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ABSTRACT: Computer-aided design (CAD) has become essential for hardware product development in our
industrial age. However, increasing complexity, shorter lead times, and cost pressures present new challenges.
While generative Al has gained significant attention and transformed various business functions, its application in
engineering design with CAD remains underdeveloped. Our research aims to explore why generative Al has not yet
reached its potential in CAD, despite its prominence in other fields, by identifying key challenges through case
studies and a literature review. These challenges include small datasets, difficulty representing mixed data types,
proprietary file formats, and lack of advanced CAD modeling commands. We propose future developments such as
high-quality datasets, a vendor-neutral format, novel neural network architectures, and expanded generative
methods.
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1. Introduction

The human design process, which involves expressing inventions in three-dimensional shapes, is a
critical element of our industrial society. Today, Computer-Aided Design (CAD) is the most prominent
method for conceiving advanced hardware products (Hirz et al., 2011; Sharma et al., 2023). However, the
increasing complexity of industrial product development poses new challenges, including skilled labor
shortages, increasing market demands for shorter lead times, and economic pressures to reduce
operational costs (Aytac & Wu, 2013; Regenwetter et al., 2022). Consequently, there is a growing
demand for innovative tools and methods to improve efficiency and productivity in engineering design
and product development workflows. (Tan, 2018).

Generative Al (GenAl) has made significant advancements in text and media generation and is
revolutionizing various industries and fields, offering new capabilities across different business areas,
such as customer support (Brynjolfsson et al., 2023) or software development (Ebert et al., 2023).
This evidence justifies the assumption that GenAl for CAD presents a promising opportunity to address
the challenges in engineering design (Kretzschmar et al., 2024).

However, GenAl for CAD appears underdeveloped compared to GenAl for text, source code, or visual
media generation as exemplified in Figure 1. As a result, it is not yet mature enough to be reliably used in
production environments, which is reflected in the absence of widespread commercial GenAl for CAD
offerings. Hence, we want to understand the hurdles holding GenAl for CAD back. This paper
investigates why implementing GenAl in CAD is challenging not just for our use cases but remains
generally relatively underdeveloped despite the need for such a technology. Therefore, our research is
guided by two research questions:

1) What are the key technical barriers preventing the successful application of generative Al
techniques to CAD modeling?
2) Which specific advances would enable the effective generation of parametric CAD models?
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Figure 1. Samples of Al-generated CAD objects from Willis et al., 2021; Wu et al., 2021; Xu et al.,
2023 (left to right). While the complexity of the models is increasing with more recent research,
more is needed to achieve the human-like performance currently observed in, e.g., text generation
with large language models. Composite graphic created by authors using Willis et al., 2021;
Wu et al., 2021; Xu et al., 2023

2. Background
2.1. CAD software

In today’s engineering companies, CAD is a critical software tool because it enables efficient design,
analysis, and optimization. CAD allows for visual inspection of complex 3D models before
prototyping, streamlining product development. CAD enhances design engineer productivity and
capabilities, making design iteration and simulation easy (Sharma et al., 2023) CAD software tools
must provide a constraint solver and a solid modeling kernel. The constraint solver ensures sketch
constraints are fulfilled, and the solid modeling kernel finally assembles the three-dimensional (3D)
object. These two components rely on a structured sequence of parametric commands and constrained
sketches. Several major CAD software vendors have developed proprietary software over decades,
while open-source alternatives, like OpenCascade, provide many functions but are considered less
feature complete.

2.2. CAD data

In essence, CAD data is a sequence of parametrized commands such as sketch, extrude, chamfer, or
fillet. A solid modeling kernel can convert the command sequence into a geometry. In engineering
design, CAD is preferred due to these parametric modeling capabilities and construction history
features (VukaSinovic & Duhovnik, 2019). Constrained sketches are a crucial feature of CAD data,
enabling the enforcement of geometric relations like parallelism and perpendicularity. These
constraints provide high editability, allowing models to be easily modified locally while maintaining
consistency by propagating changes along constraint relations (Sarkar, 2014). Extrusion is then used
to expand the two-dimensional sketch into 3D space. The construction history captures the sequence
of operations used to create the model, preserving the entire design process rather than just its
outcome.

2.3. GenAl models for computer-aided design

Recent advances in deep learning have enabled learning-based methods to recreate the CAD modeling
sequence history, sketch constraints, and extrusion, which can be executed in a CAD tool to generate the
final 3D model (Wu et al., 2021; Xu et al., 2022, 2023). Other approaches, like Jayaraman et al., 2023
directly generate B-REP data without relying on command sequences. Generating commands offers
advantages like human interpretability and ease of editing, while direct B-REP synthesis may be the
easier choice when the construction history is not required.

Current GenAl models for CAD are commonly based on the transformer architecture (Vaswani et al.,
2017) that outputs a sequence of tokens corresponding to the construction history’s commands and
parameters, mimicking the human design process. Changes in machine learning architecture led to
incremental improvements across different models, while all GenAl models remain using the same
underlying training dataset. Modifications to the original transformer architecture have been made to
adapt to a CAD model’s mix of data types and hierarchical structure. DeepCAD (Wu et al., 2021), for
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example, uses separate embeddings and loss functions for CAD commands and their parameters.
SkexGen (Xu et al., 2022) uses separate transformer models to encode primitives, loops, and sketches.

3. Research process

This research explores emerging domains where substantive theoretical frameworks are still
underdeveloped, aiming to build theory rather than test existing hypotheses by following the procedure
in Figure 2.

Following empirical observations of GenAl’s performance improvements across other business
functions, we investigated the potential applications and efficacy of GenAl integration within CAD
workflows for engineering applications. To this end, we conducted a series of workshops at a large
automotive firm to capture use cases of GenAl in engineering design tasks that involve CAD software.
Our data was collected in four workshops with a total of 15 participants, excluding moderators, from the
engineering and IT departments. Workshops were chosen because of their interactive nature, allowing
real-time collaboration and ideation.

Every workshop began with a knowledge acquisition phase through a structured presentation from a
moderator featuring examples of existing use cases and successful analogical transfers. The main part
followed an analogical reasoning method from Kim (2017). Participants were asked to generate use case
ideas by transducing existing use cases from other business areas and applying them to GenAl for CAD.
The workshop concluded with evaluating the generated use cases and confirming everyone ‘s
understanding of the collected use cases.

In subsequent prototyping of the discovered use cases, we encountered and documented recurring
obstacles that hindered our progress. Our findings align with similar challenges in the existing literature,
leading us to investigate whether broadly applicable barriers contribute to the underdeveloped state of
GenAl in CAD.

¢ Literature Grounded Theory Results
Challenges in
Use Case Design: Review: Analysis: Synthesis: ’—>Ganl for CAD|
Workshops | Insights of R r t | O fon| o Meta-data , Aggregative
Challenges Question and and Content and

Formulation Assessment Analysis Configurative

Opportunities

for Research

Figure 2. Schematic organization of our research process. Starting from our specific
observations, we identified general challenges hindering progress in GenAl for CAD. Graphic
created by authors

For our structured investigation, we employed Literature Grounded Theory (LGT) to systematically
analyze existing research and identify key themes related to the challenges and opportunities of
integrating generative Al in CAD. The LGT method for building theory in research projects is employed
here to systematically identify key themes related to the integration of GenAl in CAD and uncover
underlying knowledge gaps (Cardoso Ermel et al., 2021; Dunne, 2011).

Our resulting contribution is identifying overarching challenges that generalize beyond our specific use
cases and reflect broader issues within the field. We will structure these challenges in this paper and
propose future research directions to address the technical limitations and conceptual gaps in applying
GenAl to CAD.

4. Use cases of GenAl in CAD

After our workshop series at an automotive company, we synthesized the identified opportunities for
GenAl in CAD into eight distinct use cases, as shown in Table 1. Further, we provide detailed
descriptions of three high rated use cases: CAD geometry generation (1), B-REP to CAD (2), and
generating variants (3).

1) A GenAl model could draft an initial CAD prototype based on textual specifications during the
requirements engineering phase. Engineers can provide early feedback on the prototype, allowing
for immediate adjustments, while project managers can use the early prototype to facilitate more
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informed discussions with stakeholders. Iterative refinement of the generated prototype based on
feedback would enable more effective exploration of the design space before detailed design
begins.

2) Converting CAD models from B-REP back to parametric models with sketches and design
history is a significant unresolved challenge, often done manually. B-REP models are commonly
exchanged for compatibility or nondisclosure reasons, losing parametric information. GenAl
could automate this complex reverse engineering task. In engineering companies, external
suppliers are usually providing B-REP files for exchanging CAD objects. Consequently,
engineers often need to manually reverse engineer these geometries using their internally used
CAD software, which is a time-consuming process.

3) Engineers often design and simulate multiple component variations in the early development
phase to evaluate trade-offs and optimize performance. Generating these design alternatives is
time-consuming when done manually. GenAl could automate the creation of design variations
based on key parameters, constraints, and performance targets. This would enable rapid design
space exploration, streamline iterations, and allow engineers to focus on higher-level design
decisions and analysis rather than manually modeling each variant.

Table 1. Distribution of identified GenAl-enabled CAD use cases across four workshops. Each
checkmark (v) indicates that the use case was independently proposed or supported in the
respective workshop, demonstrating convergence on critical applications across different
participant groups

Name Workshop 1 Workshop 2~ Workshop 3~ Workshop 4  Total
2D Sketch to CAD v 1
3D Mesh to CAD v/ 1
B-REP to CAD v 4 2
CAD Generation given specifications v v v 3
Generating Variants v v 2
Fix or optimized CAD Structure v v 2
Similarity Detection v v 2
Re-Assembly of existing components v 1

5. Challenges in implementing GenAl in CAD
5.1. Training data availability

For deep-learning models, improvement in accuracy metrics is generally correlated with larger training
datasets (Kaplan et al., 2020). However, most available 3D datasets for machine learning are limited in
size, particularly in construction histories and constrained sketches, which are crucial for CAD modeling.
The first and still most prominent dataset resembling CAD is the ABC dataset (Koch et al., 2019). This
dataset is parsed from data available on PTC OnShape, a free-for-personal-use CAD platform where
publicly accessible models are created by users. However, these models are neither filtered nor curated,
and the dataset only includes the models in STEP file format, which lacks the constrained sketches and
construction history essential for professional CAD modeling.

SketchGraphs (Seff et al., 2020) makes use of OnShape as well. However, in contrast to the ABC
dataset, it extracts the constrained sketches but does not extrude them into 3D space and the entire
construction history. The result is a dataset of 2D drawings together with dimensional and geometric
constraints.

DeepCAD (Wu et al., 2021) extends the ABC dataset by introducing an enhanced extraction script that
captures the construction history of the models, though it is limited to only sketch and extrude operations,
excluding more complex operations (see Figure 3). This results in 129,624 models available in a custom
JSON and STEP format, with complete construction histories but lacking geometric constraints.
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Another dataset is the Fusion360 Gallery Dataset (Willis, Pu, et al., 2021), which includes around 8,625
models sourced from the Autodesk Community Gallery and published by Autodesk researchers. These
models are published in a custom JSON format, including constrained sketches and the entire
construction history. Again, it is limited to sketch and extrude command types.
The characteristics of the discussed CAD datasets are compared in Table 2, highlighting substantial
differences in construction history availability and primitive shape distributions.

Table 2. Comparison of CAD model datasets: size, construction history, and primitive shape
distribution. Table created by authors

Size(sample count) Construction History % Cuboids % Cylinders
ABC M No - -
SketchGraphs 14M No - -
DeepCAD 130T Yes 28.9% 15.5%
Fusion360 9T Yes 7.6% 10.0%
D \ ,‘ iy L \
N « ANV N
- \ ‘//in | \/
O N AN <\ ‘(7 \"17\./‘/

Figure 3. Randomly sampled CAD objects from the DeepCAD dataset by Wu et al., 2021,
exemplifying the simple nature of the training data. Graphic created by authors

While 3D printing, computer graphics, and similar interest groups publish CAD data collected in a
dataset, this content predominantly does not represent industrial applications. As a result, a significant
deficiency exists in professional-grade CAD data. This is reflected in the DeepCAD and Fusion360
Gallery datasets, containing trivial objects such as a single cylinder or cuboid. Compared to CAD models
utilized in engineering firms, publicly available datasets often lack the complexity and detail
characteristic of CAD models, thus limiting their applicability in professional settings. Another common
issue across these datasets is the presence of geometric errors, such as self-intersecting edges, misaligned
edges, and duplicate vertices, which complicate their use in training machine learning models. Finally,
the CAD models within each dataset are devoid of annotations, such as captions, names, labels, or any
additional information that could facilitate training for subsequent tasks such as Text-To-CAD
integration.

5.2. Data representation

A key aspect of GenAl for CAD research involves developing techniques for encoding complex
parametric data structures into formats suitable for machine learning.

Effective data representation is a critical factor in the success of deep learning models (Goodfellow et al.,
2016). Properly structured and comprehensive representations enable the model to capture essential
features, improving learning efficiency, generalization, and overall performance in each task.

A significant challenge in CAD modeling stems from its sequential and parametric nature. The order of
operations is critical, as each operation must be executed in a specific sequence (Wu et al., 2021).
Furthermore, for each operation, the generative Al model must identify the appropriate parameterization
to ensure accurate representation and functionality of the design.

The parametrizations of each sequence step are, in turn, challenging as the parameters are a mix of
discrete data (for example, clockwise sign), continuous data (for example, extrusion distance), and
relational data (for example, parallel constraint between two lines). Relational constraints can exist
between various elements, such as edges (e.g., collinear constraints) or points (e.g., coincidence
constraints). The added complexity arises from handling constraints between edges and points on those
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edges, necessitating advanced strategies for effectively representing and maintaining these relationships
within the model.

Current research (Wu et al., 2021; Xu et al., 2023) has simplified the representation of CAD data by
omitting constraints. This method represents a model’s construction history by encoding CAD
commands and their parameters into sequential vectors. Although this method is computationally
efficient, it overlooks constraints—an essential feature in CAD.

5.3. Proprietary file formats

Commercial CAD vendors protect their data files through proprietary binary formats that are accessible
only via licensed software, keeping innovation in the hands of the commercial vendors (Stroud & Nagy,
2011). The licenses are often costly, limiting accessibility for academic researchers and startups.
Additionally, incompatible file formats across different vendors create artificial barriers, hindering data
aggregation from diverse sources and generalizing research findings. A neutral format, in contrast, would
provide independence from vendor-specific formats, promoting broader interoperability and
compatibility. While the STEP and IGES formats aim to improve interoperability, they come at the
expense of losing constrained sketches and construction history information.

Existing research has introduced custom JSON formats to represent CAD model information, but their
structure remains closely tailored to the specific scope of each project (Willis et al., 2021; Wu et al.,
2021). File format of open-source alternatives like FreeCAD is as well closely coupled with the main
software and is not designed for interoperability. Defining a comprehensive CAD format is challenging,
as it must represent geometric shapes and encode details such as tolerances, materials, and annotations.

5.4. CAD operations

Current generative Al approaches for CAD modelling primarily rely on Sketch and Extrude operations,
which represents a significant limitation for practical applications. While these operations form the
foundation of CAD modelling, professional designers routinely employ a broader set of operations
including Revolution, Sweep, Loft, Blend, Fillet, and Chamfer to create complex geometries (Heidari &
losifidis, 2024). Operations like Fillets and Chamfers can only be applied to B-REP edges—elements that
only emerge after converting the Sketch and Extrude sequence into a B-REP model (Jayaraman etal., 2023).
This technical constraint forces designers to manually add these features as post-processing steps,
diminishing the efficiency gains promised by generative Al. While the Sketch and Extrude paradigm
provides a useful starting point for research, recent work on highlights the necessity of incorporating a wider
range of operations to generate realistic engineering components (Li et al., 2023; Zhang et al., 2023).

6. Opportunities for further research
6.1. GenAl architecture for CAD data

A critical challenge in developing generative Al models for computer-aided design is effectively encoding
the mix of categorical, continuous, and relational data types. As it is difficult for a single model to
comprehend a mix of data types (Borisov et al., 2024), we propose a mix of expert models (see Figure 4) to
capture each of the essential features of the CAD object because it may be challenging for just a single model
to handle different types of data. However, the implementation of expert model ensembles will likely still
require domain-specific fine-tuning or retraining to accommodate the diverse use cases described in Section
4. This comes with the practical constraint of requiring additional computational resources.

Our method assumes that CAD objects are constructed through an alternating sequence of two
fundamental operations: sketch and extrusion. Each of these operations is handled by dedicated
generators, which take a conditioning vector as input to control the generation process. The conditioning
vector (Mirza & Osindero, 2014) can vary depending on the specific use case and could be derived from
various sources such as embeddings of feature specifications, images, or any other relevant information.
This flexibility allows our method to adapt to different requirements and generate CAD objects based on
the provided conditioning vector input. The sketch generator consists of two submodules: a primitive
generator and a constraint generator (Para et al., 2021).

The primitive generator is a decoder-only transformer (Radford et al., 2019) that produces lines, arcs, and
circles through an autoregressive process to accommodate variable-length sketches. Consistent with
previous work (Wu et al.,, 2021; Xu et al., 2022, 2023), we employ the technique of quantizing
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Figure 4. Schematic of our proposed GenAl architecture for CAD with separate sketch and extrude
generators for autoregressive generative of CAD command sequences. Graphic created by
authors

continuous parameters into discrete values. However, in our approach, we utilize a higher level of
numerical precision to achieve more accurate results.

Constraints between edges of a sketch are well represented as a constraint graph (CG), where primitives
serve as nodes, and constraints in the sketch relate to annotated edges in the CG (Ding, 2014; Seff et al.,
2020). Binary constraints such as parallel or perpendicular can be directly mapped from and to the CG.
For unary constraints such as vertical and horizontal, we introduce virtual nodes representing coordinate
axes, allowing these constraints to be modelled as binary constraints in the CG.

Constraints such as coincidence and concentric don’t operate on primitives but on the endpoints of
primitives, making a separate CG necessary to generate coincidence and concentric constraints. Other
constraint types exist, but the mentioned constraints already cover most cases as seen in Figure 5 While
earlier methods employed pointer networks to model CGs (Seff et al., 2022), our constraint generator is a
Graph Neural Network (GNN) to fully leverage the inherent graph structure. For training, we assemble CGs
from existing CAD objects. At inference, our GNN acts as a link predictor using primitive nodes for input
and outputting a CG. Link prediction using machine learning has been demonstrated in Zhu et al., 2022.
The extrusion generator is also a decoder-only transformer (Radford et al., 2019) and determines
appropriate extrusion parameters, for example extrusion distance or taper angle based on sketch
geometry, construction history, and conditioning vectors. Again, continuous parameters quantized.
Instead of using end-of-sequence tokens within each generative module, our architecture employs a dedicated
stopping classifier. This modular approach separates the generation logic from termination decisions, allowing
each component to focus on its specific task while the classifier independently determines when the model has
produced a complete CAD object based on the construction history and conditioning vector.

Combining sketches and extrude parameters creates a construction sequence that can be converted into a
3D object by a solid modelling kernel. This approach enables the generation of complex, manufacturable
CAD models. To manage model complexity, we propose to pre-train each module separately and then
fine-tune the entire ensemble on a smaller data set.
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Figure 5. Distribution of constraints in the Fusion360 gallery dataset by Willis et al., 2021. With the
mentioned constrains about 93.6% of all constraints are covered by our proposed GenAl model
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6.2. Accumulation of a large dataset

Engineering and manufacturing companies create detailed CAD models as technical specifications for
production but are reluctant to make these models publicly available. This presents research opportunities
to address the lack of accessible industrial CAD data while considering company requirements. Potential
solutions include data anonymization through feature removal and geometric transformations, and the
generation of synthetic datasets. However, machine-learning models trained on synthetic data typically
achieve lower accuracy when validated against real data (Rankin et al., 2020).

By pursuing these research directions, academia can help bridge the gap between industry and research in
professional-grade modelling while respecting the proprietary nature of industrial CAD data. Since
industry cooperation is crucial for data access, this could involve exploring collaborative opportunities
and developing data-sharing mechanisms that benefit both research institutions and companies.

6.3. Expanding CAD command palette

Current GenAl methods for CAD primarily focus on generating solid-body components with the two
basic operations sketch and linear extrusion, limiting their applicability to real-world design tasks. Future
research should prioritize expanding these methods to support a broader range of complex modeling
operations commonly used in industry, such as fillet, chamfer, loft, sweep, and draft (Heidari & losifidis,
2024). Sheet metal design, which heavily relies on bending operations, is also notably absent from
existing work despite its prevalence in automotive manufacturing (Trzepiecinski, 2020).

For sketch primitives current state-of-the-art models such as Wu et al., 2021; Xu et al., 2022, 2023 only
support line, arc and circle primitives in both their datasets and GenAl models (Sarkar, 2014). The
accumulation of a large dataset as proposed in chapter 6.2. could include new commands besides sketch
and extrude, which would be essential for developing more versatile and industry-relevant GenAl CAD
systems.

6.4. Vendor-neutral file format

A vendor-neutral CAD file format would foster innovation by eliminating barriers created by proprietary
formats and incompatibilities between CAD systems (Lee et al., 2019). A neutral format would enable
broader interoperability, making aggregating data from diverse sources easier. Achieving this could be
accomplished either through a collaborative standardization process or by the widespread adoption of a
single open-source format. Developing a standardized format upon existing JSON formats or YAML
could provide significant benefits since both are flexible, human readable and version control compatible
make it a promising foundation for CAD data exchange. Its widespread support across programming
languages could facilitate broader adoption and collaboration in the CAD community.

7. Discussion

The underdevelopment of GenAl for CAD compared to GenAl for other media stems from several
interrelated challenges. Existing CAD datasets suffer from inadequate complexity and sparse
annotations, while the intrinsic characteristics of CAD data pose unique machine learning representation
challenges, and proprietary file formats in commercial systems create substantial barriers to accessibility
and interoperability. In the future we would like to overcome these challenges and investigate the
practical implementation of each use case. The presented use cases of GenAl for CAD are also applicable
to design in team projects, with the Al potentially acting as an enabler for the entire team. GenAl tools
can foster interdisciplinary collaboration, allowing team members from different backgrounds to
leverage the Al’s capabilities to better understand and manipulate CAD data and effectively work with
complex CAD software.

8. Conclusion

Advancing GenAl in CAD requires addressing several fundamental challenges. Key requirements
include building comprehensive datasets that better represent industrial applications, developing a
vendor-neutral file format that preserves all essential information, creating Al architectures capable of
handling diverse data types, and expanding generative methods to encompass complex CAD operations.
A significant obstacle remains the disconnect between companies possessing valuable training data but
lacking GenAl development resources, and organizations with Al expertise but limited access to real-
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world CAD data. Future work will focus on implementing the proposed Al architecture using open file
formats to bridge these gaps and advance the field of generative Al for CAD.

References

Aytac, B., & Wu, S. (2013). Characterization of demand for short life-cycle technology products. Annals of
Operations Research, 203, 1-23. https://doi.org/10.1007/s10479-010-0771-5

Borisov, V., Leemann, T., SeBler, K., Haug, J., Pawelczyk, M., & Kasneci, G. (2024). Deep neural networks and
tabular data: A survey. IEEE Transactions on Neural Networks and Learning Systems, 35(6), 7499-7519.
https://doi.org/10.1109/TNNLS.2022.3229161

Brynjolfsson, E., Li, D., & Raymond, L. R. (2023). Generative Al at work (Working Paper No. 31161; Working
Paper Series). National Bureau of Economic Research. https://doi.org/10.3386/w31161

Cardoso Ermel, A. P., Lacerda, D. P., Morandi, M. I. W. M., & Gauss, L. (2021). Literature grounded theory
(LGT). In Literature reviews: Modern methods for investigating scientific and technological knowledge (pp.
85-145). Springer International Publishing. https://doi.org/10.1007/978-3-030-75722-9_6

Ding, B. (2014). 3D CAD Model Representation and Retrieval based on Hierarchical Graph. Journal of Software,
9(10), 2499-2506. https://doi.org/10.4304/jsw.9.10.2499-2506

Dunne, C. (2011). The place of the literature review in grounded theory research. International Journal of Social
Research Methodology, 14(2), 111-124. https://doi.org/10.1080/13645579.2010.494930

Ebert, C., Louridas, P., & Ebert, C. (2023). Generative Al for software practitioners. IEEE Software, 40(4), 30-38.
https://doi.org/10.1109/MS.2023.3265877

Goodfellow, 1., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Heidari, N., & losifidis, A. (2024). Geometric Deep Learning for Computer-Aided Design: A Survey (No.
arXiv:2402.17695). arXiv. http://arxiv.org/abs/2402.17695

Hirz, M., Harrich, A., & Rossbacher, P. (2011). Advanced computer aided design methods for integrated virtual
product development processes. Computer-Aided Design and Applications, 8, 901-913. https://doi.org/10.
3722/CADAPS.2011.901-913

Jayaraman, P. K., Lambourne, J. G., Desai, N., Willis, K. D. D., Sanghi, A., & Morris, N. J. W. (2023). SolidGen:
An Autoregressive Model for Direct B-rep Synthesis (No. arXiv:2203.13944). arXiv. http://arxiv.org/abs/
2203.13944

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J., &
Amodei, D. (2020). Scaling laws for neural language models. https://arxiv.org/abs/2001.08361

Kim, E. (2017). Workshop design for enhancing the appropriateness of idea generation using analogical thinking.
International Journal of Innovation Studies, 1(2), 134—143. https://doi.org/10.1016/].ijis.2017.10.002

Koch, S., Matveev, A., Jiang, Z., Williams, F., Artemov, A., Burnaev, E., Alexa, M., Zorin, D., & Panozzo, D.
(2019). ABC: A Big CAD Model Dataset For Geometric Deep Learning (No. arXiv:1812.06216). arXiv. http://
arxiv.org/abs/1812.06216

Kretzschmar, M., Dammann, M. P., Schwoch, S., Braun, F., Saske, B., & Paetzold-Byhain, K. (2024). Evaluating
the role of generative Al in product development and design—A systematic review. In J. Malmqvist, M. Candi,
R. J. Saemundsson, F. Bystrom, & O. Isaksson (Eds.), Proceedings of NordDesign 2024 (pp. 21-30).
Technische Universitat Dresden, Dresden, Germany and MAN Truck & Bus SE, Munich, Germany. https://
doi.org/10.35199/NORDDESIGN2024.3

Lee, S., Baek, H., & Oh, S. (2019). The role of openness in open collaboration: A focus on open-source software
development projects. ETRI Journal, 41(6), 801-810. https://doi.org/10.4218/etrij.2018-0536

Li, P., Guo, J., Zhang, X., & Yan, D. (2023). SECAD-Net: Self-Supervised CAD Reconstruction by Learning
Sketch-Extrude Operations (No. arXiv:2303.10613). arXiv. http://arxiv.org/abs/2303.10613

Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. ArXiv, abs/1411.1784. https://doi.org/
10.48550/arXiv.1411.1784

Para, W. R., Bhat, S. F., Guerrero, P., Kelly, T., Mitra, N., Guibas, L., & Wonka, P. (2021). SketchGen: Generating
Constrained CAD Sketches.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, 1. (2019). Language Models are Unsupervised
Multitask Learners.

Rankin, D., Black, M. M., Bond, R., Wallace, J., Mulvenna, M., & Epelde, G. (2020). Reliability of supervised
machine learning using synthetic data in health care: Model to preserve privacy for data sharing. JMIR Medical
Informatics, 8. https://doi.org/10.2196/18910

Regenwetter, L., Nobari, A. H., & Ahmed, F. (2022). Deep Generative Models in Engineering Design: A Review
(No. arXiv:2110.10863). arXiv. http://arxiv.org/abs/2110.10863

Sarkar, J. (2014). Computer aided design: A conceptual approach (Ist ed., p. 739). CRC Press. https://doi.org/10.
1201/b17741

ICED25 889


https://doi.org/10.1007/s10479-010-0771-5
https://doi.org/10.1109/TNNLS.2022.3229161
https://doi.org/10.3386/w31161
https://doi.org/10.1007/978-3-030-75722-9_6
https://doi.org/10.4304/jsw.9.10.2499-2506
https://doi.org/10.1080/13645579.2010.494930
https://doi.org/10.1109/MS.2023.3265877
http://arxiv.org/abs/2402.17695
https://doi.org/10.3722/CADAPS.2011.901-913
https://doi.org/10.3722/CADAPS.2011.901-913
http://arxiv.org/abs/2203.13944
http://arxiv.org/abs/2203.13944
https://arxiv.org/abs/2001.08361
https://doi.org/10.1016/j.ijis.2017.10.002
http://arxiv.org/abs/1812.06216
http://arxiv.org/abs/1812.06216
https://doi.org/10.35199/NORDDESIGN2024.3
https://doi.org/10.35199/NORDDESIGN2024.3
https://doi.org/10.4218/etrij.2018-0536
http://arxiv.org/abs/2303.10613
https://doi.org/10.48550/arXiv.1411.1784
https://doi.org/10.48550/arXiv.1411.1784
https://doi.org/10.2196/18910
http://arxiv.org/abs/2110.10863
https://doi.org/10.1201/b17741
https://doi.org/10.1201/b17741

Seff, A., Ovadia, Y., Zhou, W., & Adams, R. P. (2020). SketchGraphs: A Large-Scale Dataset for Modeling
Relational Geometry in Computer-Aided Design (No. arXiv:2007.08506). arXiv. http://arxiv.org/abs/2007.
08506

Seff, A., Zhou, W., Richardson, N., & Adams, R. P. (2022). Vitruvion: A Generative Model of Parametric CAD
Sketches (No. arXiv:2109.14124). arXiv. http://arxiv.org/abs/2109.14124

Sharma, V., Sharma, V., & Shukla, O. J. (2023). Principles and practices of CAD/CAM (Ist ed., p. 332). Chapman
and Hall/CRC. https://doi.org/10.1201/9781003350842

Stroud, I., & Nagy, H. (2011). Solid Modelling and CAD Systems. Springer London. https://doi.org/10.1007/978-
0-85729-259-9

Tan, J. (2018). Special issue on innovative design of complex products. Chinese Journal of Mechanical
Engineering, 31. https://doi.org/10.1186/s10033-018-0232-7

Trzepiecifiski, T. (2020). Recent Developments and Trends in Sheet Metal Forming. Metals, 10(6), 779. https://doi.
org/10.3390/met10060779

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, \Lukasz, & Polosukhin, I.
(2017). Attention Is All You Need. Proceedings of the 31st Conference on Neural Information Processing
Systems (NeurlPS), 5998-6008.

VukaSinovic, N., & Duhovnik, J. (2019). Advanced CAD modeling: Explicit, parametric, free-form CAD and re-
engineering. Springer International Publishing. https://doi.org/10.1007/978-3-030-02399-7

Willis, K. D. D., Jayaraman, P. K., Lambourne, J. G., Chu, H., & Pu, Y. (2021). Engineering Sketch Generation for
Computer-Aided Design. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2105-2114. https://doi.org/10.1109/CVPRW53098.2021.00239

Willis, K. D. D, Pu, Y., Luo, J., Chu, H., Du, T., Lambourne, J. G., Solar-Lezama, A., & Matusik, W. (2021).
Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD Construction from Human Design
Sequences (No. arXiv:2010.02392). arXiv. http://arxiv.org/abs/2010.02392

Wu, R., Xiao, C., & Zheng, C. (2021). DeepCAD: A Deep Generative Network for Computer-Aided Design
Models. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 6752—-6762. https://doi.org/
10.1109/ICCV48922.2021.00670

Xu, X., Jayaraman, P. K., Lambourne, J. G., Willis, K. D. D., & Furukawa, Y. (2023). Hierarchical Neural Coding
for Controllable CAD Model Generation (No. arXiv:2307.00149). arXiv. http://arxiv.org/abs/2307.00149

Xu, X., Willis, K. D. D., Lambourne, J. G., Cheng, C.-Y., Jayaraman, P. K., & Furukawa, Y. (2022). SkexGen:
Autoregressive Generation of CAD Construction Sequences with Disentangled Codebooks (No.
arXiv:2207.04632). arXiv. http://arxiv.org/abs/2207.04632

Zhang, S., Guan, Z., Jiang, H., Ning, T., Wang, X., & Tan, P. (2023). Brep2Seq: A dataset and hierarchical deep
learning network for reconstruction and generation of computer-aided design models. Journal of
Computational Design and Engineering, 11(1), 110-134. https://doi.org/10.1093/jcde/qwae005

Zhu, Z., Zhang, Z., Xhonneux, L.-P., & Tang, J. (2022). Neural Bellman-Ford Networks: A General Graph Neural
Network Framework for Link Prediction (No. arXiv:2106.06935). arXiv. https://doi.org/10.48550/arXiv.2106.
06935

890 ICED25


http://arxiv.org/abs/2007.08506
http://arxiv.org/abs/2007.08506
http://arxiv.org/abs/2109.14124
https://doi.org/10.1201/9781003350842
https://doi.org/10.1007/978-0-85729-259-9
https://doi.org/10.1007/978-0-85729-259-9
https://doi.org/10.1186/s10033-018-0232-7
https://doi.org/10.3390/met10060779
https://doi.org/10.3390/met10060779
https://doi.org/10.1007/978-3-030-02399-7
https://doi.org/10.1109/CVPRW53098.2021.00239
http://arxiv.org/abs/2010.02392
https://doi.org/10.1109/ICCV48922.2021.00670
https://doi.org/10.1109/ICCV48922.2021.00670
http://arxiv.org/abs/2307.00149
http://arxiv.org/abs/2207.04632
https://doi.org/10.1093/jcde/qwae005
https://doi.org/10.48550/arXiv.2106.06935
https://doi.org/10.48550/arXiv.2106.06935

	Challenges and opportunities in the integration of generative AI with computer-aided design
	1.. Introduction
	2.. Background
	2.1.. CAD software
	2.2.. CAD data
	2.3.. GenAI models for computer-aided design

	3.. Research process
	4.. Use cases of GenAI in CAD
	5.. Challenges in implementing GenAI in CAD
	5.1.. Training data availability
	5.2.. Data representation
	5.3.. Proprietary file formats
	5.4.. CAD operations

	6.. Opportunities for further research
	6.1.. GenAI architecture for CAD data
	6.2.. Accumulation of a large dataset
	6.3.. Expanding CAD command palette
	6.4.. Vendor-neutral file format

	7.. Discussion
	8.. Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


