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Abstract. In this paper, we are computing asymptotic formulas for a base of
solutions of the second-order difference equations in the double root case. Two methods
are presented.
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1. Introduction. Through most of this paper we are trying to find asymptotic
formulas of base solutions of a special recurrence equation. Even though our
motivation comes from the spectral theory of self-adjoint Jacobi operators (for the
definition see the last section), we think that the specialists working on difference
equations may find some results of this paper interesting.

We consider the system of difference equations

λn−1u(n − 1) + (qn − λ)u(n) + λnu(n + 1) = 0, n ≥ 2, λ ∈ �, (1)

with λn and qn defined by

λn := nα

(
1 +

K∑
i=1

ai

nαi
+ V (n)

)
, qn := −2nα

(
1 +

K∑
i=1

bi

nαi
+ W (n)

)
, (2)

where α ∈ (0, 1), ai ∈ �, bi ∈ � and αi are some positive real numbers, for i = 1, . . . , K .
The terms V (n) and W (n) are some real l1 sequences of the order O(n−1−α̂−δ), here δ is
a small positive real number and α̂ := min{α1, α}, l1 stands for the space of summable
sequences. We also assume that λn > 0 for all n ∈ �.

Let us rewrite equation (1) in a matrix form

−→u (n + 1) = B(n; λ)−→u (n), (3)

where

B(n; λ) :=
⎛⎝ 0 1

−λn−1

λn

λ − qn

λn

⎞⎠ and −→u (n) :=
(

u(n − 1)
u(n)

)
. (4)

The matrix B(n; λ) is called the transfer matrix and in our case it is equal to
( 0 1
−1 2

) +
R(n; λ), where ||R(n; λ)|| decreases to zero for all fixed λ’s. The matrix

( 0 1
−1 2

)
has only
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one eigenvalue μ = 1 and it is similar to a Jordan box
(1 1

0 1

)
. Using the terminology

from the previous papers (see, for example, [3, 6]) we will call this situation the Jordan
box or double root case. This situation appears always when lim qn

λn
= ±2 and it is quite

difficult to study because most of the methods (for example Levinson-type theorems)
do not apply. Recently, some efforts have been made to deal with this situation (see,
for example, [4, 9]). The methods used in those papers can be applied only in special
situations. In [4] the reader may find asymptotic analysis based on WKB method
of equation (1) with λn = n + a and qn = −2(n + a), a ∈ �. In [9] the author used the
Birkhoff–Adams theorem to find asymptotics of solutions of (1) with λn = cnn, qn = n,
cn is a real two-periodic sequence generated by c1 and c2. Nevertheless, for example, the
results from [9] do not extend to a class of recurrences (1) with λn = cnnα, qn = nα, for

α ∈ (0, 1) and
∣∣ c2

1+c2
2−1

c1c2

∣∣ = 2. This is impossible because the Birkhoff–Adams theorem
does not apply.

However, in recent papers [3, 5] two different approaches were proposed to
treat the Jordan box case in a larger class of equations. Here, we present the
method introduced by Janas in [3]. Simply, our results are the generalization of
what he has done in his paper. Moreover, we consider a new situation. In [3], the
recurrence systems (1) were considered with λn = nα(1 + a

n + D
n2α + V (n)

n ) and qn =
±2nα(1 + b

n + E
n2α + W (n)

n ), these sequences are like (nα) or (±2nα) plus some decreasing
to zero perturbation. We allow the situation when the perturbations grow to infinity (see
formulas (2)).

The critical case of Jordan box was also studied for λn = nα(1 + r(n)), qn =
−2nα(1 + s(n)) in [5] but under additional assumption on the perturbations: (nα/2r(n)),
(nα/2s(n)) ∈ l1. However, r(n) and s(n) are not necessary decaying in the power scale.
In [5] the authors used an ansatz approach to find asymptotic formulas for a base of
solutions of (1).

System (1) can be transformed into

u(n + 2) + p1(n)u(n + 1) + p2(n)u(n) = 0, n ∈ �, (5)

with coefficients p1(n) and p2(n) being the finite sums of fractional powers n−βi of
n plus some perturbations which are in l1. If βi ∈ �, then we are in a double root
case analysed by Birkhoff (see, for example, [1] p. 354). This type of recurrences with
βi ≥ 0 was studied by Kooman in [8]. In section 10 of his work Kooman described
behaviour in infinity of the quotients unv

−1
n of two linearly independent solutions of

(5). In our work we are going to prove more, namely, the asymptotic formulas of un

and vn.
We say that (1) is non-oscillatory if for every real solution (u(n))n∈� there exists

N0 such that u(n)u(n + 1) > 0 for all n ≥ N0, otherwise (1) is oscillatory. Depending
on the case whether equation (1) is non-oscillatory or oscillatory we use two different
approaches. In the first case, we proceed like Kelley did in [6]. In the second case, we
use an ansatz approach given in [5].

The order of this work is as follows: In Section 2 the basic facts and
definitions are given. Sections 3 and 4 contain the detailed analysis of the case
when (1) is non-oscillatory or oscillatory, respectively, and asymptotic formulas of
solutions of (1) are given. In Section 5, the reader finds a brief sketch of some
applications of our main results (Theorems 3 and 4) in the spectral theory of Jacobi
operators.
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2. Preparation. If we define

r(n) :=
K∑

j=1

aj

nαj
+ V (n) and s(n) :=

K∑
j=1

bj

nαj
+ W (n),

then (2) reads as λn = nα(1 + r(n)) and qn = −2nα(1 + s(n)). Throughout the paper, we
will use the following notations: Let i0 ∈ {0, . . . , K − 1} be such that αi0+1 > α. If for
all i = 1, . . . , K, αi ≤ α, then we set i0 := K .

Let

r′(n) :=
i0∑

j=1

aj

nαj
, s′(n) :=

i0∑
j=1

bj

nαj
,

and

r′′(n) := r(n) − r′(n), s′′(n) := s(n) − s′(n).

If in the above formulas i0 = 0, then r′(n) = s′(n) := 0.
In what follows we assume that the numbers α and αi in (2) satisfy

(i) α ∈
(

1
2
,

2
3

)
, (6)

(ii)
α

2
≤ α1 < α2 < · · · < αK , (7)

(iii) α̂ − αi0+1 < −α

2
, (8)

here as before α̂ := min{α1, α}. The method presented in this paper works for all α ∈
(0, 1) and αi > 0 (i = 1, . . . , K) but to avoid tedious calculations we restrict ourselves
to the case when (6), (7) and (8) are fulfilled. This restriction is only technical. For
α ≤ 1

2 (or α ≥ 2
3 ) and α1 ≤ 1

4 we would have to deal with more elements in the Taylor
expansion of

√−β(n) (see expression (15)). Most calculations which are presented in
this work are based on the Taylor expansion. We will use it several times without
recalling it.

By Lemma 1 in [3] we know that (1) is non-oscillatory if and only if

λn+1 + λn + qn − λ ≤ 0, n > N0, (9)

for some N0 large enough. In our case, for large n, we have

λn+1 + λn + qn − λ = (n + 1)α
(

1 +
K∑

i=1

ai

(n + 1)αi

)

+nα

(
1 +

K∑
i=1

ai

nαi

)
− 2nα

(
1 +

K∑
i=1

bi

nαi

)
− λ

= nα

(
2(a1 − b1)

nα1
+ · · · + 2(ai0 − bi0 )

nαi0
− λ

nα

)
+nα

(
2(ai0+1 − bi0+1)

nαi0+1
+ · · · + 2(aK − bK )

nαK

)
+ o(1). (10)
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Using assumptions on αi0+1 we can see that the second term in (10) goes to zero if n
goes to infinity. We conclude now that (9) follows from

nα

(
2(a1 − b1)

nα1
+ · · · + 2(ai0 − bi0 )

nαi0

)
− λ < 0, n ≥ N0, (11)

here N0 = N0(λ). If we define

ρ :=
⎧⎨⎩

2(a1 − b1) for α1 < α,

2(a1 − b1) − λ for α1 = α,

−λ for α1 > α,

(12)

then for α1 < α (11) is valid if ρ < 0 and λ belongs to any compact interval of the real
line. For α1 = α condition (11) is true if λ is a real number greater then 2(a1 − b1). In
the last case (α1 > α) all positive real λ’s fulfill (11).

To apply Kelley’s method we need to transform our equation (1) into a more
suitable form. Dividing (1) by λn and making the change of variable

w(n) := u(n)
n−1∏
k=1

2λk

λ − qk
(13)

we obtain

w(n + 1) − 2w(n) + (1 + β(n))w(n − 1) = 0, (14)

where

1 + β(n) = 4λ2
n−1

(qn − λ)(qn−1 − λ)
. (15)

If we assume that (11) holds, then equation (1) is non-oscillatory which is of course
equivalent that (14) is non-oscillatory as well. From [2] we know that equation (14) is
non-oscillatory if and only if its every real non-trivial solution satisfies

lim
n→+∞

w(n + 1)
w(n)

= 1.

Which we can rewrite as

w(n + 1)
w(n)

= 1 + X(n), (16)

where X(n) tends to zero if n goes to infinity. Dividing (14) by w(n) and using (16) we
obtain

X(n) = (1 + β(n))
X(n − 1)

1 + X(n − 1)
− β(n). (17)

Because for n large enough |X(n − 1)| < 1, we may rewrite X(n−1)
1+X(n−1) as a sum of a

geometric sequence. After some calculations we can transform (17) into

X(n) − X(n − 1) + β(n) + X2(n − 1) + (β(n) + X2(n − 1))
+∞∑
k=1

(−X(n − 1))k = 0.

(18)
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Here, we recall some theorems and one lemma which the reader may find in [6]
and also in [3]. We will use those results in the next section.

LEMMA 1. Assume that f (n) is given by

f (n) =
n−1∏
s=1

(1 + β(s)),

where β(s) → 0, as s → +∞, is a sequence of real numbers. Let κ be the largest integer
such that

∑
s βκ (s) diverges. Define

h(n) =
κ∑

i=1

(−1)i−1

i
β i(n),

then

f (n) = F(n) exp

[
n−1∑
s=1

h(s)

]
,

where F(n) → F > 0 as n → +∞.

THEOREM 1. Assume that 1 + β(n) ≥ 0 for n > n0 and that v(n) and w(n) satisfy the
inequalities

v(n) ≤ (1 + β(n))v(n − 1)
1 + v(n − 1)

− β(n), n ≥ n0 + 1 (19)

w(n) ≥ (1 + β(n))w(n − 1)
1 + w(n − 1)

− β(n), n ≥ n0 + 1 (20)

w(n0) ≥ v(n0)

v(n) > −1, n ≥ n0.

If X(n0) ∈ [v(n0), w(n0)] and X(n) satisfies (17) for n ≥ n0 + 1,
then v(n) ≤ X(n) ≤ w(n), n ≥ n0.

THEOREM 2. Assume that 1 + β(n) ≥ 0, v(n) satisfies (19), w(n) satisfies (20), v(n) ≥
w(n), |v(n)| < 1 and |w(n)| < 1 for n ≥ n0. Then (17) has a solution X(n) such that
v(n) ≥ X(n) ≥ w(n) for n ≥ n0.

We will also need the following:

PROPOSITION 1. For λn and qn defined by (2) and (6)–(8) we have

n−1∏
i=1

λ − qi

2λi
= A(n) exp

[
n−1∑
i=1

(
s(i) − r(i) + λ

2iα

+1
2

(r2(i) − s2(i)) − λ

2iα
s(i) + 1

3
(s3(i) − r3(i))

)]
,

A(n) is a sequence convergent to some positive constant.

The proof of this proposition is based on the formula
∏

an = e
∑

ln an and
convergence of the series

∑
i st(i),

∑
i rt(i) for t ≥ 4.
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3. Asymptotics in the non-oscillatory case. In this section, we assume that
condition (9) is fulfilled. It means that λ belongs to the set (denoted by �−) of the
real numbers for which (11) is valid. It may happen that �− = ∅ or �− = �, it depends
on the sign of ρ (see (12)) and on the numbers αi.

In this section our aim is to find the formal solutions X±(n) of (17) modulo some
terms of the order O(n−1−α̂/2−δ), here δ is a small positive real number. To find those
solutions we assume that

X±(n) = ±
√

−β(n + 1) + γ (n + 1), (21)

where γ (n) is a sequence which tends to zero in infinity faster than
√−β(n). Our

assumption on the form of the solutions X±(n) is based on the considerations of Janas
in [3] (see also [6]). We do not want to repeat this reasoning because it is exactly the
same. The difference between these works and ours starts in formal calculations which
we present below, in shortest form of course.

Using the definitions of λn, qn and β(n) (see (2) and (15)) we may write

−β(n) = η(n) + ξ (n) − ζ1(n) − ζ2(n) + α

n
− ζ3(n) − 3λ2

4n2α
− ζ4(n) + n−α̂ε(1)(n),

(22)
here ε(1)(n) is some sequence which is in l1. The sequences in (22) are given as follows
by explicit formulas:

η(n) = 2(s′(n) − r′(n)) + λ

nα
, ξ (n) = 2(s′′(n) − r′′(n)), (23)

ζ1(n) = 3s2(n) − 4r(n)s(n) + r2(n),

ζ2(n) = 3
λ

nα
s(n) − 2

λ

nα
r(n) − 4s3(n) + 6r(n)s2(n) − 2r2(n)s(n),

ζ3(n) = 6
λ

nα
r(n)s(n) − λ

nα
r2(n) − 6

λ

nα
s2(n) + 5s4(n) − 8r(n)s3(n) + 3r2(n)s2(n),

ζ4(n) = 2a1(α1 − α) + b1(2α − α1)
n1+α1

+ αλ

n1+α
.

We may write −β(n) = η(n) (1 + Yn), where

Yn = η−1(n)
(

ξ (n) − ζ1(n) − ζ2(n) − 3λ2

4n2α
+ α

n
− ζ3(n) − ζ4(n)

)
+ ε(2)(n).

In rest of the paper, all the remainders which are in l1 will be denoted by ε(i)(n). Because
Yn is of the order O(nα̂−αi0+1 ) + O(nα̂−2α1 ) for large n, we can see that (Y 4

n ) is in l1 (see
(6), (7) and (8)). This observation implies√

−β(n) =
√

η(n)
(

1 + 1
2

Yn − 1
8

Y 2
n + 1

16
Y 3

n + ε(3)(n)
)

.

Computing all the necessary powers of Yn and multiplying
√

η(n) by the expression in
the brackets gives us

√
−β(n) =

√
η(n) +

6∑
i=1

ωi(n) + n−α̂/2ε(4)(n), (24)
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where

ω1(n) = ξ (n) − ζ1(n)
2(η(n))1/2

,

ω2(n) = −ζ2(n) − 3
4λ2n−2α

2(η(n)1/2
− (ξ (n) − ζ1(n))2

8(η(n))3/2
,

ω3(n) = αn−1

2(η(n))1/2
,

ω4(n) = −ζ3(n)
2(η(n))1/2

+ (ξ (n) − ζ1(n))ζ2(n)
4(η(n))3/2

+ 3λ2n−2α(ξ (n) − ζ1(n))
16(η(n))3/2

− αn−1(ξ (n) − ζ1(n))
4(η(n))3/2

+ (ξ (n) − ζ1(n))3

16(η(n))5/2
,

ω5(n) = α2n−2

8(η(n))3/2
, ω6(n) = − ζ4(n)

2(η(n))1/2
.

REMARK. By the definition of ωi(n) one can easily check that ωi(n) tends to zero
when n goes to infinity (for i = 1, . . . , 6). Because ω1(n) is of the order O(nα̂/2−αi0+1 ) +
O(nα̂/2−2α1 ) and decreases the most slowly we have

√−β(n) = √
η(n) + o(

√
η(n)).

If we apply (21), (24) and the assumptions (6)–(8) to equation (18) then we obtain

X±(n) − X±(n − 1) + β(n) + X2
±(n − 1)

−X±(n − 1)(β(n) + X2
±(n − 1)) + n−α̂/2ε(5)(n) = 0. (25)

Now we must investigate all the terms in this equation to cancel out the left-hand side
of it up to n−α̂/2ε(i)(n) terms. We will do this one by one. First we are going to examine
the difference X±(n) − X±(n − 1).

Using (21) and (24) we see that

X±(n) − X±(n − 1) = ±(
√

η(n + 1) −
√

η(n))

+
6∑

i=1

(�ωi)(n) + (�γ )(n) + n−α̂/2ε(6)(n). (26)

Here (�a)(n) := a(n + 1) − a(n) for any sequence (a(n))n∈�. Applying the formulas for
ωi(n) we obtain that (�ωi)(n) = n−α̂/2ε(7)(n) for i = 1, . . . , 6 (see Remark mentioned
earlier). One can easily check that√

η(n + 1) =
√

η(n)
(

1 + ϕ(n)
2η(n)

+ O(n−2)
)

, (27)

where

ϕ(n) = −
[

i0∑
i=1

2αi(bi − ai)
n1+αi

+ αλ

n1+α

]
. (28)

Expressions (26)–(28) allow to write

X±(n) − X±(n − 1) = ± ϕ(n)

2
√

η(n)
+ n−α̂/2ε(8)(n). (29)
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Again by (21) we see that

β(n) + X2
±(n − 1) = ±2

√
−β(n)γ (n) + γ 2(n), (30)

which implies

X±(n − 1)(β(n) + X2
±(n − 1)) = −2β(n)γ (n) ± 3

√
−β(n)γ 2(n) + γ 3(n). (31)

Combining the expressions (29)–(31) we can rewrite (25) as

±
[

ϕ(n)

2
√

η(n)
+ 2

√
−β(n)γ (n) + 3

√
−β(n)γ 2(n)

]

+ γ (n + 1) − γ (n) + γ 2(n) − 2β(n)γ (n) + γ 3(n) + n−α̂/2ε(9)(n) = 0. (32)

Now we will try to guess the form of the sequence (γ (n)) so that we could reduce
the left-hand side of (32) modulo n−α̂/2ε(9)(n). If we put

γ (n) = −ϕ(n)
4η(n)

+ δ(n),

with δ(n) = o( ϕ(n)
4η(n) ). Then (32) reads as

±2
√

η(n)δ(n) − 1
2
ϕ(n) − 2β(n)δ(n) + n−α̂/2ε(10)(n) = 0. (33)

Looking at the expression (33) it is obvious that if we define

δ(n) = ± ϕ(n)

4
√

η(n)
,

then we will achieve our goal which is to cancel out the left-hand side of (25) up to
n−α̂/2ε(i)(n), here again (ε(i)(n)) is a sequence from l1.

Now we present the asymptotic formulas of the solutions u±(n).

THEOREM 3. Let λn and qn be defined by (2) and (6)–(8). Assume that condition (11)
is fulfilled. Then equation (1) has two linearly independent solutions u−(n) and u+(n) with
the asymptotics given by

u±(n) = F±(n)n
α̂−2α

4 exp

[
±

n−1∑
k=1

f (k)

]
(1 + o(1)),

where F±(n) −→ F± > 0, as n −→ +∞, and f (k) is given in (41).

Proof. Define

v(n) :=
√

−β(n + 1) − ϕ(n + 1)
4η(n + 1)

+ A1

4(n + 1)1+α̂/2
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and put it into equation (17) instead of X(n). Repeating all the previous calculations
we get that

v(n) − (1 + β(n))
v(n − 1)

1 + v(n − 1)
+ β(n) (34)

reads as

(A1 − α̂
√−ρ)

√−ρ

2n1+α̂
+ n−α̂ε(11)(n). (35)

We used here
√

η(n) = √−ρn−α̂/2(1 + o(1)) and ϕ(n) = α̂ρn−1−α̂(1 + o(1)), ρ is given
by (12). Choosing A1 appropriately we are able to obtain, for large n,

(A1 − α̂
√−ρ)

√−ρ

2n1+α̂
+ n−α̂ε(11)(n) < 0,

it is possible because ε(11)(n) is of the order o(n−1).
Now let

w(n) :=
√

−β(n + 1) − ϕ(n + 1)
4η(n + 1)

+ A2

4(n + 1)1+α̂/2
.

Proceeding exactly like before, choosing appropriate A2, we are able to obtain

(A2 − α̂
√−ρ)

√−ρ

2n1+α̂
+ n−α̂ε(12)(n) > 0,

for n sufficiently large.
From these considerations we obtain two inequalities

v(n) − (1 + β(n))v(n − 1)
1 + v(n − 1)

+ β(n) ≤ 0 (36)

and

w(n) − (1 + β(n))w(n − 1)
1 + w(n − 1)

+ β(n) ≥ 0 (37)

which are valid for n large enough. Now applying Theorem 1 we get a solution X+(n)
of equation (17) such that∣∣∣∣X+(n) −

√
−β(n + 1) + ϕ(n + 1)

4η(n + 1)

∣∣∣∣ ≤ C1

n1+α̂/2
.

Similarly, applying Theorem 2 with

v(n) := −
√

−β(n + 1) − ϕ(n + 1)
4η(n + 1)

+ A3

4(n + 1)1+α̂/2

and

w(n) := −
√

−β(n + 1) − ϕ(n + 1)
4η(n + 1)

+ A4

4(n + 1)1+α̂/2
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we can find a solution X−(n) such that∣∣∣∣X−(n) +
√

−β(n + 1) + ϕ(n + 1)
4η(n + 1)

∣∣∣∣ ≤ C2

n1+α̂/2
.

Using the facts that √
−β(n + 1) =

√
−β(n) + ε(13)(n)

and

ϕ(n + 1)
4η(n + 1)

= − α̂

4n
+ ε(14)(n)

we have that

X±(n) = ±
√

−β(n) + α̂

4n
+ ε(15)(n) (38)

forms a pair of solutions of equation (17).
This is only a half way. We want to find asymptotic formulas of base vectors of a

space of solutions of (1). In order to do that we need to recall the definition of X(n)
(see (16)),

w(n + 1)
w(n)

= 1 + X(n).

Dividing both sides of this equality by w(n) gives us

w(n + 1) = (1 + X(n))w(n),

by induction we have

w(n) =
n−1∏
i=1

(1 + X(i)).

Applying Lemma 1 and replacing X(n) by X±(n) (given by (38)) we obtain two linearly
independent solutions (w±(n))n∈� of equation (14),

w±(n) = F1,±(n) exp

[
n−1∑
k=1

7∑
l=1

(−1)l−1

l
Xl

±(k)

]
,

here F1,±(n) are some real sequences tending to some positive constants. In the above
formula there are powers of X±(k) up to order 7 because

(
Xr

±(k)
)

k∈�
∈ l1 for r > 7.

Now using (13) we are able to find
{
(u−(n))+∞

n=1, (u+(n))+∞
n=1

}
– a base of solutions

of the recurrences (1), namely,

u±(n) = F1,±(n)
n−1∏
i=1

λ − qi

2λi
exp

[
n−1∑
k=1

7∑
l=1

(−1)l−1

l
Xl

±(k)

]
. (39)
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To write more explicit form of u±(n) we need to do some more calculations. Let us first
calculate the even powers of X±(n) in (39). From (38) and (24) we get that

X2
±(k) = η(k) + ω2

1(k) + 2
√

η(k)ω1(k)

+ 2
√

η(k)ω2(k) + 2
√

η(k)ω3(k) + 2ω1(k)ω3(k) + ε(16)(k),

X4
±(k) = η2(k) + 4η3/2(k)ω1(k) + 4η3/2(k)ω3(k) + ε(17)(k),

X6
±(k) = η3(k) + ε(18)(k).

Using the formulas for η(k) and ωi(k) (i = 1, 2, 3) we have

−1
2

X2
±(k) − 1

4
X4

±(k) − 1
6

X6
±(k)

= r(k) − s(k) − λ

kα
+ 1

2
((s′(k))2 − (r′(k))2) + s′(k)s′′(k) − r′(k)r′′(k)

+ λ

2kα
s′(k) − α

2k
− 1

3
((s′(k))3 − (r′(k))3) + ε(19)(k),

which along with Proposition 1 and the facts that

(r(k))2 = (r′(k))2 + 2r′(k)r′′(k) + ε(20)(k),

(s(k))2 = (s′(k))2 + 2s′(k)s′′(k) + ε(21)(k),

and

(r(k))3 = (r′(k))3 + ε(22)(k),

(s(k))3 = (s′(k))3 + ε(23)(k),

allow us to rewrite the formula (39) as

u±(n) = F2,±(n)n−α/2 exp

[
n−1∑
k=1

(
X±(k) + 1

3
X3

±(k) + 1
5

X5
±(k) + 1

7
X7

±(k)
)]

, (40)

with F2,±(n) −→ F2,± > 0, as n −→ +∞. F2,±(n) converge because they are of the
form e

∑n
1 ε(k), where ε(k) is a sequence from l1. The odd powers (1, 3, 5, 7) of X±(k) are

as follows:

X±(k) = ±(η1/2(k) + ω1(k) + ω2(k) + ω3(k) + ω4(k)) + α̂

4k
+ ε(24)(k),

X3
±(k) = ±(η3/2(k) + 3η(k)ω1(k) + 3η(k)ω2(k)

+ 3η(k)ω3(k) + 3η1/2(k)ω2
1(k)) + ε(25)(k),

X5
±(k) = ±(η5/2(k)5η2(k)ω1(k)) + ε(26)(k),

X7
±(k) = ±η7/2(k) + ε(27)(k).
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All the remainders ε(i)(n) are in l1 of course. When we put these expressions into (40)
we obtain the final form of u±(n). If we define

f (k) := A(k) + 1
2

A−1(k)B(k) − 1
2

A−1(k)C(k) + α

2k
A−1(k)

− 3λ2

8k2α
A−1(k) − 1

8
A−3(k)B2(k) − 1

2
A−1(k)D(k)

+ 1
4

A−3(k)B(k)C(k) + 1
16

A−5(k)B3(k) + 1
3

A3(k)

+ 1
2

A(k)B(k) − 1
2

A(k)C(k) + 1
8

A−1(k)B2(k)

+ 1
5

A5(k) + 1
2

A3(k)B(k) + 1
7

A7(k), (41)

where

A(k) :=
√

2(s′(k) − r′(k)) + λ

kα
, (42)

B(k) := 2(s′′(k) − r′′(k)) − 3s2(k) + 4r(k)s(k) − r2(k), (43)

C(k) := 3λ

kα
s(k) − 2λ

kα
r(k) − 4s3(k) + 6r(k)s2(k) − 2r2(k)s(k), (44)

D(k) := 6λ

kα
r(k)s(k) − λ

kα
r2(k) − 6λ

kα
s2(k) + 5s4(k) − 8r(k)s3(k) + 3r2(k)s2(k). (45)

The above formulas complete the proof. �
One can easily check that when (11) is valid, then for k large enough A(k), B(k),

C(k) and D(k) (see formulas (42)–(45)) are real and so is f (k). Moreover, if k is large
enough, then f (k) is positive. It can be seen from the fact that (11) implies A(k) > 0, for
large k, and the other terms in formula (41) tend to zero faster than A(k). For instance,
1
2 A−1(k)B(k) is of the order O(kα̂/2−αi0+1 ) + O(k−3α̂/2) which is smaller (from (8)) than
the order of A(k).

Formula (41) looks complicated but in special cases it reduces to a much simpler
one. For example, let us consider the case when K = 2 (see (2)). Assume condition (6)
and α1 = 1, α2 = 2α which implies αi0+1 = 1 and conditions (7) and (8) are trivially
fulfilled. In this case formula (41) reduces to

f (k) = A(k) + 1
2

A−1(k)B(k) + α

2k
A−1(k) − 3λ2

8k2α
A−1(k) + 1

3
A3(k), (46)

modulo some l1 remainder. Moreover, if we use the definitions of A(k) and B(k), then
we can rewrite (46) as

f (k) =
√

λk−α/2 + α + 2(b1 − a1)

2
√

λ
kα/2−1 −

(
λ3/2

24
+

√
λ

b2 − a2

)
k−3α/2

plus some l1 remainder. The example described above was considered by Janas in [3].
From the construction of the solutions u± we have that f (k) is of the orderO(k−α̂/2),

this implies that
∑n

1 f (k) increases to infinity. Because of Lemma 1 and Proposition 1,
we have that F± > 0. It becomes obvious that u−(n) decays exponentially, contrary to
u+(n) which grows to infinity, when n −→ +∞.

https://doi.org/10.1017/S0017089508004709 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004709


ASYMPTOTIC ANALYSIS OF SECOND-ORDER DIFFERENCE EQUATIONS 121

4. Asymptotics in the oscillatory case. Throughout this section we assume that λ

belongs to a subset of reals such as for some large integer N0 = N0(λ) the following
inequality holds

nα

(
2(a1 − b1)

nα1
+ · · · + 2(ai0 − bi0 )

nαi0

)
− λ > 0, n ≥ N0. (47)

We denote this set by �+. This expression is similar to (11), the difference is the
direction of the inequality. Condition (47) implies that for large n the expression f (n)
defined by (41) which belongs to i�, because if λ ∈ �+, then A(n) (defined by (42))
is a square root of a negative real number and B(n), C(n), D(n) (see (43)–(45)) are
real numbers. Following the proof of Theorem 4.1 in [3] we make an ansatz to find
asymptotics of solutions of (1). The form of the ansatz comes from Theorem 3 of
course.

Let us make some notations.

zn := nγ exp

[
n∑

k=1

f (k)

]
, and Sn :=

(
zn−1 zn−1

zn zn

)
, n ∈ �, (48)

where f (k) is given by (41) and γ := α̂−2α
4 , the bar over zn denotes the complex

conjugate. It is obvious that zn = nγ exp(−∑n
k=1 f (k)) because f (k) ∈ i� for large k.

By Bn we denote the transfer matrix (see (3) and (4))

Bn :=
⎛⎝ 0 1

−λn−1

λn

λ − qn

λn

⎞⎠ , n ∈ �,

here λn and qn are the sequences introduced in previous sections.
We want to prove that

S−1
n+1BnSn = I + Rn, (49)

where (Rn)n∈� is a matrix sequence such that (||Rn||)n∈� is in l1. Equation (49) implies
that we can rewrite (3) as

−→u (n + 1) = Bn · · · · · B2
−→u (2) = Sn+1S−1

n+1BnSn · · · · · B2S2S−1
2

−→u (2)

= Sn+1(I + Rn)(I + Rn−1) · · · · · (I + R2)−→w (2),

where −→w (2) := S−1
2

−→u (2). From the assumption that (Rn) is in l1 we know that−→w (n) := ∏n
i=2(I + Ri)−→w (2) is convergent which gives us that −→u (n + 1) = Sn+1

−→w (n).
This reasoning leads us to the fact that any solution of (1), for λ’s fulfilling (47), behaves
in infinity like a linear combination of zn and zn.

Now we turn to the proof of (49). First we need to calculate the inverse of det Sn+1,

det Sn+1 = znzn+1 − znzn+1

= nγ (n + 1)γ exp[f (n + 1)] − nγ (n + 1)γ exp[−f (n + 1)].

Using (41), the Taylor expansion of et and the above equality we have

(det Sn+1)−1 = n−2γ (2
√

η(n))−1(1 + o(1)). (50)
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After some simple calculations we get

S−1
n+1BnSn = (det Sn+1)−1

[(
pn gn

−gn −pn

)
+

(
vn tn

−tn −vn

)]
, (51)

where

pn = |zn|2
(

zn−1

zn
+ zn+1

zn
− 2

)
, gn = z2

n

(
zn−1

zn
+ zn+1

zn
− 2

)
,

vn = |zn|2
(

−�(n) − �(n)
zn−1

zn

)
, tn = z2

n

(
−�(n) − �(n)

zn−1

zn

)
,

and

�(n) = λ − qn

λn
− 2, �(n) = 1 − λn−1

λn
.

Recalling the forms of λn and qn we may write

�(n) = η(n) + ξ (n) + 2r2(n) − 2r(n)s(n) − λ

nα
r(n) − 2r3(n)

+2s(n)r2(n) + λ

nα
r2(n) + 2r4(n) − 2r3(n)s(n) + n−α̂/2ε(28)(n), (52)

and

�(n) = α

n
+ n−α̂/2ε(29)(n). (53)

The sequences r(n), s(n) and η(n), ξ (n) are given by (2) and (23). As in previous sections
ε(i)(n) are l1 remainders.

Looking at formula (51) it is obvious that if we want to prove (49) we need to show

(det Sn+1)−1 (pn + vn) = 1 + ε(30)(n), (det Sn+1)−1 (−pn − vn) = 1 + ε(31)(n),

and

(det Sn+1)−1 (gn + tn) = ε(32)(n), (det Sn+1)−1 (−gn − tn) = ε(33)(n).

Repeating the calculations (formula 4.10) from [3] we see that

|pn + vn − det Sn+1| = |gn + tn|.

This observation leaves us only one equality to prove, namely

(det Sn+1)−1 (gn + tn) = ε(34)(n). (54)

First let us calculate the quotients zn−1
zn

and zn+1
zn

. From the definition of zn we have

zn−1

zn
= 1 +

8∑
j=1

(−1)j 1
j!

f j(n) − γ

n
+ γ

n
f (n) + n−α̂/2ε(35)(n) (55)
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and

zn+1

zn
= 1 + ϕ(n)

2A(n)
+

8∑
j=1

1
j!

f j(n) + γ

n
+ γ

n
f (n) + n−α̂/2ε(36)(n), (56)

where ϕ(n) and A(n) are given by (28) and (42). Formulas (53) and (55) imply

φ(n)
zn−1

zn
= α

n
− α

n
A(n) + n−α̂/2ε(37)(n). (57)

Here we omit some lengthy calculations which are quite simple but very tedious.
Combining (52), (55)–(57) and we obtain

(gn + tn) = n2γ−α̂/2ε(38)(n)

which along with the fact that (det Sn+1)−1 = O(n−2γ+α̂/2) (see (50)) proves (54). With
this sentence we complete the proof of the following theorem.

THEOREM 4. Let λn and qn be defined by (2) and (6)–(8). Assume that condition (47)
is fulfilled. Then equation (1) has two linearly independent solutions u−(n) and u+(n) with
the asymptotics given by

u±(n) = n
α̂−2α

4 exp

[
±

n−1∑
k=1

f (k)

]
(1 + o(1)),

where f (k) is as in (41).

In this theorem, the main part of the asymptotic formulas of the solutions u±(n)
looks exactly the same as in Theorem 3. The difference is hidden in the sequence f (k),
particularly in its ‘main’ part A(k) = √

η(k). In the case (Theorem 3) when condition
(11) is valid, f (k) is real for k large enough. Assumptions (47) imply that all of f (k),
except of a finite number, are complex and have zero real parts, so for large n we have
u−(n) = u+(n).

5. Applications to the spectral theory of Jacobi operators. Let l2(�; �) be the
Hilbert space of all complex sequences x = (x(n))n∈� such that

∑+∞
n=1 |x(n)|2 < +∞.

Let J be a Jacobi operator defined in l2(�; �) by

(J u)(n) = λn−1u(n − 1) + qnu(n) + λnu(n + 1), n > 2,

(J u)(1) = q1u(1) + λ1u(2).

J acts on its maximal domain

D(J ) = {
u ∈ l2(�; �) : J u ∈ l2(�; �)

}
.

We call equation (1) the generalized eigenequation of J . If λn and qn are defined
by (2), then by the Carleman condition (

∑ 1
λn

= +∞) we have J = J ∗, so we can
apply the Gilbert–Khan–Pearson subordination theory [7]. For the reader convenience
we recall the notion of subordination.
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DEFINITION 1. A (non-trivial) solution (u(n))n∈� of the recurrence relations (1) is
said to be subordinated if and only if

lim
N→+∞

√∑N
n=1 |u(n)|2√∑N
n=1 |v(n)|2

= 0,

for any solution (v(n))n∈� of (1) not a constant multiple of (u(n))n∈�.

For example, every non-trivial l2 solution of (1) is subordinated. From constancy of
the Wronskian W (u, v)(n) := λn(u(n)v(n + 1) − v(n)u(n + 1)), we know that there can
be at most only one linearly independent l2 solution. By Theorem 3 in [7] we have
that a real number λ belongs to the absolutely continuous spectrum of the operator
J , if there are no subordinated solutions of its generalized eigenequation. According
to this theory we know that from the behaviour of solutions of (1), called generalized
eigenvectors, we may obtain some spectral properties of J . Theorems 3 and 4 tell us
what happen in infinity with the generalized eigenvectors (u±(n; λ))n∈�. Here, we see
that the sequence (

√
η(n; λ)) defined by (23) plays the major role (see also formulas (11)

and (47)). If for λ ∈ (a, b) its values (for large n) are strictly complex with zero real part
(such solutions cannot be subordinated), then (a, b) is in the absolutely continuous part
of the spectrum of J , contrary if

√
η(n; λ) ∈ �, then we might have some eigenvalues

in (a, b). We sketch this briefly below in few cases.
In all further cases we assume that λn and qn are like in (2), ρ is defined by (12)

and conditions (6)–(8) are fulfilled.
Case 1. Let α̂ = α1 < α and ρ = 2(a1 − b1) < 0 then condition (11) is valid for all

real λ. Applying Theorem 3 we see that u−(n; λ) behaves like n(α1−2α)/4 exp(−√−ρ

1− α1
2

n1− α1
2 ),

because ρ < 0 and 1 − α1
2 > 0 we obtain (u−(n; λ)) ∈ l2, hence it is subordinated. We

see that the spectrum of J is pure point (from the subordination theory we know that
the continuous part of the spectrum is empty).

Case 2. Now, let α̂ = α1 < α and ρ = 2(a1 − b1) > 0. In this case we have to apply
Theorem 4 because for any real number λ condition (47) is valid. This time for n large
enough

√
η(n; λ) ∈ i�, which makes u−(n; λ) as the conjugate of u+(n; λ). The latter

implies that the spectrum of J is purely absolutely continuous.
From these two examples we can see that ρ = 0 is, in some sense, a critical

point. If ρ changes from positive to negative, then the spectrum of J goes from
absolutely continuous to pure point. This is a new situation which is impossible
for Jacobi operators considered by Janas in [3]. If λn = nα(1 + a

n + D
n2α + V (n)

n ) and

qn = −2nα(1 + b
n + E

n2α + W (n)
n ), like in [3], then we have ρ = −λ and α̂ = α. In this case

for λ ∈ (0,+∞) condition (11) is fulfilled, if λ ∈ (−∞, 0) then (47) is true. Applying
Theorem 3 or Theorem 4 and subordination theory we obtain that (−∞, 0) is in the
absolutely continuous part of the spectrum of the operator J and in (0,+∞) we may
have some eigenvalues.

Do we always have this kind of spectrum when ρ = 0? If ρ = 2(a1 − b1) = 0 but
a2 �= b2 and α2 is still less than α, then again we are in Case 1 or Case 2. A new
situation appears when ai = bi for all i = 1, . . . , i0, or equivalently when α ≤ α1, this
case is discussed as follows:

https://doi.org/10.1017/S0017089508004709 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004709


ASYMPTOTIC ANALYSIS OF SECOND-ORDER DIFFERENCE EQUATIONS 125

Case 3. When α̂ = α = α1 and, of course a1 �= b1 then we can rewrite the conditions
(11) and (47) as 2(a1 − b1) − λ < 0 and 2(a1 − b1) − λ > 0. Depending on the sign of
the expression 2(a1 − b1) − λ we can apply Theorem 3 or Theorem 4 and conclude
that if λ lies on the right from 2(a1 − b1), then it might be an eigenvalue but all the λ’s
smaller than 2(a1 − b1) are in the absolutely continuous part of the spectrum of the
considered operator. More details will be given in another work.
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