe that the sets D<>, D{ e if are complementary and clopen, Min(V) c. D{) and
Max(y)cDi. Once we show that Y is a dp-space, the set £><> will thus represent a
member of the core of D(Y).

It is clear that / : Y-* X is continuous.
Assume that z^y in Y. Since f:Y—>X collapses only pairs (n,0)<(n,\) with

n e N(X) and because X is totally order disconnected, there is a clopen decreasing set
f-\C)sy such that z<£/~'(C) whenever (z,y)± ((«, 1), (n, 0)) for some n e N(X). But
(«, 0) e D(, ^ (n, 1) for the clopen decreasing set Do e Sf; this shows that Y is totally order
disconnected.

To prove that D(, is compact, select any subbasic open cover SB c if of Do. Since
£>,,n D, = 0 , we may assume that £>, £ 58. Since there is nothing to prove when Dne 38,
we have 28 = {/"'(C) | Ce ^} for some system ^ of clopen sets that are increasing or
decreasing in A'. Since / is surjective, ^ is an open cover of the closed set /(£>,,) = X\V,.
But then / ( A O E U ^ ' f°r some finite (€' s ^ , and hence D,, is covered by the finite
subsystem {/"'(C) | Ce ^ '} of S8. Thus D,t is compact. A similar argument applies to Dt,
so that y = D() U D, is compact as well.

It remains_ to show that the Priestley space Y is a dp-space. Let S c Y be arbitrary.
Then /(Min(S)) = Min(/(5)) = Min(/(5)) because / has the dp-property and is a
continuous map of compact Hausdorff spaces; similarly, Min(/(5)) =/(Min(5)) =
/(Min(S)). Moreover, Min(/(5)) = Min(/(5)) because A" is a dp-space (see Lemma 2.1),
so that /(Min(5))=/(Min(5)). Thus if >>eMin(5), then f(y)=f(y') for some y' e
Min(5). But Min(y) = D n/"'(Min(A')) is closed, so that y' e Min(y) as well. Since / is
one-to-one on Min(y), it follows that y =y' e Min(S). Therefore Min(5) c Min(5) for
any S c Y. Together with Lemma 2.1 and a dual argument, this shows that Y is a
dp-space. Hence (1) follows from (2).

The dp-space Y constructed above contains no 4-element chain. From Adams and
Beazer [1] it follows that the extension K = D(Y) of L = D(X) is congruence permutable.

Since cc-sets of Y are in one-to-one correspondence to cc-sets of X, this completes
the proof of Theorem 1.1.

To verify the remainder of Corollary 1.2, it suffices to observe that, for any dp-space
X with Ext(A') = X, the dp-space Y satisfies Ext(y) = Y as well.

4. Examples. For the sake of brevity, any dp-space satisfying 1.1(2) will be called
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extendable.
In this section we construct examples of non-extendable dp-spaces representing

double Stone algebras, that is, members of the variety S generated by a 4-element chain.
The two claims below suggest how to proceed.

PROPOSITION 4.1. Any dp-space X satisfying Mid(A') D N(X) = 0 is extendable.

Proof. Since I is a Priestley space such that Max(A') is closed, for every
a e Mid(A") n Min(Ar) there exists a clopen decreasing set Yu with a e Ya and Ya C\
Max(A') = 0 . Since Mid(Ar) Pi Min(A') is closed and hence compact, for some finite set
/cMid(A')nMin(A') we have Mid(A') D Min(A') c Y = U {Ya \ a el}; the set Y is
clopen, decreasing and Y n Max(A') = 0 .

Furthermore, since both Y and Min(A') are closed, for every b eM\d(X)\Y there
exists a clopen increasing set Zh such that b eZh and Zh D (Y U Min(A')) = 0 . From the
compactness of Mid(A')\y follows the existence of a finite set J cM\d(X)\Y such that
Mid(X)\Y c.Z = U {Zh | b eJ}. Hence Z is a clopen increasing set disjoint with
yUMin(A').

Therefore V() = X\(Z U Max(A')) and V, = X\(Y UMin(A')) are open and satisfy
V() U Vi = X\N(X). The set V{) is decreasing and contains Min(Ar)\Max(A'), while V, is
increasing and contains Max(A')\Min(A'). From Mid(A') c Y U Z i t follows that Vo D V, =
0 , so that the condition (2) of Theorem 1.1 is satisfied.

As a consequence of Proposition 4.1, the set Mid(A') must be infinite for any
non-extendable dp-space X. Furthermore, because Min(Mid(A')) c Min(A')\Max(Ar),
from Lemma 2.1 it follows that N(X) must intersect the closure of Min(Ar)\Max(Ar) and,
dually, also the closure of Max(A')\Min(A'), in the same set. In addition, since the sets
AAMax(A') and A'\Min(Ar) are open in any dp-space X, the set Mid(A') of a
non-extendable dp-space intersects both Max(A')\Min(A') and Min(A')\Max(A').

Somewhat surprising is the fact that a non-extendable dp-space must satisfy yet
another requirement.

PROPOSITION 4.2. Any dp-space X with countable Min(A')\Max(Ar) or countable
Max(A')\Min(Ar) is extendable.

Proof. Let N be the set of natural numbers and let Min(A')\Max(A') = {a, | i e N}.
Arguing inductively, for each i e N we find a clopen decreasing set A-, with a, e A t and
A, fl Max(A') = 0 , and such that for every j eN with / s / either A, = A-t or A, n A/ = 0 .
Set Bi = [Ai)\Aj for each ieN. Since [At) is clopen, it follows that fl, is a clopen
increasing set, and that B, (~)Aj = 0 for all i,j e (U

Define Vo = \J {Ai \ieN} and V, = U {fl, | i e N}. The sets Vo and V, then satisfy (2)
of Theorem 1.1. The proof is dual when Max(X)\Min(A') is countable.

To design examples of non-extendable spaces, we first define an auxiliary Stone space
(5, a) which will serve as their initial building block. We proceed as follows.

Let / be any infinite set, and let 9 be an infinite family of infinite subsets of /. We say
that the family & is almost disjoint provided POP' is finite whenever P, P' eSP are
distinct.

For any infinite system & of infinite subsets of /, set Z = Z(0*) = U 9>, and
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where the union is disjoint. Let a be the family of all subsets V of S = S(SP) such that
(1) if cp e V, then the set P\V is finite, and
(2) if ceV, then

(a) the set {cp | P e 9>}\V is finite,
(b) the set l\(Z U V) is finite, and
(c) there is a finite §>' <z3> such that Z\\J <3>' c V.

It is routine to verify that 0 , 5 e a, and that the collection o is closed under finite
intersections and arbitrary unions. Hence o is the family of all open sets of a topological
space (5, a) in which the singleton {cp} compactifies P c / for each P e $P, and 5 is a
one-point compactification of 5\{c}; in particular, the topological space (5, a) is compact.
Next we aim to show that, if SP is an almost disjoint family, then any two distinct
members of (5, a) can be separated by clopen sets. This will prove that the (unordered)
space (5, a) is a Stone space, that is, the Priestley dual of a Boolean algebra.

First we note that / is a discrete subspace of (S, o): obviously, {i} e a for every / e 1,
and it is easy to verify that S\{i} satisfies (1) and (2).

Secondly, for any P e 9, let A c 5 be a set such that cp eAcPO {cp} and P\A is
finite. Clearly, A e a and S\A satisfies (2). To see that S\A satisfies also (1), we note that
Q e 9 and cQ e S\A imply Q * P; but then Q\(S\A) c g n P i s finite because the family
9> is almost disjoint. Hence S\A e o, as claimed.

Let s, t be distinct elements of 5. If s e I, then {s} is clopen and separates 5 from /; if
s = cQ for some Q e 9, then the clopen set Q U {s} separates 5 from any t eU {cp \ P¥=
Q} U {c}. This shows that (S, o) is totally (order) disconnected, and completes the proof
of the claim below.

LEMMA 4.3. The space (5, a) is a Stone space such that I cS is its discrete subspace, S
is a one-point compactification of S\{c} and, for any P e '3', the subspace P U {cp} is a
one-point compactification of P.

Write T = Z U {cp | P € &} U {c}, and define an ordered topological space Y as a
(disjoint) union

Y = ( 5 x { 0 , 2 } ) U ( r x { l } )

such that (5,/) < ( i ' , / ' ) if and only if s = s' and t < i ' . Thus the partial order of Y is a
disjoint union of 3-element chains {t} X- {0,1,2} with teT and 2-element chains
{/}x{0,2} withy eJ = l\Z.

Since 5 and T are compact, so is Y. A subset B of Y is clopen exactly when
Bi = {seS\(s,i)eB} is clopen in S for each ie {0,1,2}. Therefore (/X {0,2}) U
(Z x {1}) is discrete, and B c ( P U {cp}) x {;'} is clopen whenever cpeBt and P\Bt is
finite; it follows that Y is totally order disconnected. If D c. Y is clopen and decreasing,
then [D) = [D(, x {0}); since D() is clopen in 5, the set [£>) is clopen in Y. Together with a
dual observation, this shows that Y is a dp-space.

Select infinite subfamilies 2. and Sk of Sf> such that 2. U 0i = & and Si D 9t = 0 . Let 6
be an equivalence on Y whose nontrivial classes are all pairs {(cQ, 1), (cQ, 2)} with Q e SI,
all pairs {(cR, 0), (cR, 1)} with R e 9t, and the triple {(c, 0), (c, 1), (c, 2)}. Set X = Y/6,
and let / : Y^-X be the surjective mapping with Ker(/) = 6. Write f(cQ, 1) =f(cQ, 2) =
c? and/(ca , 0) = c,? for all Q e Si,f(cR,0) =f(cR, 1) = cR and f{cR, 2) = cR for all R e <3l,
f(c, 0) =f(c, 1) =/ (c , 2) = c, and /(*, i) = (5, /) for all other (s, i) e Y.

https://doi.org/10.1017/S0017089500009976 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009976


392 V. KOUBEK AND J. SICHLER

When equipped with the quotient order < and the quotient topology T inherited
from Y, the space X = X(I, St, Sk) = {X, x, <) is compact, and the mapping / : Y-* X is
continuous and order preserving. Since Max(y) and Min(y) are singletons for every
y e Y, and because/only collapses an element of Y with an extremal element comparable
to it, / has the dp-property, that is, f(Ma\(y)) = Max(/(_y)) and /(Min(y)) = Min(/(y))
for every y e Y.

Described less formally, (X, r, ^ ) is a disjoint union of 3-element chains {2} x
{0,1,2} with 2 e Z, of 2-element chains {c£, c£} with P e & and {/} x {0, 2} with j e l\Z,
and of a singleton chain {c}. All these chains are maximal. The subspace (/ X {0,2})U
(Zx{l}) is discrete, {c,?} compactifies Q x {0} and {c$} compactifies Qx{\,2} for
QeSL, while {c$} compactifies R x {0,1} and {c"} compactifies R x {2} for each R e 9i
and, finally, A' is a one-point compactification of X\{c}.

To show that X is totally order disconnected, for any b ^a in X, we must exhibit a
clopen decreasing set A^X such that a eA and fo $^4. If a = / ( ' , / ) for some 1 e / and
y e {0,1, 2}, then we choose the finite set A = (a]; when b = / ( / , ; ) , we select A = X\[b).

We may thus assume that a, b e C = {cf | P e @> and y" e {0, 2}} U {c}. Let a = c£ for
some P e ? . Then 6 =£c£ and we choose /4 = {P X {0,1, 2}) U {c£, c£}- Since /4 is also
increasing, its complement A' = X\A separates any a e C\{c^, c£} from any b e {co, c£}.
The remaining case is that of a — eft and b = C2: for P e 2. we choose v4 = (P x {0}) U
{co}, and for P e <3l we select A = (Px {0,1}) U {c£}.

Therefore A' is the Priestley dual of a distributive (0, l)-lattice and / is the Priestley
dual of a lattice (0, l)-homomorphism that preserves all existing pseudocomplements and
dual pseudocomplements.

If D c. X is clopen and decreasing, then /~'(D) is clopen and decreasing because / is
continuous and order preserving. Since Y is a dp-space, the set [ / ' ( / ) ) ) is clopen in Y. If
f(y)>deD, then f(y)>md for the minimal element m<,^d; the dp-property of /
implies that m(l =f(ny) for the minimal element ny <y of Y. Hence/"'([£>)) c [/"'(£>)),
and /" ' ( [£) ) = [/"'(£>)) follows because the reverse inclusion is trivial. Since X has the
quotient topology of Y, we conclude that [D)cX is clopen. Together with a dual
argument, this shows that X = X(I, 2., &t) is a dp-space representing a subalgebra of the
Priestley dual of Y. The partial order of A" is a disjoint union of chains of length at most
three, so that A" is a Priestley dual of a double Stone algebra.

This demonstrates the claim below.

LEMMA 4.4. Let I be an infinite set and & an infinite almost disjoint family of infinite
subsets of I. Then any decomposition 3P = 2.U Sft of $> into infinite subsystems 2. and 91
gives rise to a dp-space X = X(I, Si, 8ft.) dual to a double Stone algebra.

We are now ready to produce examples of non-extendable dp-spaces. These will be
of the form X = X(I,£L, $k) for some decomposition ^ = 3U9I of a suitable almost
disjoint system P on an infinite set /.

PROPOSITION 4.5. If a</3 are cardinals, a uncountable, then there exists a double
Stone algebra whose Priestley dual X is non-extendable and satisfies |Mid(A')| = a and
|Max(Jf)| = |Min(AT)| = /3.

Proof. Let K be a set with \K\ - a, and let / D K X K have cardinality j3. For any
k , l e K w r i t e Qk = { k } x K a n d R , = K x { l } . If 2 = { Q k | k e K } a n d 9l = { R , \ l e K ) ,
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then 0> = 2U 91 is an almost disjoint system on / and Z = K x K. We need to show that
W\e dp-space X = X(l, 21, 91) violates 1.1(2).

Suppose that Vo and K, are open sets such that V()^Min(X)\Max(X) = Min(X)\{c}
and V, 2 Max(A")\{c}. Since c^eV{) for every Re9i and because c'' compactifies
R x {1}, the set R,x {\}\V() is finite for every / e K. Similarly, the set Qk x {1}\V, is finite
for every k e K.

For any / e K, set K, = {k e K | (A:, /, 1) e K,}. Then /C\K, = {k e K | (A:, /, 1) $ V(l} is
finite because {c"'} compactifies the discrete subspace R, x {1}. Select any countably
infinite subset L of K. Then M = IJ {K\K, | / e L} is countable, and C\{Ki\leL} =
K\M =£0 follows from the fact that \K\ = a is uncountable. Select and fix V x {1} some
k ePi {K, | / e L). Then {A:} x L x {1} c v;, and, if VunV,= 0 , then the set Qk\V, a
{ i } x L x { l } is infinite, in contradiction to the fact that {c^*} c Vt compactifies the
discrete subspace Qk x {1}. Hence X fails to satisfy 1.1(2).

PROPOSITION 4.6. For any cardinal /3 > 2N' r/zere ej:wr5 a double Stone algebra whose
Priestley space X is non-extendable and such that |Mid(A")| = K,, and |Max(A')| =

Proof. Let N be the set of all positive integers. To construct a non-extendable
dp-space X = X(I, 3., §1), we begin with some infinite collection 2. of infinite pairwise
disjoint subsets of M, select a maximal almost disjoint system ^ D 3 o f subsets of M, and
set <3l = 9>\2.. Then 9i has at most 2N" elements. Set Z = N and let / 3 Z be a set of
cardinality /3. The dp-space X = X(I, 3., 91) then satisfies all cardinality requirements.

To show that X is non-extendable, suppose that open sets V0^M'm(X)\{c} and
V, 2 Max(A')\{c} form a decomposition of X\{c}. Set J = {/ e N | (/, 1) e V,}.

Assume first that RC\J is finite for every Re 91. Since c^eV, compactifies the
discrete subspace Q x {1}, the set Q X {1}\K| is finite and we may thus choose some
jQeQ such that {jQ,\)eVi for each Q e 21. The set R' = {jQ \ Q e 3.} is infinite,
R'nQ = {jQ} for every Q e 21, and R' HRcJHR is finite for each R e 91. Hence
&U {/?'} is an almost disjoint system, in contradiction to the maximality of 9>.

Therefore R DJ is infinite for some Re 91, that is, the set (R x {1}) n V, is infinite.
Since c^eVt) compactifies the discrete subspace R x {1}, the set /? x {1}\V;, must be
finite. But then (R x {1}) n VJ,n V, is an infinite set. This contradiction shows that X fails
to satisfy 1.1(2).

REMARK. Denoting A = Min(X)\Max(X), B = Mid(A') and C = Max(A')\Min(A'),
we can summarize the result of this section as follows. Any dp-space X with finite B, or
countable A or C is extendable. On the other hand, there are examples of non-extendable
spaces with arbitrarily large uncountable A, B and C, and an example in which B is
countable and A, C whose cardinality is at least that of the continuum. Even though this
covers all possible cases when the continuum hypothesis is assumed, we are unaware of
any non-extendable dp-space X with countable B = Mid(A"), other than that provided by
Proposition 4.6.
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