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Bounds for rotating Rayleigh–Bénard convection
at large Prandtl number
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Bounds are derived for rotating Rayleigh–Bénard convection with free slip boundaries
as a function of the Rayleigh, Taylor and Prandtl numbers Ra, Ta and Pr. At infinite

Pr and Ta > 130, the Nusselt number Nu obeys Nu � 7
36

(
4/π2)1/3 RaTa−1/3, whereas

the kinetic energy density Ekin obeys Ekin � (7/72π) (4/π)1/3 Ra2Ta−2/3 in the frame of
reference in which the total momentum is zero, and Ekin � (1/2π2)(Ra2/Ta)(Nu − 1).
These three bounds are derived from the momentum equation and the maximum principle
for temperature and are extended to general Pr. The extension to finite Pr is based
on the fact that the maximal velocity in rotating convection at infinite Pr is bound by
1.23RaTa−1/3.
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1. Introduction

The heat transport through a convecting fluid layer is of great interest to engineering,
astrophysics and geophysics. A crucial ingredient of convection in the planetary sciences
is the global rotation of the frame of reference. There are then three control parameters
if convection is modelled within the Boussinesq approximation: the Rayleigh number
Ra, which measures the vigour of the driving force, the Prandtl number Pr, which is
a combination of material constants and the Taylor number Ta, which compares the
Coriolis with the viscous force. In planetary application, Ta is a very large number,
Ra is sometimes poorly constrained by observations, while Pr is usually reasonably
well known as soon as we have an idea of the chemical composition of the convecting
fluid. Let us take convection in the Earth’s outer core as a guiding example. In this
application, Ta ≈ 1030, and for thermally driven convection, Pr ≈ 0.1. However, it could
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A. Tilgner

well be that the temperature gradient in the outer core is subadiabatic so that convection
can only be driven by density variations due to variations in chemical composition.
Compositional convection is described by the same equations as thermal convection with
the ion concentration replacing the temperature as variable in the equations. However, ions
diffuse much more slowly than heat so that compositional convection in the core would
be modelled by Pr ≈ 104 (Jones 2015). Similar parameter combinations pertain to salinity
driven convection in the oceans or compositional convection in stellar atmospheres. There
is therefore an interest in convection at large Ta and large Pr.

At the same time, the flows tend to be chaotic and turbulent, so that their direct numerical
simulation is impossible. An alternative approach is to derive upper bounds for the heat
or ion transport. There is by now some history of upper bounds on the Nusselt number
Nu which is the non-dimensional measure of transport, with an increasing reliance on
numerical support for computing improved bounds (Howard 1972; Busse 1979; Doering
& Constantin 1996; Kerswell 2001; Seis 2015; Wen et al. 2013, 2015; Tilgner 2017a;
Fantuzzi, Pershin & Wynn 2018). The key result is a bound of the form Nu � Ra1/2, which
is independent of the rotation rate. The different approaches to deriving this bound use
equations deduced from the Navier–Stokes equation, such as the energy budget, which
are independent of Ta even if the original equation of motion contained the Coriolis
term. Rotation rate dependent bounds on Nu could so far only be obtained starting from
a reduced set of equations (Grooms & Whitehead 2014) whose domain of validity and
whose accuracy as an approximation to the original Boussinesq equations remain to be
determined.

The situation is different at infinite Pr. In this limit, the momentum equation reduces
to a diagnostic equation and improved bounds are possible, even by purely analytical
means (Chan 1971; Constantin & Doering 1999; Doering & Constantin 2001; Plasting
& Ierley 2005; Doering, Otto & Reznikoff 2006; Ierley, Kerswell & Plasting 2006; Otto &
Seis 2011; Nobili & Otto 2017) and dependent on rotation rate (Constantin, Hallstrom
& Putkaradze 1999). Numerical approaches to finding optimal bounds (Vitanov 1998,
2003; Tilgner 2017a, 2019) struggle to improve these bounds because the computational
burden becomes too large for meaningful new results at asymptotic values of the control
parameters. From the point of view of these results, the infinite Prandtl number looks like
a singular limit for the bounds on Nu. It was only recently shown in the non-rotating case
and for no-slip boundary conditions that the bounds for infinite Pr can be prolonged to
derive improved bounds at large but finite Pr (Choffrut, Nobili & Otto 2016).

Astrophysical and geophysical applications motivate the computation of bounds on the
heat or ion transport at large Pr, and as a simple limiting system, at infinite Pr. The purpose
of the present paper is to investigate rotating convection with free-slip boundaries. The
reason for this choice is that these boundary conditions have previously received less
attention than no-slip boundaries (Whitehead & Doering 2012) and the fact that some
results can be computed analytically and in closed form. It is straightforward to extend the
calculations presented in this paper to no-slip boundaries. It will be shown that at infinite
Pr, it is possible to obtain by very elementary means rotation rate dependent bounds, and
that the rotation rate dependence can be extended smoothly to finite Pr.

This paper will also pay attention to the kinetic energy as a quantity of interest, in
addition to the heat transport. This is motivated by the fact that we may have some
information on flow velocities in otherwise inaccessible flows. For example, visual
observation of surface features on gaseous planets or stars, or the secular variations of the
geomagnetic field, provide constraints on the flow velocities in planets, stars or the Earth’s
core. Bounds involving the kinetic energy are thus of interest. This includes bounds in
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Bounds for rotating Rayleigh–Bénard convection

which an observable, such as the heat flow, is bounded in terms of the control parameters
and the kinetic energy, which is itself an observable or a result of the dynamics. Bounds
in this spirit were already derived for flows in periodic domains (Childress, Kerswell &
Gilbert 2001; Doering & Foias 2002; Rollin, Dubief & Doering 2011; Tilgner 2017b) or
flows around an obstacle (Tilgner 2021).

The general strategy of the derivation is to split the velocity field into a sum u + v of two
parts u and v, where v solves the momentum equation for infinite Pr. It is possible to find
bounds on the heat advected by v and the kinetic energy of v in terms of the amplitude of
the temperature fluctuations as a consequence of the momentum equation alone. Together
with the maximum principle for temperature, this leads to the bounds valid at infinite Pr
detailed in § 3. In addition, one can find bounds on the maximal magnitude of v and on the
dissipation in the field u which allow one to derive bounds on the heat transport and the
kinetic energy at any Pr, but which are expected to be strictest at large Pr. These bounds
are obtained in § 4 and discussed in § 5.

2. Basic equations

The non-dimensional equations of evolution for temperature T(r, t), velocity vtot(r, t) and
pressure divided by density ptot(r, t) given as functions of position r and time t can be put
in the form

1
Pr

[∂tvtot + (vtot · ∇)vtot] = −∇ptot + ∇2vtot + RaT ẑ −
√

Taẑ × vtot, (2.1)

∇ · vtot = 0, (2.2)

∂tT + vtot · ∇T = ∇2T, (2.3)

with the Rayleigh, Taylor and Prandtl numbers Ra, Ta and Pr. The unit vector in the
z-direction is denoted by ẑ. Gravity points along −ẑ and the rotation vector points in the
direction of ẑ. In a Cartesian system in which the x and y axes lie in the horizontal, the
velocity is required to fulfil the free-slip boundary conditions vtot,z = ∂zvtot,y = ∂zvtot,x =
0 at z = 0 and z = 1, whereas the temperature is fixed at those boundaries to T(z = 0) = 1
and T(z = 1) = 0. Periodic boundary conditions are assumed in the lateral directions with
arbitrary periodicity length.

It will be convenient to decompose temperature as T(r, t) = θ(r, t)+ 1 − z with θ(z =
0) = θ(z = 1) = 0. The equations of evolution then become

1
Pr

[∂tvtot + (vtot · ∇)vtot] = −∇ptot + ∇2vtot + Raθ ẑ −
√

Taẑ × vtot, (2.4)

∂tθ + vtot · ∇θ − vtot,z = ∇2θ. (2.5)

Two types of averages will be used: the time average of a function f (t) will be denoted
by an overline

f (t) = lim
τ→∞

1
τ

∫ τ

0
f (t) dt (2.6)

and the volume average over a periodicity volume V of a function g(r) by angular brackets

〈g(r)〉 = 1
V

∫
g(r) dV. (2.7)

The temperature T is restricted on the boundaries to 0 � T � 1 by the boundary conditions
and obeys the advection and diffusion equation (2.3) in the bulk. It follows from the
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A. Tilgner

maximum principle for parabolic equations that 0 � T � 1 everywhere provided the
initial conditions obeyed 0 � T � 1 (Evans 2010; Choffrut et al. 2016). On an attractor
or in a statistically stationary state reached from this type of initial condition, the
maximum principle for T thus requires |T − 1

2 | � 1
2 , or equivalently |θ | � 1

2 + |z − 1
2 |,

which integrates to

〈θ2〉 � 7
12
. (2.8)

Multiplication with θ followed by integration of (2.5) leads to

∂t〈1
2
θ2〉 = 〈vtot,zθ〉 − 〈|∇θ |2〉, (2.9)

and the product of vtot with (2.4) followed by integration and time averaging leads to the
energy budget

〈|∇vtot|2〉 = Ra(Nu − 1), (2.10)

with the Nusselt number Nu given by

Nu − 1 = 〈vtot,zθ〉 = 〈|∇θ |2〉, (2.11)

where the last equality follows from (2.9).
The velocity field will be decomposed into the sum vtot = v + u of two solenoidal fields

v and u, where v solves the momentum equation for infinite Pr

0 = −∇p∞ + ∇2v + Raθ ẑ −
√

Taẑ × v, (2.12)

and the remainder u solves

1
Pr
∂tu + 1

Pr
∂tv + 1

Pr
(vtot · ∇)vtot = −∇p0 + ∇2u −

√
Taẑ × u, (2.13)

so that the energy budget for u reads

1
Pr
∂t

〈
1
2
|u|2

〉
+ 1

Pr
〈u · ∂tv〉 + 1

Pr
〈u · [(u + v) · ∇] v〉 = −〈|∇u|2〉, (2.14)

with the notation |∇u|2 = ∑
i,j |∂jui|2.

One of the goals of the calculations below is to find bounds on the kinetic energy in
the flow. With free-slip boundaries, this is only possible if one specifies a particular frame
of reference. The plane layer is invariant under translation in horizontal directions and
the horizontal velocity of the boundaries does not appear in the boundary conditions for
free-slip boundaries. The equations of evolution together with free-slip boundaries are
therefore valid in any inertial frame of reference in which the boundaries have zero vertical
but arbitrary horizontal velocity. It is thus possible to find arbitrarily large kinetic energies
in the flow simply by observing the flow from a suitable frame of reference. We will select
by convention the inertial frame in which the total momentum is zero, or 〈u + v〉 = 0. The
vertical component of momentum is zero by virtue of the no-penetration conditions at the
boundaries, and the horizontal components become zero through the choice of the frame
of reference. The stress free boundaries exert no horizontal stress on the fluid layer, so that
total momentum stays zero in a given inertial frame if it was zero initially. The selection of
the frame of reference can thus be replaced by the requirement that the initial conditions
fulfil 〈u + v〉 = 0.
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Bounds for rotating Rayleigh–Bénard convection

The freedom in the choice of reference also applies to the subproblem of finding v. The
diagnostic equation (2.12) with free-slip boundaries does not have a unique solution since
an arbitrary uniform horizontal translation velocity can be added to any solution. We select
the unique solution with 〈v〉 = 0. It follows from 〈u + v〉 = 0 and 〈v〉 = 0 that 〈u〉 = 0.

Poincaré’s inequality states in a basic form for the boundary conditions under
consideration and a function f (r) that 〈|∇f |2〉 � η〈 f 2〉 where η is the smallest eigenvalue
of the Helmholtz equation −∇2g = ηg if the functions g and f obey the same boundary
conditions. Dirichlet boundaries at z = 0 and 1 imply η = π2. Neumann boundary
conditions at z = 0 and 1 for functions satisfying 〈f 〉 = 0 lead to η = min{π2, (2π/L)2}
where L = max{Lx, Ly} and Lx and Ly are the periodicity lengths in the x and y directions,
respectively. We first choose f to be uz + vz and find 〈|∇(uz + vz)|2〉 � π2〈(uz + vz)

2〉. If,
on the other hand, we select one of the horizontal components of u + v to be f , we find
that 〈|∇(ux + vx)|2〉 � min{π2, (2π/L)2}〈(ux + vx)

2〉 and similarly for the y component.
Adding the results for the three Cartesian coordinates yields

〈|∇(u + v)|2〉 � π2〈(uz + vz)
2〉 + min

{
π2,

(
2π

L

)2
}

〈(ux + vx)
2 + (uy + vy)

2〉

� min

{
π2,

(
2π

L

)2
}

〈|u + v|2〉. (2.15)

No-slip boundaries allow the L independent conclusion 〈|∇(u + v)|2〉 � π2〈|u + v|2〉.
Another useful tool will be the decomposition of v, valid for any solenoidal vector field

periodic in x and y, of the form (Schmitt & von Wahl 1992)

v(r, t) = ∇ × ∇ × φ(r, t)ẑ + ∇ × ψ(r, t)ẑ + vmf (z, t), (2.16)

in which φ and ψ are poloidal and toroidal scalars satisfying 〈φ〉 = 〈ψ〉 = 0, and vmf is
a mean flow field which depends spatially only on z and whose z-component is zero. If
we insert this decomposition into the diagnostic equation (2.12), take the dot product of
(2.12) with vmf and integrate the result over volume, we find 〈|∂zvmf |2〉 = 0 and hence
∂zvmf = 0. The condition 〈v〉 = 〈vmf 〉 = 0 then yields vmf = 0, so that the poloidal and
toroidal scalars suffice to fully determine v.

3. Infinite Prandtl number

This section will derive several properties of the solution v of the momentum equation
(2.12) for infinite Pr. The results are independent of whether u = 0 or not and can thus
be invoked in later sections on general Pr. The temperature advection equation (2.5) only
appears in as far as we require θ to be a solution of it for any velocity field satisfying the
no-penetration boundary conditions on the horizontal boundaries. This velocity field does
not have to be v.

Let us decompose v into poloidal and toroidal scalars φ and ψ as

v = ∇ × ∇ × φẑ + ∇ × ψ ẑ, (3.1)

so that vz = −Δ2φ and ẑ · ∇ × v = −Δ2ψ with Δ2 = ∂2
x + ∂2

y = ∇2 − ∂2
z . The

z-component of the curl and the z-component of the curl of the curl of (2.12) yield

∇2∇2Δ2φ −
√

Ta∂zΔ2ψ − RaΔ2θ = 0, (3.2)

∇2Δ2ψ +
√

Ta∂zΔ2φ = 0, (3.3)
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which can be combined to

DΔ2φ = Ra∇2Δ2θ, (3.4)

with the differential operator D = ∇2∇2∇2 + Ta∂2
z . The boundary conditions require

φ = ∂2
z φ = ∂zψ = θ = 0 on z = 0 and z = 1. It follows from (3.2) that ∂4

z φ = 0 on the
horizontal boundaries, too. Since θ is a solution of (2.5) and θ , vtot,z and vtot · ∇θ are all
zero on the horizontal boundaries, ∂2

z θ = 0 there as well.
This section will solve a series of variational problems in which the average of a function

〈Z〉 (either heat transport or some energy) is maximized subject to the constraints imposed
by the momentum equations (3.2), (3.3) and the maximum principle (2.8). This is done
by constructing the Lagrangian L with the help of the Lagrange multipliers μ1(r), μ2(r)
and λ:

L =
∫ {

Z − μ1(r)
[
∇2∇2Δ2φ −

√
Ta∂zΔ2ψ − RaΔ2θ

]
−μ2(r)

[
∇2Δ2ψ +

√
Ta∂zΔ2φ

]
− λθ2

}
dV. (3.5)

The variation δL becomes independent of the behaviour of the variations δθ , δψ , δφ
at the boundaries if μ1(r) and μ2(r) obey the same boundary conditions as φ and ψ ,
respectively. All integrations by parts are then possible to find:

δL = δ

∫
Z dV

−
∫ {(

∇2∇2Δ2μ1

)
δφ +

(√
Ta∂zΔ2μ1

)
δψ − (RaΔ2μ1) δθ

}
dV

−
∫ {(

∇2Δ2μ2

)
δψ −

(√
Ta∂zΔ2μ2

)
δφ
}

dV

− 2λ
∫
θδθ dV. (3.6)

The functional L is a symmetric quadratic form in the variables μ1, μ2, φ, ψ, θ , so that
the Euler–Lagrange equations are linear and lead to an eigenvalue problem or more
generally to linear homogeneous equations with homogeneous boundary conditions and
λ as parameter. The largest λ for which a non-trivial solution exists, λmax, provides us with
the inequality (see vol. 1, chap. 6, § 1 of Courant & Hilbert 1989)

〈Z〉 � λmax〈θ2〉, (3.7)

in which we may furthermore insert the upper bound obtained for 〈θ2〉 from the maximum
principle (2.8).

3.1. Upper bound on heat transport
We choose Z = vzθ = −θΔ2φ so that δ

∫
Z dV = − ∫ {Δ2θδφ +Δ2φδθ} dV . The

Euler–Lagrange equations resulting from the variations with respect to θ , ψ and φ are
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Bounds for rotating Rayleigh–Bénard convection

therefore, respectively

−Δ2φ + RaΔ2μ1 − 2λθ = 0, (3.8)
√

Ta∂zΔ2μ1 + ∇2Δ2μ2 = 0, (3.9)

−Δ2θ − ∇2∇2Δ2μ1 +
√

Ta∂zΔ2μ2 = 0. (3.10)

The last two equations combine to

DΔ2μ1 = −∇2Δ2θ. (3.11)

On the boundaries z = 0 and z = 1, we required μ1 = ∂2
z μ1 = ∂zμ2 = 0 and we already

know that φ = ∂2
z φ = ∂4

z φ = ∂zψ = θ = ∂2
z θ = 0. It follows from (3.10) that ∂4

z μ1 = 0
and from (3.11) that ∂6

z μ1 = 0, and applying ∂4
z to (3.8) leads to ∂4

z θ = 0. One can now
go in loops and take two additional derivatives of (3.4), (3.11) and again (3.8) to conclude
that all even derivatives of θ , φ and μ1 are zero at z = 0 and z = 1.

We next eliminate from (3.2), (3.3), (3.8), (3.9), (3.10) all spatially dependent variables
except one to obtain

λ

Ra
D∇2Δ2θ = −∇2∇2Δ2Δ2θ. (3.12)

The eigenfunction compatible with all boundary conditions is of the form

θ ∝ sin(nπz) exp(i(kxx + kyy)), n = 1, 2, 3 . . . . (3.13)

Upon insertion into (3.12) and after the substitutions k2 = k2
x + k2

y = n2π2ξ and τ =
Ta/n4π4 one finds that the eigenvalues have the form

λ

Ra
= 1

n2π2
(1 + ξ)ξ

(1 + ξ)3 + τ
. (3.14)

To find λ1, the largest of these eigenvalues, we may first optimize the fraction over ξ .
A necessary condition for a maximum is

(1 + ξ)3(1 − ξ)+ τ(1 + 2ξ) = 0. (3.15)

The largest root of this polynomial will obey ξ 
 1 for τ 
 1 so that asymptotically,
ξ3 = 2τ . Inserting this into the expression for λ/Ra shows that the largest λ is realized for
n = 1 so that asymptotically,

λ1 = 1
3

(
4
π2

)1/3

RaTa−1/3. (3.16)

This asymptotic expression for λ1 also serves as an upper bound for λ1 for Ta not too
small. Figure 1(a) plots the largest root of the polynomial in (3.15) as a function of τ . The
asymptotic expression ceases to be an upper bound for λ1 at Taylor numbers too small to
be of practical interest. The situation is similar for the variational problems that follow and
we simply agree to be interested in Ta � 130 only. With this restriction, the bound on the
heat advection is

〈vzθ〉 � 1
3

(
4
π2

)1/3

RaTa−1/3〈θ2〉

� 7
36

(
4
π2

)1/3

RaTa−1/3. (3.17)
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10–1 103101
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λ1 λ2

λ3 λ4

τ τ

(a) (b)

(c) (d)

Figure 1. The largest root of the polynomials in (3.15) (a), (3.29) (b), (3.34) (c) and (4.18) (d) as a function of
τ together with the asymptotic dependences (2τ)1/3 (a), (τ/2)1/3 (b), (τ/3)1/4 (c) and (2τ)1/3 (d) shown with
dashed lines.

We may note that we could have obtained the same result from a Fourier technique. If
we start from the outset with a mode decomposition of the form

θ =
∑

n,kx,ky

θ̂n,kx,ky sin(nπz) exp(i(kxx + kyy)), (3.18)

and similarly for φ with coefficients φ̂n,kx,ky and insert the sum into (3.4), we find that the
amplitudes are related by

φ̂n,kx,ky = Ra
n2π2 + k2

(n2π2 + k2)3 + Ta n2π2 θ̂n,kx,ky . (3.19)

The advective heat transport is then given by

〈vzθ〉 =
∑

n,kx,ky

1
2

k2(φ̂n,kx,ky θ̂
∗
n,kx,ky

+ φ̂∗
n,kx,ky

θ̂n,kx,ky)

=
∑

n,kx,ky

Ra
(n2π2 + k2)k2

(n2π2 + k2)3 + Ta n2π2
1
2
|θ̂n,kx,ky |2, (3.20)

with
∑

n,kx,ky
1
2 |θ̂n,kx,ky |2 = 7

12 . It now is enough to find the mode n, kx, ky which optimizes
〈vzθ〉 for the available 〈θ2〉 = 7/12. This optimization is algebraically identical with the
optimization of λ given by (3.14). The Fourier technique appears to be simpler than the
variational problem for the optimization of the heat transport, but the advantage is less
clear for the following problems, and the variational formulation promises to be more
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Bounds for rotating Rayleigh–Bénard convection

convenient for other boundary conditions and geometries. That is why we will stick to the
variational calculus. However, because of the connection with the mode decomposition,
we will not discuss in detail the boundary conditions for θ and φ that derive from the
Euler–Lagrange equations of the upcoming variational problems and simply assume an
eigenfunction with a sinusoidal dependence on z.

3.2. Bounds on the kinetic energy
Poloidal and toroidal fields are orthogonal in the sense of 〈(∇ × ∇ × φẑ) · (∇ × ψ ẑ)〉 = 0
so that

〈|v|2〉 = 〈|∇ × ∇ × φẑ|2〉 + 〈|∇ × ψ ẑ|2〉. (3.21)

We note that 〈a · [(ẑ × ∇)× b]〉 = 〈b · [(ẑ × ∇)× a]〉 for any two vector fields a(r) and
b(r) satisfying periodic boundary conditions in the horizontal directions and ∇ × ∇ ×
φẑ = (ẑ × ∇)× ∇φ. This helps to derive

δ

∫
|∇ × ∇ × φẑ|2 dV = −2

∫
∇ · {(ẑ × ∇)× [(ẑ × ∇)× ∇φ]

}
δφ dV

= 2
∫ (

∇2Δ2φ
)
δφ dV, (3.22)

while

δ

∫
|∇ × ψ ẑ|2 dV = −2

∫
Δ2ψδψ dV. (3.23)

The variations of the Lagrangian (3.5) for Z = |v|2 with respect to θ , ψ and φ yield,
respectively,

RaΔ2μ1 − 2λθ = 0, (3.24)

2Δ2ψ +
√

Ta∂zΔ2μ1 + ∇2Δ2μ2 = 0, (3.25)

2∇2Δ2φ − ∇2∇2Δ2μ1 +
√

Ta∂zΔ2μ2 = 0. (3.26)

We again eliminate from (3.2), (3.3), (3.24), (3.25), (3.26) all variables except θ to find

λ

Ra2Dθ = Δ2θ. (3.27)

Inserting the eigenfunction θ ∝ sin(nπz) exp(i(kxx + kyy)) and substituting k2 = k2
x +

k2
y = n2π2ξ and τ = Ta/n4π4 yields

λ

Ra2 = 1
n4π4

ξ

(1 + ξ)3 + τ
. (3.28)

A necessary condition for a maximum in ξ is that ξ satisfies

τ + (1 + ξ)2(1 − 2ξ) = 0, (3.29)

which for large ξ leads to the solution ξ3 = τ/2. The maximal eigenvalue λ2 is realized
for n = 1 which leads to the asymptotic expression

λ2 = 1
3π

(
4
π

)1/3

Ra2Ta−2/3, (3.30)
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A. Tilgner

which is also an upper bound for any Ta of interest (see figure 1b) so that

〈|v|2〉 � 1
3π

(
4
π

)1/3

Ra2Ta−2/3〈θ2〉

� 7
36π

(
4
π

)1/3

Ra2Ta−2/3. (3.31)

Another result arises if one bounds 〈|v|2〉 in terms of 〈|∇θ |2〉. To this end, one has to
replace in the Lagrangian (3.5) the last term −λθ2 by −λ|∇θ |2. Since δ

∫ |∇θ |2 dV =
−2
∫ ∇2θδθ dV , the only change to the Euler–Lagrange equations (3.24), (3.25), (3.26) is

that λθ needs to be replaced by −λ∇2θ , so that the calculation ends with

− λ

Ra2D∇2θ = Δ2θ (3.32)

in place of (3.27). The same ansatz for the eigenfunction and the same substitutions as
before now lead to

λ

Ra2 = 1
n6π6

ξ

(1 + ξ)[(1 + ξ)3 + τ ]
. (3.33)

The necessary condition for a maximum in ξ becomes

τ + (1 − 3ξ)(1 + ξ)3 = 0, (3.34)

which has a root for large ξ at ξ4 = τ/3, which leads after the selection n = 1 and with
figure 1(c) to

〈|v|2〉 � 1
π2

Ra2

Ta
〈|∇θ |2〉. (3.35)

The inequalities in the abstract result from (3.31) and (3.35) and Ekin = 〈|v|2〉/2.

3.3. Maximal velocity
This section determines the largest possible velocity in rotating convection at infinite Pr.
To this end, we compute the Green’s function vG(r, r′) from

√
Taẑ × vG = −∇p + ∇2vG + δ(r − r′)ẑ, ∇ · vG = 0, (3.36a,b)

so that, for any temperature distribution θ(r), the velocity is given by

v(r) =
∫

vG(r, r′)Raθ(r′) d3r′. (3.37)

Because of the maximum principle |θ | � 1, |v| is bounded by

|v(r)| � Ra
∫

|vG(r, r′)| d3r′. (3.38)

We now decompose vG into poloidal and toroidal scalars

vG = ∇ × ∇ × φGẑ + ∇ × ψGẑ, (3.39)
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Bounds for rotating Rayleigh–Bénard convection

and introduce the pair of Fourier transforms with respect to the horizontal coordinates

φG(r, r′) =
(

1
2π

)2 ∫ ∫
dkx dkyφ̂G(kx, ky, z, r′) exp(−ikxx) exp(−ikyy), (3.40)

φ̂G(kx, ky, z, r′) =
∫ ∫

dx dyφG(r, r′) exp(ikxx) exp(ikyy), (3.41)

and similarly for ψG and ψ̂G; φ̂G and ψ̂G have to obey

(∂2
z − k2)2φ̂G −

√
Ta∂zψ̂G = δ(z − z′), (3.42)

√
Ta∂zφ̂G + (∂2

z − k2)ψ̂G = 0, (3.43)

for a source placed at r′ = (0, 0, z′). The homogeneous equations, valid for z /= z′, are
solved by {

(∂2
z − k2)3 + Ta∂2

z

}
φ̂G = 0. (3.44)

In both regions, z < z′ and z > z′, φ̂G may be written as a linear combination

φ̂G =
6∑

j=1

cjeαjz (3.45)

with six coefficients cj and where the αj are the six roots of the following polynomial in α:

(α2 − k2)3 + Taα2 = 0. (3.46)

Because of (3.43), ψ̂G is given by

ψ̂G = −
√

Ta
6∑

j=1

cj
αj

α2
j − k2

eαjz. (3.47)

There are six coefficients cj for z < z′ and another six for z > z′ so that 12 conditions
are necessary to determine them all. These are the six boundary conditions φ̂G = ∂2

z φ̂G =
∂zψ̂G = 0 at z = 0 and z = 1 together with six conditions at z = z′. If we denote with
square brackets the jump of a variable at z = z′, (3.42) and (3.43) require that [φ̂G] =
[∂zφ̂G] = [∂2

z φ̂G] = [ψ̂G] = [∂zψ̂G] = 0 and [∂3
z φ̂G] = 1.

Because of the translational and rotational invariance of the system, φG and ψG can
only depend on z, z′, and the horizontal distance s =

√
(x − x′)2 + ( y − y)2 between the

points at r and r′. We therefore change the list of arguments to φG = φG(s, z, z′) and φ̂G =
φ̂G(k, z, z′) and note that for an axisymmetric function

∫ ∞

−∞

∫ ∞

−∞
dkx dky exp(−i(kxx + kyy))φ̂G = 2π

∫ ∞

0
kJ0(ks)φ̂G dk. (3.48)
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A. Tilgner

The response vG to a source located at (0, 0, z′) is then given in cylindrical coordinates
(s, ϕ, z) by

vGs = − 1
2π

∫ ∞

0
k2J1(ks)∂zφ̂G(k, z, z′) dk, (3.49)

vGϕ = 1
2π

∫ ∞

0
k2J1(ks)ψ̂G(k, z, z′) dk, (3.50)

vGz = 1
2π

∫ ∞

0
k3J0(ks)φ̂G(k, z, z′) dk, (3.51)

with the usual symbols J0 and J1 for Bessel functions of the first kind.
In order to prepare for (3.38) we first consider the height dependent suprema ss, sϕ , sz

computed as ⎛
⎝ss

sϕ
sz

⎞
⎠ (z) =

∫ ∞

0
ds2πs

∫ 1

0
dz′
⎛
⎝|vGs|

|vGϕ|
|vGz|

⎞
⎠ (s, z, z′). (3.52)

Several properties of ss, sϕ , sz are now deduced from numerical evaluations of vG. Figure 2
shows these functions for an exemplary Ta. All three functions are symmetric about z =
1/2; ss and sϕ are maximal at z = 0 while sz = 0 there. At the Ta of figure 2 and all other

inspected Ta, the function
√

s2
s + s2

ϕ + s2
z still is maximal at z = 0, so that

1
Ra

‖v‖∞ � ss(0)+ sϕ(0), (3.53)

where ‖v‖∞ denotes the supremum of |v| taken over the entire volume. In a next step,
ss(0) and sϕ(0) are computed for different Ta. The result is shown in figure 3. At large
Ta, ss(0) � sϕ(0) because ss(0) asymptotes to ss(0) = 9Ta−1/2, whereas sϕ(0) approaches
sϕ(0) = 1.23Ta−1/3. The exponents are familiar from vertical shear layers in rotating flows
(Stewartson 1957). As seen in the figure, these power laws are approached from below so
that they can be used as upper bounds. We conclude that

‖v‖∞ � 1.23RaTa−1/3. (3.54)

This bound is entirely obtained from numerical evaluation of the Green’s function and
is not supported by an analytical calculation in an asymptotic limit as the other results in
this paper. An analytical treatment of (3.52) is arduous because of the absolute values in
the integrand which are essential even at z = 0. This is due to an interesting point about the
structure of vG shown for an example in figure 4. The source term in (3.42) corresponds
to an upward pointing force. The upwelling driven by this force, in conjunction with the
boundaries, generates a converging flow below the source and a diverging flow above
it. The Coriolis force then gives rise to a cyclonic circulation below the source and an
anticyclonic swirl above it. These are indeed the main features observed in figure 4.
However, there is also an anticyclonic ring that develops at some distance from the source
near z = 0. This anticyclonic ring weakens as the source moves away from the boundary
and is clearly the result of the interaction with the boundary. This ring also causes a
change of sign in vGϕ on z = 0 as a function of s and makes the absolute value in (3.52)
indispensable. Figure 4 plots the product svG,ϕ rather than vG,ϕ alone to clearly display
the change of sign.
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Bounds for rotating Rayleigh–Bénard convection
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Figure 2. Values of ss (dot dashed), sϕ (dotted) and sz (dashed) as functions of height z for Ta = 106.

The solid line shows
√

s2
s + s2
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Figure 3. Values of sϕ(0) (circles) and ss(0) (squares) together with the functions 1.23Ta−1/3 (solid) and
9Ta−1/2 (dashed).

4. General Prandtl number

4.1. The additional constraint
The previous section derived bounds on the heat advection and the kinetic energy of the
field v defined by (2.12). These are simultaneously bounds on Nusselt number and total
kinetic energy for convection at infinite Pr. At finite Pr, the velocity field is v + u. A bound
on u is provided by the time average of (2.14)

〈|∇u|2〉 = − 1
Pr

〈u · ∂tv〉 + 1
Pr

〈v · [(u + v) · ∇] u〉, (4.1)
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Figure 4. Contour plot of the circulation svG,ϕ (a) and the streamlines of the meridional part of vG,
(vG,s, 0, vG,z) (b) in a vertical plane for a source located at height z = 0.1 on the axis s = 0 for Ta = 106.
Dashed contour lines indicate anticyclonic circulation.

where 〈u · [(u + v) · ∇]v〉 = −〈v · [(u + v) · ∇]u〉 was used. One readily bounds the last
term from

|〈v · [(u + v) · ∇] u〉| �
〈√∑

ij

v2
i (uj + vj)2

√∑
ij

(∂jui)2

〉

� ‖v‖∞
〈√

|u + v|2
√

|∇u|2
〉

� ‖v‖∞
√

〈|u + v|2〉
√

〈|∇u|2〉. (4.2)

The term with the time derivative on the other hand gives rise to another variational
problem; ∂tv has a decomposition in poloidal and toroidal scalars φ̃ and ψ̃ with ∂tv = ∇ ×
∇ × φ̃ẑ + ∇ × ψ̃ ẑ, φ̃ = ∂tφ, ψ̃ = ∂tψ and φ and ψ are the scalars for the decomposition
of v itself; φ̃ and ψ̃ obey the same boundary conditions as φ and ψ . The relation

〈u · ∂tv〉 = 〈(∇ × u) · (∇ × φ̃ẑ + ψ̃ ẑ)〉, (4.3)

holds if v obeys no-penetration boundary conditions. The transformation∫
u · (∇ × ∇ × φ̃ẑ + ∇ × ψ̃ ẑ) dV =

∫
(∇ × u) · (∇ × φ̃ẑ + ψ̃ ẑ) dV

+
∮

n̂ ·
⎡
⎣u ×

⎛
⎝ ∂yφ̃

−∂xφ̃
0

⎞
⎠
⎤
⎦ dA+

∮
n̂ ·
[
u×ψ̃ ẑ

]
dA,

(4.4)
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Bounds for rotating Rayleigh–Bénard convection

is independent of boundary conditions; n̂ is the outward pointing normal vector to the
surface bounding a periodicity volume. The contribution to the boundary integrals from
the vertical faces of the periodicity volume cancel because of periodicity; n̂ ∝ ẑ on the
remaining faces. The second boundary integral is zero for n̂ ∝ ẑ independently of the
behaviour of ψ̃ , and the first integral is zero because φ̃ = 0 on z = 0 and z = 1.

The Schwarz inequality

|〈u · ∂tv〉| �
√

〈|∇ × u|2〉
√

〈|∇ × φ̃ẑ|2〉 + 〈ψ̃2〉 (4.5)

motivates us to seek bounds for 〈|∇ × φ̃ẑ|2〉 and 〈ψ̃2〉. The time variation of φ and ψ
derives from the time dependence of θ . Let us rewrite (2.5) as Ra∂tθ = ∇ · q with q =
Ra∇θ − Ra(u + v)(T − 1

2) and take time derivatives of (3.2) and (3.3) to find

∇2∇2Δ2φ̃ −
√

Ta∂zΔ2ψ̃ = Δ2∇ · q, (4.6)

∇2Δ2ψ̃ +
√

Ta∂zΔ2φ̃ = 0. (4.7)

Before starting the next variational problem, we first note that the preceding equations
may alternatively be written as a direct time derivative of (2.12) as

0 = −∇p̃∞ + ∇2ṽ + ẑ(∇ · q)−
√

Taẑ × ṽ, (4.8)

with p̃∞ = ∂tp∞ and ṽ = ∂tv. Taking the scalar product of this equation with ṽ and
averaging over all space leads to

〈|∇ṽ|2〉 = 〈ṽz(∇ · q)〉 = −〈(∇ṽz) · q〉 �
√

〈|∇ṽz|2〉
√

〈|q|2〉 �
√

〈|∇ṽ|2〉
√

〈|q|2〉, (4.9)

and hence 〈|∇ṽ|2〉 � 〈|q|2〉. Both 〈|∇ × φ̃ẑ|2〉 and 〈ψ̃2〉 are bounded in terms of 〈|∇ṽ|2〉
because of the Poincaré inequality, which means that both quantities are smaller than some
finite factor multiplied by 〈|q|2〉. The existence of such finite factors being established,
we now proceed to determine Ta dependent values for these factors from a variational
problem.

The source term q obeys ∇ · q = 0 at z = 0 and z = 1, which from (4.6) implies ∂4
z φ̃ =

0 on those boundaries. Taking the second derivative of (2.5) also leads to ∂2
z ∇ · q = 0,

so that ∇ · q obeys the same boundary conditions as θ and we can set up a variational
problem similar to those of the previous sections for maximizing an objective Z subject to
(4.6), (4.7) and 〈|q|2〉 fixed to any arbitrary value. This leads to a Lagrangian analogous to
(3.5):

L =
∫ {

Z − μ1(r)
[
∇2∇2Δ2φ̃ −

√
Ta∂zΔ2ψ̃ −Δ2∇ · q

]
−μ2(r)

[
∇2Δ2ψ̃ +

√
Ta∂zΔ2φ̃

]
− λ|q|2

}
dV. (4.10)

The Euler–Lagrange equations again lead to an eigenvalue problem for λ and the largest
eigenvalue λmax provides us with the inequality 〈Z〉 � λmax〈|q|2〉.

To simplify the algebra, it is convenient to choose Z = a|∇ × φ̃ẑ|2 + bψ̃2 in which we
can set the coefficients a and b alternatively to 0 and 1. The variations with respect to q,
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ψ̃ , and φ̃, respectively yield,

∇Δ2μ1 + 2λq = 0, (4.11)

2bψ̃ −
√

Ta∂zΔ2μ1 − ∇2Δ2μ2 = 0, (4.12)

−2aΔ2φ̃ − ∇2∇2Δ2μ1 +
√

Ta∂zΔ2μ2 = 0, (4.13)

from which one deduces

λDDΔ2φ̃ = a∇2∇2∇2Δ2Δ2φ̃ + bTa∂2
z ∇2Δ2φ̃. (4.14)

Insertion of the sinusoidal eigenfunction and the substitutions k2 = k2
x + k2

y = n2π2ξ and
τ = Ta/n4π4 lead to

λ = 1
n4π4

(1 + ξ)[bτ + aξ(1 + ξ)2]
[(1 + ξ)3 + τ ]2 . (4.15)

Let us first select a = 0 and b = 1. The necessary condition for the maximizing ξ becomes

τ [τ − 5(1 + ξ)3] = 0, (4.16)

which is solved by ξ = (τ/5)1/3 − 1 without any asymptotic approximation and from
which we can deduce

〈ψ̃2〉 � 55/3

36π4/3 Ta−2/3〈|q|2〉. (4.17)

In the opposite case a = 1, b = 0, the necessary condition for the maximizing ξ

becomes
(1 + ξ)3(1 − 2ξ)+ τ(1 + 4ξ) = 0, (4.18)

which requires for ξ 
 1 that ξ3 = 2τ . The maximal eigenvalue λ4 is realized for n = 1
and is asymptotically

λ4 = 2
9

(
2
π4

)1/3

Ta−2/3, (4.19)

which also constitutes an upper bound for the largest root of (4.18) for reasonably large Ta
(see figure 1d) so that we arrive at

〈|∇ × φ̃ẑ|2〉 + 〈ψ̃2〉 �
(

55/3

36
+ 24/3

9

)
1

π4/3 Ta−2/3〈|q|2〉 � 0.15Ta−2/3〈|q|2〉. (4.20)

With the maximum principle, 〈|(u + v)(T − 1
2 )|2〉 � 1

4 〈|(u + v)|2〉, and the triangle
inequality in the form 〈|(a + b)|2〉 � 2〈|a|2〉 + 2〈|b|2〉, it follows from the definition of
q that

1
Ra2 〈|q|2〉 � 2〈|∇θ |2〉 + 1

2
〈|(u + v)|2〉, (4.21)

and we finally arrive at

|〈u · ∂tv〉| �
√

〈|∇u|2〉
√

0.15RaTa−1/3

(√
2〈|∇θ |2〉 +

√
1
2
〈|(u + v)|2〉

)
, (4.22)

where 〈|∇ × u|2〉 = 〈|∇u|2〉 was used.
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Bounds for rotating Rayleigh–Bénard convection

We can now return to (4.1) and insert (4.2), (3.54), (4.22) to find√
〈|∇u|2〉 � c1

√
〈|∇θ |2〉 + c2

√
〈|(u + v)|2〉,

c1 =
√

0.3
1

Pr
RaTa−1/3,

c2 = (
√

0.075 + 1.23)
1

Pr
RaTa−1/3.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.23)

With c0 = max{1, L/2} and the Poincaré inequality
√

〈|(u+v)|2〉�(1/π)c0

√
〈|∇(u+v)|2〉

from (2.15), and (2.10) and (2.11), this can be rewritten as√
〈|∇u|2〉 �

(
c1 + c2

π
c0Ra1/2

)√
〈|∇θ |2〉. (4.24)

4.2. Bound on the Nusselt number
Equations (2.11) and (2.8) lead to

〈|∇θ |2〉 = 〈vzθ〉 + 〈uzθ〉 � 〈vzθ〉 +
√

7
12

√
〈u2

z 〉, (4.25)

in which we may insert the Poincaré inequality
√

〈u2
z 〉 � 1/π

√
〈(∂zuz)2〉 and 〈(∂zuz)

2〉 �
1
4 〈|∇u|2〉 (Doering & Constantin 1996) together with (4.24) and (3.17) to find

〈|∇θ |2〉 − 1
2π

√
7
12

(
c1 + c2

π
c0Ra1/2

)√
〈|∇θ |2〉 � 7

36

(
4
π2

)1/3

RaTa−1/3. (4.26)

We finally deduce

Nu − 1 = 〈|∇θ |2〉 � 7
36

(
4
π2

)1/3

RaTa−1/3(
√

1 + A2 + A)2,

A = [0.088 + 0.077c0Ra1/2]Pr−1Ra1/2Ta−1/6.

⎫⎪⎬
⎪⎭ (4.27)

It is found that A → 0 for Pr → ∞ and (3.17) is recovered as a special case of (4.27).

4.3. Bounds on the velocity field
With the triangle and Poincaré inequalities,√

〈|(u + v)|2〉 �
√

〈|v|2〉 + 1
π

c0

√
〈|∇u|2〉, (4.28)

which becomes with (4.23), (2.11), (2.8) and (3.31)√
〈|(u + v)|2〉 − 1

π
c0

(
c1 + c2

π
c0Ra1/2

)( 7
12

)1/4

〈|(u + v)|2〉1/4

�
√

7
36

(
4
π

)1/6 1√
π

RaTa−1/3, (4.29)
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from which we can conclude that√
〈|(u + v)|2〉 �

√
7

6
41/6π−2/3RaTa−1/3(

√
1 + B2 + B)2,

B = c0[0.15 + 0.13c0Ra1/2]Pr−1Ra1/2Ta−1/6.

⎫⎪⎬
⎪⎭ (4.30)

Once again, this formula includes the result (3.31) for infinite Prandtl number convection
because B → 0 for Pr → ∞.

It is also possible to generalize (3.35). Start again from (4.28) and substitute (4.24) and
(3.35) to obtain

√
〈|(u + v)|2〉 �

{
1 + c0[0.55 + 0.48c0Ra1/2]

Ta1/6

Pr

}
RaTa−1/2

π

√
〈|∇θ |2〉. (4.31)

5. Discussion

The main results of this paper are the bounds for Nu and the kinetic energy at infinite Pr in
(3.17), (3.31), (3.35) together with the pointwise bound on the magnitude of the velocity
at infinite Pr in (3.54). The first three bounds are extended to finite Pr in (4.27), (4.30),
(4.31).

The bound for Nu in (4.27) is valid as long as Ta > 130, which was necessary for
the estimation of the largest root of the polynomial in (3.15). This bound reduces to a
simpler expression for infinite Prandtl number already given in (3.17). The critical Rayleigh
number for the onset of convection, Racrit, is proportional to Ta2/3 (Chandrasekhar
1961). Ignoring numerical prefactors, the bound (3.17) may be rewritten as Nu − 1 �
Ra1/2(Ra/Racrit)

1/2. This may be compared with the bound derived in Constantin et al.
(1999) which is apart from a prefactor Nu − 1 � Ra1/2(Ra/Racrit)

3/2. Both of these
bounds are inferior to the uniformly valid Nu − 1 � Ra1/2 as soon as Ra > Racrit. For
Ra < Racrit, the result in Constantin et al. (1999) is the sharper bound, which is not
surprising since the bound (3.17) was derived without explicit reference to the temperature
equation. However, the bound (3.17) has the merit to be generalizable to finite Pr in (4.27).

The bounds for general Pr and free-slip boundaries depend on the periodicity length and
diverge if this length tends to infinity. However, if one wants to model a geometry similar
to a deep spherical shell, such as the Earth’s outer core, the vertical extent is of the same
order of magnitude as the lateral periodicity length and the dependence on the periodicity
length is not a major concern.

As soon as a bound on Nu is available, the Poincaré inequality yields a bound at
least on the poloidal kinetic energy through a Poincaré inequality. Previous numerical
optimization (Tilgner 2017a) obtained a better prefactor but not better exponents of
the control parameters than obtained from the Poincaré inequality, neither at infinite
nor at finite Pr. The bound derived in the present paper is a novelty in this respect.
Straightforward application of the Poincaré inequality to either (3.17) or the bound from
Constantin et al. (1999) leads to 〈|v|2〉 � Ra2Ta−1/3 or 〈|v|2〉 � Ra3/Ta, both of which
are inferior to (3.31) for Ra > Racrit. In the same manner, inequality (3.35), which is the
reduction of (4.31) to infinite Pr, says that 〈|v|2〉 � (Nu − 1)Ra2/Ta, which is better than
the result from the Poincaré inequality for Ra < Ta.

However, the bounds on neither Nu nor 〈|(u + v)|2〉 reproduce the fact observed in both
experiments and simulations that Nu − 1 and 〈|(u + v)|2〉 approach zero at Ra = Racrit.
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The exponents in both bounds can be obtained by simply inserting (3.54) into 〈vzθ〉 �
‖v‖∞ and 〈|v|2〉 � ‖v‖2∞.

The complexity of the calculation is reduced in this paper by solving two problems
sequentially. In a first step, the constraints imposed by the momentum equation and the
maximum principle are used at infinite Pr. No use of the temperature equation is made.
It is then simple to obtain in a second step rotation dependent bounds at arbitrary Pr
by including the constraint (4.24). A more comprehensive approach would be to solve
an optimization problem which simultaneously includes the momentum equation, the
temperature equation, and the constraint (4.24). This set of constraints guarantees tighter
bounds for Nu at infinite Pr and presumably also improves the bounds at general Pr.
However, this more involved problem will likely need a numerical optimization for its
solution and is left for future work.

Inequalities like (3.35) or (4.31) may look like weak statements from the mathematical
point of view because they relate Nu to both the control parameters and the kinetic energy,
which is itself a result of the dynamics. However, these relations are more immediately
applicable to geophysical and astrophysical situations than the other bounds, because the
Rayleigh number is frequently impossible to determine from observations. To motivate the
derivation of relations of this type and to keep the discussion simple, let us look at how
the form for infinite Prandtl number may become useful and use dimensional variables. If
the convecting fluid has viscosity ν, thermal diffusivity κ , density ρ, heat capacity cp and
expansion coefficient α, its velocity V must be related to the non-dimensional velocity v
by V = vκ/d in order to obtain (2.4), where d is the depth of the layer. If the heat flux
through the layer is Q and the temperature difference across the layer is �T , the rotation
rate of the frame of reference is Ω and the gravitational acceleration is g, the control
parameters in (2.4) are given by

Ra = gα�Td3

κν
, Pr = ν

κ
, Ta = 4Ω2d4

ν2 , (5.1a–c)

and

Nu = Qd
κρcp�T

. (5.2)

Assuming Nu − 1 ≈ Nu, (3.35) can be rearranged into

�T �
(

2πΩ

gα

)2 κρcp

Qd
〈|V |2〉. (5.3)

Let us take convection in the Earth’s core as an example and pretend that the above relation
is applicable to a spherical shell in the presence of a magnetic field. We ignore these
features for now because the relevant point to be made about this relation does not concern
specific values of prefactors or exponents, but depends on which quantities are well
known and which are not. The rotation rate, the depth of the layer, and the gravitational
acceleration are well known, and there are reasonable estimates of the material properties.
Temporal variations of the geomagnetic field provide us with some information about
〈|V |2〉, and the heat flux through the Earth’s surface constrains Q. On the other hand, �T
is essentially unknown. A relation of the form of (4.31) thus allows us to put a constraint
on a quantity impossible to determine otherwise.

Another deduction from (4.31) is a bound on a characteristic length � of the flow defined
as �2 = 〈|(u + v)|2〉/〈|∇(u + v)|2〉. It follows from (4.31) and (2.10), together with the
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Figure 5. Value of 〈|v|2〉Ta Ra−2(Nu − 1)−1 as a function of 〈|v|2〉Ta−1/2 for Pr = 7 (red symbols) and Pr =
0.7 (blue symbols). The symbol shape stands for Ta = 104 (diamonds), 106 (squares), 108 (triangles) and 1010

(stars). The dashed horizontal line indicates 1/π2.

assumption Ra1/2 
 1, that

� � 1
π

(
Ra
Ta

)1/2
(

1 + 0.48c0
Ra1/2Ta1/6

Pr

)
. (5.4)

This inequality puts a formal limit on the structure of a condensate or a large eddy as
observed in numerical simulations (Guervilly, Hughes & Jones 2014).

The simplification brought about by the infinite Prandtl number is that the time
derivative and advection terms disappear from the momentum equation (2.4). At large Pr,
these terms are small compared with the viscous term. However, the two terms can also
be negligible in comparison with the Coriolis term. Many results in classical geophysical
fluid dynamics are based on an approach in which one postulates that the advection term
and possibly the time derivative term are small, one solves the thus linearized momentum
equation, and one finds good agreement for many large scale phenomena (Vallis 2017).
This is not a widespread approach in simulations of convection (but see Calkins, Julien
& Tobias 2017), but the inertial terms are found to be negligible with hindsight in some
simulations. An example are the simulations in Schmitz & Tilgner (2009) (and analogous
results for no-slip boundary conditions in Schmitz & Tilgner 2010). It was found in these
simulations that the flows are dominated by the Coriolis force if 〈|v|2〉Ta−1/2 < 1, in which
case the flow is organized into columnar structures, similar to those visualized in Stellmach
& Hansen (2004), which vary slowly in time and whose Rossby number is small. The time
derivative and advection terms in these flows are small even though the Prandtl number
is not large. These flows are good candidates to be modelled by the momentum equation
with these terms dropped. It therefore makes sense to compare the numerical results of
Schmitz & Tilgner (2009) not only with the bound (4.31), but also with the bound (3.35)
in the form 〈|v|2〉Ta � Ra2(Nu − 1)/π2 which is done in figure 5. As one can see, the
latter bound is within an order of magnitude of the actual results. It remains a challenge
for the future to prove ab initio that the inertial terms are negligible at the parameters of
this figure. The bound (4.31) lies several orders of magnitude above the numerical data.
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