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Abstract

We obtain a new sum–product estimate in prime fields for sets of large cardinality. In particular, we
show that if A ⊆ Fp satisfies |A| 6 p64/117 then max{|A ± A|, |AA|} & |A|39/32. Our argument builds on and
improves some recent results of Shakan and Shkredov [‘Breaking the 6/5 threshold for sums and products
modulo a prime’, Preprint, 2018, arXiv:1806.07091v1] which use the eigenvalue method to reduce to
estimating a fourth moment energy and the additive energy E+(P) of some subset P ⊆ A + A. Our main
novelty comes from reducing the estimation of E+(P) to a point–plane incidence bound of Rudnev [‘On
the number of incidences between points and planes in three dimensions’, Combinatorica 38(1) (2017),
219–254] rather than a point–line incidence bound used by Shakan and Shkredov.

2010 Mathematics subject classification: primary 11T99; secondary 05B10.
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1. Introduction

Let p be a prime number and Fp the finite field of order p. Given a subset A ⊆ Fp,
define the sum set and product set of A respectively by A + A = {a + b : a, b ∈ A} and
AA = {ab : a,b ∈ A}. The sum–product theorem in Fp due to Bourgain, Katz and Tao [2]
states that for 0 < ε < 1 there exists δ > 0 such that if pε < |A| < p1−ε then

max{|AA|, |A + A|} > |A|1+δ. (1.1)

Glibichuk and Konyagin [7] have shown that the condition pε < |A| may be dropped.
The sum–product problem was first considered by Erdős and Szemerédi [4] over

the integers. Their work led to the conjecture that for any ε > 0 and any finite subset
A ⊆ R,

max{|AA|, |A + A|} � |A|2−ε,

with an implied constant depending only on ε. The sharpest sum–product result over
R is due to Shakan [18].
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[2] A new sum–product estimate in prime fields 269

By a construction due to Garaev [6], for any N ≤ p there exists a subset A ⊆ Fp with
|A| = N such that

max{|A + A|, |AA|} � p1/2N1/2, (1.2)

so the Erdős–Szemerédi conjecture cannot be true in full generality in Fp. We expect
this conjecture to be true in Fp if we restrict to sets of sufficiently small cardinality,
and an active field of research seeks to determine the largest possible δ such that (1.1)
holds. The first explicit sum–product result in Fp is due to Garaev [5], and there
have been several improvements (see [1, 8, 10, 15]). Roche-Newton, Rudnev and
Shkredov [14] made a major breakthrough based on Rudnev’s point–plane incidence
bound [16] by showing that if |A| 6 p5/8 then

max{|A + A|, |AA|} � |A|6/5. (1.3)

The idea of applying geometric incidence estimates to sum–product problems is due to
Elekes [3]. Stevens and de Zeeuw [22] gave a different proof of the estimate (1.3) using
their point–line incidence bound. Recently, Shakan and Shkredov [19, Theorem 1.3]
have broken the 6/5 barrier for the sum–product problem over Fp and shown that

max{|A ± A|, |AA|} & |A|6/5+4/305, |A| 6 p3/5. (1.4)

We note that their condition |A| 6 p3/5 can be extended to |A| < p2/3 (see Remark 3.7
for more details). For sets of smaller cardinality, the estimate (1.4) has recently been
improved by Rudnev, Shakan and Shkredov [17] who showed that

max{|A ± A|, |AA|} & |A|11/9, |A| 6 p18/35. (1.5)

The argument of Rudnev, Shakan and Shkredov [17] uses geometric incidence
estimates to establish recursive inequalities for generalised energies E+

α (A) as a
function of α, where E+

α (A) is defined as in (3.1). The estimate (1.5) is deduced from
an inequality involving E+

4/3(A) where the exponent 4/3 arises naturally as a fixed point
of the recursion. See also [12] for variations on the sum–product theorem, including
sharper results for the few sums, many products problem, [13] for the few products
many sums problem, and [11] for various other results related to expanders in prime
fields.

In this paper we obtain a new sum–product estimate over Fp which improves on the
estimates (1.4) and (1.5) for sets of cardinality in the range p18/35 6 |A| 6 p64/117. Our
proof builds on techniques from [19] which use the eigenvalue method (see [20]) to
reduce to estimating a fourth moment energy E+

4 (A, B) and the additive energy E+(P)
of some subset P ⊆ A + A. Shakan and Shkredov reduce both E+

4 (A, B) and E+(P) to
the point–line incidence bound of Stevens and de Zeeuw and our improvement comes
from estimating E+(P) via Rudnev’s point–plane incidence bound.

Asymptotic notation. For positive real numbers X and Y , we use X � Y and Y � X to
imply the existence of an absolute constant C > 0 such that X ≤ CY . We also use X . Y
and Y & X to mean that there exists an absolute constant C > 0 such that X� (log X)CY.
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270 C. Chen, B. Kerr and A. Mohammadi [3]

2. Main results

Our first result provides an improvement on the sum–product estimate of Shakan
and Shkredov [19, Theorem 1.3].

Theorem 2.1. Suppose A ⊂ Fp satisfies |A| 6 p64/117. Then

max{|A ± A|, |AA|} & |A|39/32.

For comparison with the estimate (1.4), we note that

39
32

=
6
5

+
4

305
+

11
1952

.

In the case of the difference set we obtain an estimate of the same strength with weaker
conditions on the cardinality of A.

Theorem 2.2. Suppose A ⊂ Fp satisfies |A| � p32/55. Then

max{|A − A|, |AA|} & |A|39/32.

We can obtain sharper estimates for iterated sumsets. The case k = 3 below agrees
with an estimate of Roche-Newton, Rudnev and Shkredov [14, Corollary 12].

Theorem 2.3. Let k > 3 be an integer and suppose A ⊆ Fp satisfies

|A| 6 p(4−3×2−k)/(7−16×2−k).

Then

max{|kA|, |AA|} & |A|(5−23−k)/(4−3×21−k).

3. Preliminaries

Given subsets A, B ⊆ Fp, let

rA±B(x) = |{(a, b) ∈ A × B : a ± b = x}|

and for any real number k define

E+
k (A, B) =

∑
x∈A−B

rA−B(x)k. (3.1)

We write simply E+
k (A) instead of E+

k (A,A) and use E+(A,B) to denote E+
2 (A,B), which

we refer to as the additive energy between A and B. Note that if k is a natural number,
then E+

k (A, B) counts the number of solutions to the equations

a1 − b1 = · · · = ak − bk, a1, . . . , ak ∈ A, b1, . . . , bk ∈ B.

We sometimes write
∑

x to represent
∑

x∈Fp
for convenience when the context is

clear. For A ⊂ Fp, we let A(x) denote the characteristic function of A. We can write
rA+B(x) as the convolution of functions A and B, that is, rA+B(x) = (A ∗ B)(x). The
following lemma is due to Shkredov [20, Proposition 31] (see also [19, Lemma 6.1]).
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[4] A new sum–product estimate in prime fields 271

Lemma 3.1. For any subset A ⊂ Fp and any P ⊂ A − A,(∑
x∈P

rA−A(x)
)8
≤ |A|8E+

4 (A)E+(P).

Similarly, for any P ⊂ A + A,(∑
x∈P

rA+A(x)
)8
≤ |A|8E+

4 (A)E+(P).

We also require a third moment estimate of Konyagin and Rudnev [9, Corollary 10].

Lemma 3.2. For any subset A ⊂ Fp,

|A|8

|A − A|
� E+

3 (A)E+(A, A − A).

Next, we recall a variation of the Plünnecke–Ruzsa inequality, which can be found
in [8].

Lemma 3.3. Let X, B1, . . . , Bk ⊆ Fp. Then for any ε with 0 < ε < 1 there exists a subset
X′ ⊆ X with |X′| ≥ (1 − ε)|X|, such that

|X′ + B1 + · · · + Bk| �ε,k
|X + B1| · · · |X + Bk|

|X|k−1 .

The following point–line incidence bound is due to Stevens and de Zeeuw [22] (see
also [21, Lemma 12]).

Lemma 3.4. Let P = X × Y be a subset of F2
p and L be a collection of lines in F2

p. Then

I(P, L)� |X|3/4|Y |1/2|L|3/4 + |L| + |P| + p−1|L||P|.

Remark 3.5. Using Lemma 3.4 and a technique due to Elekes [3], as outlined in
[22, Corollary 9], one recovers estimate (1.3) for any set A ⊂ Fp under the condition
|A| � p5/7. It is worth noting that this improves on the condition |A| ≤ p5/8, which was
obtained in [14] and [22]. Furthermore, by (1.2), it is easy to see that this condition is
optimal up to some constant.

The following lemma is due to Shakan and Shkredov [19, Proposition 3.1] and is
based on Lemma 3.4. We note that their condition on the cardinality |A| < p3/5 can be
extend to |A| < p2/3 and we provide details of this extension.

Lemma 3.6. Let A ⊂ Fp satisfy |A| < p2/3. Then for any subset B ⊂ Fp,

E+
4 (A, B) . |B|3|AA|2|A|−1.
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272 C. Chen, B. Kerr and A. Mohammadi [5]

Proof. Define Dτ = {x ∈ A − B : τ ≤ rA−B(x) < 2τ}. Taking a dyadic decomposition of
rA−B(x), there exists a real number τ such that

E+
4 (A, B) =

∑
x

rA−B(x)4 . τ4|Dτ|, (3.2)

and
τ|Dτ| � |A||B|, τ2|Dτ| � E+(A, B). (3.3)

Consider the set of points P = Dτ × AA and the set of lines L = {`a,b : a ∈ A, b ∈ B}
where `a,b = {(x, y) ∈ F2

p : y = (x + b)a}. For any a ∈ A and b ∈ B,

|`a,b ∩ P| ≥
∑
a1∈A

1Dτ
(a1 − b).

Thus

I(P, L) =
∑

a∈A,b∈B

|`a,b ∩ P| ≥
∑
a∈A

∑
a1∈A,b∈B

1Dτ
(a1 − b) =

∑
a∈A

∑
x∈Dτ

rA−B(x)� |A||Dτ|τ.

Combining this with Lemma 3.4, we conclude that

|A||Dτ|τ� |Dτ|
3/4|AA|1/2(|A||B|)3/4 + |Dτ||AA| + |A||B| + p−1|Dτ||AA||A||B|. (3.4)

We proceed on a case-by-case basis depending on which term in (3.4) dominates.
Suppose the first term dominates, so that

|A||Dτ|τ� |Dτ|
3/4|AA|1/2(|A||B|)3/4.

This gives the desired result after substituting in (3.2).
Suppose the second term in (3.4) dominates. This implies |A||Dτ|τ� |Dτ||AA|, and

hence τ� |AA|/|A|. From (3.3) and the trivial bound E+(A, B) 6 |A||B|2,

τ4|Dτ| = τ2E+(A, B)� |B|2|AA|2|A|−1.

If the third term in (3.4) dominates, then τ|Dτ| � |B|, so that using the trivial bound
τ ≤ min{|A|, |B|}, we obtain

τ4|Dτ| = τ3τ|Dτ| � |B|3|A| � |B|3|AA|2|A|−1.

Finally, consider when the last term in (3.4) dominates, so that

pτ� |B||AA|. (3.5)

If τ ≤ |AA||B||A|−3/2, then

|Dτ|τ
4 = |Dτ|τ

2τ2 � |A|2|B||AA|2|B|2|A|−3,

which gives the desired result. Otherwise, suppose τ > |AA||B||A|−3/2. Combined
with (3.5), this implies that p|AA||B||A|−3/2 � |B||AA| and contradicts our assumption
|A| < p2/3. �
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[6] A new sum–product estimate in prime fields 273

Remark 3.7. Combining Lemma 3.6 with [19, Theorem 2.5] leads to the same sum–
product estimate as [19, Theorem 1.3] with the weaker condition |A| < p2/3.

Using Hölder’s inequality and Lemma 3.6 we obtain the following third moment
estimate which will be used in the proof of Theorem 2.2.

Lemma 3.8. For any subset A ⊂ Fp satisfying |A| < p2/3,

E+
3 (A) . |AA|4/3|A|2.

Proof. Writing
E+

3 (A) =
∑

x

rA−A(x)8/3+1/3

and applying Hölder’s inequality and Lemma 3.6 gives

E+
3 (A) ≤ E+

4 (A)2/3(|A||A|)1/3 . (|AA|2|A|2)2/3|A|2/3,

which is the desired result. �

The following lemma is due to Roche-Newton et al. [14, Theorem 6] and is based
on Rudnev’s point–plane incidence bound [16].

Lemma 3.9. Let X, Y, Z ⊂ Fp and let M = max{|X|, |YZ|}. Suppose that |X||Y ||YZ| � p2.
Then

E+(X,Z)� (|X||YZ|)3/2|Y |−1/2 + M|X||YZ||Y |−1.

Corollary 3.10. Let A ⊂ Fp. If |A ± A||AA||A| � p2 then

E+(A, A ± A)� (|A ± A||AA|)3/2|A|−1/2.

Proof. We consider only A + A; a similar argument applies to A − A. Applying Lemma
3.9 with X = A + A and Y = Z = A gives

E+(A, A + A)� (|A + A||AA|)3/2|A|−1/2 + |A + A|2|AA||A|−1 + |A + A||AA|2|A|−1.

Observe that for any subset A ⊂ Fp,

(|A + A||AA|)3/2|A|−1/2 ≥ max{|A + A|2|AA||A|−1, |A + A||AA|2|A|−1},

from which the desired result follows. �

Corollary 3.11. Let A ⊆ Fp. If |A|2|AA| � p2 then

E+(A)� |AA|3/2|A|.

In the proof of Theorem 2.3, we use the following iterative inequality for higher-
order energies.
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274 C. Chen, B. Kerr and A. Mohammadi [7]

Lemma 3.12. For an integer k > 2 and a subset A ⊆ Fq, let Tk(A) count the number of
solutions to the equation

a1 + · · · + ak = ak+1 + · · · + a2k, a1, . . . , a2k ∈ A.

If A satisfies

|A| |(k − 1)A| |AA| 6 p2, (3.6)

then

Tk(A) . |A|k−3/2Tk−1(A)1/2|AA|3/2 + |A|2k−3|AA| +
Tk−1(A)|AA|2

|A|
.

Proof. For λ ∈ (k − 1)A, we define

r(λ) = |{(a1, . . . , ak−1) ∈ A × · · · × A : a1 + · · · + ak−1 = λ}|.

Then
Tk(A) =

∑
x

(A ∗ r)(x)2.

Now we take a dyadic decomposition for r. For an integer j > 1, let

J( j) = {λ ∈ (k − 1)A : 2 j−1 6 r(λ) < 2 j}.

Then
(A ∗ r)(x)�

∑
1≤ j≤log |A|

2 j(A ∗ J( j))(x).

By the Cauchy–Schwarz inequality,

(A ∗ r)(x)2 .
∑

1≤ j≤log |A|

22 j(A ∗ J( j))(x)2.

Thus

Tk(A) .
∑

1≤ j≤log |A|

∑
x

22 j(A ∗ J( j))(x)2

and there exists some i0 with 1 6 i0 � log |A| such that

Tk(A) . 22i0 E+(A, J(i0)). (3.7)

By Lemma 3.9,

E+(A, J(i0))� (|J(i0)||AA|)3/2|A|−1/2 + max{|J(i0)|, |AA|}|J(i0)||AA||A|−1, (3.8)

provided |J(i0)||A||AA| 6 p2. This condition is satisfied by (3.6) and the inclusion
J(i0) ⊆ (k − 1)A. By (3.7) and (3.8),

Tk(A) .
(2i0 |J(i0)|)(2i0 |J(i0)|1/2)|AA|3/2

|A|1/2
+

(22i0 |J(i0)|2)|AA|
|A|

+
(22i0 |J(i0)|)|AA|2

|A|
.

Since 2i0 |J(i0)| � |A|(k−1) and 22i0 |J(i0)| � Tk−1(A),

Tk(A) . |A|k−3/2Tk−1(A)1/2|AA|3/2 + |A|2k−3|AA| +
Tk−1(A)|AA|2

|A|
,

which completes the proof. �
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4. Proof of Theorem 2.1

We consider the case A + A; a similar argument applies to A − A. Assuming A
satisfies

|A| 6 p64/117, (4.1)

we consider two cases. Suppose first that

|A + A|2|AA| � p2. (4.2)

By Lemma 3.3, we can identify a subset B ⊂ A satisfying

|B| � |A| and |B + B + B| �
|A + A|2

|A|
. (4.3)

By (4.3), in order to prove Theorem 2.1, it is sufficient to show that

max{|B + B|, |BB|} & |B|39/32.

Let

P =

{
x ∈ B + B : rB+B(x) ≥

1
2
|B|2

|B + B|

}
, (4.4)

so that ∑
x∈P

rB+B(x)� |B|2.

Applying Lemma 3.1,
|B|8 � E+

4 (B)E+(P)

and, by Lemma 3.6,
|B|6 . |BB|2E+(P). (4.5)

It remains to consider E+(P). Recalling (4.4), we see that for any x ∈ Fp,

|B|2

|B + B|
P(x)� (B ∗ B)(x)

and hence
(P ∗ P)(x)�

|B + B|
|B|2

(B ∗ B ∗ P)(x).

Thus

E+(P) =
∑

x

(P ∗ P)(x)2 .
|B + B|2

|B|4
∑

x

(B ∗ B ∗ P)(x)2.

Taking a dyadic decomposition for the function (B ∗ P)(x), there exists some real
number ∆ satisfying 1 ≤ ∆ ≤ |B| such that, defining

T = {x ∈ B + P : ∆ ≤ (B ∗ P)(x) < 2∆},
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276 C. Chen, B. Kerr and A. Mohammadi [9]

we have ∑
x

(P ∗ P)(x)2 .
|B + B|2

|B|4
∆2

∑
x

(B ∗ T )(x)2 =
|B + B|2

|B|4
∆2E+(B,T ).

Since T ⊆ B + B + B, by (4.2) and (4.3),

|B||B + B + B||BB| � p2,

and hence, by Lemma 3.9,

E+(B,T )� |T |3/2|BB|3/2|B|−1/2 + |T |2|BB||B|−1 + |T ||BB|2|B|−1.

This gives∑
x

(P ∗ P)(x)2 .
|B + B|2

|B|4
(∆|T |)(∆|T |1/2)|BB|3/2|B|−1/2

+
|B + B|2

|B|4
(∆|T |)2|BB||B|−1 +

|B + B|2

|B|4
(∆2|T |)|BB|2|B|−1.

Since ∆|T | � |B||P|, ∆2|T | � E+(B, P) and P ⊆ B + B, this simplifies to

E+(P) .
|B + B|3|BB|3/2E+(B, B + B)1/2

|B|7/2

+
|B + B|4|BB|
|B|3

+
|B + B|2|BB|2E+(B, B + B)

|B|5
. (4.6)

We proceed on a case-by-case basis depending on which term in (4.6) dominates.
Suppose first that

E+(P) .
|B + B|3|BB|3/2E+(B, B + B)1/2

|B|7/2
.

Assumption (4.2) implies that the conditions of Corollary 3.10 are satisfied and

E+(P) .
|B + B|15/4|BB|9/4

|B|15/4 .

Combining with (4.5),
|B|39 . |B + B|15|BB|17,

which gives the required result.
Suppose next that

E+(P) .
|B + B|4|BB|
|B|3

.

Combining with (4.5),
|B|9 . |B + B|4|BB|3,

which gives a better bound than 39/32.
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[10] A new sum–product estimate in prime fields 277

Finally, suppose

E+(P) .
|B + B|2|BB|2E+(B, B + B)

|B|5
.

By Corollary 3.10,

E+(P) .
|B + B|7/2|BB|7/2

|B|11/2 ,

and hence, by (4.5),
|B|23 . |B + B|7|BB|11,

giving a better bound than 39/32. This finishes the proof in the case |A + A|2|AA| 6 p2.
Suppose next that |A + A|2|AA| > p2. By (4.1), |A + A|2|AA| > |A|117/32 and hence

max{|A + A|, |AA|} > |A|39/32,

which completes the proof.

5. Proof of Theroem 2.2

Suppose A satisfies

|A| 6 p32/55. (5.1)

We consider two cases. Suppose first that |A − A||AA|A| 6 p2. By Lemma 3.2,
Lemma 3.8 and Corollary 3.10,

|A|8

|A − A|
� (|A|2|AA|4/3)(|A − A|3/2|AA|3/2|A|−1/2),

which reduces to |A − A|15|AA|17 � |A|39 and gives the required result. On the other
hand, if |A − A||AA||A| > p2, then by (5.1), |A − A||AA| > |A|39/16 as required.

6. Proof of Theorem 2.3

Suppose A satisfies

|A| 6 p(4−3×2−k)/(7−16×2−k). (6.1)

We again consider two cases. Suppose first that

|A||(k − 1)A||AA| 6 p2. (6.2)

We fix an integer k > 3 and consider two subcases. Suppose first that for all integers j
with 3 6 j 6 k,

|A| j−3/2T j−1(A)1/2|AA|3/2 > max
{
|A|2 j−3|AA|,

T j−1(A)|AA|2

|A|

}
.
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278 C. Chen, B. Kerr and A. Mohammadi [11]

By (6.2) and Lemma 3.12, this implies that for each j with 3 6 j 6 k,

T j(A) . |A| j
(
|AA|
|A|

)3/2
T j−1(A)1/2

and, by induction on j,

Tk(A) . |A|k+(k−1)/2+···+(k− j+1)/2 j−1
(
|AA|
|A|

)(3/2)(1+1/2+···+1/2 j−1)
Tk− j(A)1/2 j

.

Taking j = k − 2 and using Corollary 3.11,

Tk(A) . |A|k+(k−1)/2+···+3/2k−3
(
|AA|
|A|

)(3/2)(1+1/2+···+1/2k−3)
E+(A)1/2k−2

. |A|2k−5+23−k
|AA|3(1−21−k). (6.3)

For x ∈ Fp, let
rA,k(x) = |{(x1, . . . , xk) ∈ Ak : x1 + · · · + xk = x}|.

Then
|A|k =

∑
x

rA,k(x).

By the Cauchy–Schwarz inequality,

|A|2k 6 |kA|Tk(A),

since ∑
x

rA,k(x)2 = Tk(A).

Applying (6.3),

|A|5−23−k
. |kA||AA|3−3×21−k

,

which implies

max{|kA|, |AA|} & |A|(5−23−k)/(4−3×21−k). (6.4)

Suppose next that there exists some j with 3 6 j 6 k such that

|A| j−3/2T j−1(A)1/2|AA|3/2 6 max
{
|A|2 j−3|AA|,

T j−1(A)|AA|2

|A|

}
.

If

|A|2 j−3|AA| >
T j−1(A)|AA|2

|A|
,

then, by Lemma 3.12,

T j(A) . |A|2 j−3|AA|.
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Using the Cauchy–Schwarz inequality as before,

|A|2 j . |A|2 j−3| jA||AA|,

which implies
max{|kA|, |AA|} & |A|3/2

and is better than (6.4). If

T j−1(A)|AA|2

|A|
> |A|2 j−3|AA|,

then

T j(A) .
T j−1(A)|AA|2

|A|
6 |A|2 j−7|AA|2E+(A),

and hence, by Corollary 3.11,

T j(A) . |A|2 j−6|AA|7/2.

This implies that

|A|6 . | jA||AA|7/2

and hence

max{|kA|, |AA|} & |A|4/3,

which is better than (6.4).
Suppose next that |A||(k − 1)A||AA| > p2. By (6.1),

|(k − 1)A||AA| > |A|2(5−23−k)/(4−3×21−k),

which completes the proof.
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