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ON TORSION-FREE DISCRETE SUBGROUPS OF 
PSL(2, C) WITH COMPACT ORBIT SPACE 

L. A. BEST 

Introduction. In 1883 Poincaré [13] recognized that the discrete sub­
groups of PSL(2, C) could be extended from their natural action on the 
complex plane to acting on hyperbolic 3-space and he attempted to analyze 
these groups in an analogous manner to his classical treatment of Fuchsian 
groups, with fundamental polyhedra playing the role of the fundamental 
polygons for Fuchsian groups. This approach, however, did not lead very far, 
perhaps not surprisingly when one appreciates the close connection between 
the geometry of these groups and the topology of 3-manifolds. Since that time 
the state of knowledge remained essentially unchanged until 1964 when work 
by Ahlfors [1] and soon afterwards by Bers [3] revitalized the subject of 
Kleinian groups. The modern approach tends to use analytic methods, 
although recently Marden [11] has had considerable success in carrying 
forward Poincaré's geometric approach. 

In this paper we study a particular family of discrete subgroups of 
PSL(2, C) which are not Kleinian, namely the groups which have compact 
orbit space. Any such group which is torsion-free is the fundamental group of 
its own orbit space, which is a compact 3-manifold. Consequently, the problem 
of complete enumeration of these groups is formidable, as indeed it would 
contain a major contribution to the classification of compact 3-manifolds 
which appears to be beyond the reach of topology at the present time. In this 
work we exhibit methods of obtaining examples of torsion-free groups and 
illustrate how to construct the corresponding 3-manifolds. Our main tools are 
an existence theorem (§3) by means of which the existence of groups can be 
established geometrically, and the Reidemeister-Schreier method (outlined in 
§ 5). In § 6 we rediscover the hyperbolic dodecahedral space of Weber and 
Seifert [15]. This leads us to ask which groups exist having one of the regular 
hyperbolic solids as fundamental polyhedron and it is found, in § 7, that two 
such solids each admit a number of non-isomorphic torsion-free groups. 

1. The group PSL(2, C). PSL(2, C) denotes the group of linear fractional 
transformations 

w = — . a ? ^ c fi c o m p l e X j ad — be = 1. 
cz + a 

This group acts naturally on the extended complex plane. However, the action 
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of an element may be extended so t h a t PSL(2 , C) operates as a group of 
conformai t ransformations of the 3-space Rz W (oo ) leaving invar ian t the 
upper half space B — {(xi, x2, x$): x3 > 0} . Giving B the Riemannian metr ic 

, 2 d%i + dx2 + dxz 
ds = Ï? ' 

i t is isometric to the 3-dimensional hyperbolic space and PSL(2 , C) is the entire 
group of orientat ion-preserving isometries (see [13]). 

T h e elements of PSL(2 , C) fall into four families according to their fixed-
point set. Only the elliptic elements (rotat ions abou t hyperbolic lines) have 
fixed points in B, and moreover only elliptic elements m a y have finite order, 
the rotat ion through 6 being of finite order whenever 6 is a rat ional mult iple of 7r. 

PSL(2 , C) inheri ts the quot ient topology of the subspace 

{a, b, c, d): ad — be = 1} 

of C4 under the identification of points ± (a, b, c, d). A subgroup of PSL(2 , C) 
is discrete if and only if it acts discontinuously in B. As an elliptic e lement 
generates a subgroup of the compact circle group, any elliptic element in a 
discrete subgroup of PSL(2 , C) mus t have finite order. W e shall be concerned 
only with a subfamily of the discrete subgroups, namely those with compac t 
orbit space, and in wha t follows it will be understood t h a t a discrete subgroup 
always has this proper ty . 

2. F u n d a m e n t a l p o l y h e d r a . Let T be a discrete subgroup of PSL(2 , C). 
A fundamental polyhedron F for T is a hyperbolic polyhedron (a closed, 
connected subset of B whose frontier is a union of hyperbolic polygons called 
the faces of F) such t h a t 

(i) the faces of F are identified in pairs by elements of T, the pairs being 
dis t inct except in the case of a face being self-congruent under an 
involution of T, 

(ii) F is a T-covering (i.e., B = U T ^ 7 G r ) , 
(hi) F°, the interior of F, is a T-packing (i.e., F° Pi 7 ^ ° = 0, all 1 ^ 7 £ r ) . 
Fundamen ta l polyhedra always exist. For example, let p G B be a point 

which is no t fixed by any 1 ^ 7 G r and let d(x, y) denote hyperbolic dis tance 
in B. Then the Dirichlet region 

Dv = {£ Ç B: d(£, p) ^ d($f yp), all 7 G T} 

is known to be fundamental for T (see [8]). 
F rom the distr ibution of the faces of F in to congruent pairs under T the 

edges of F are divided into dis t inct congruent sets called "cycles of F" 
(because of the cyclic ordering on the edges of each congruent set indicated 
in [13]). T h e sum of the dihedral angles a t the edges of any cycle of F is 2ir/k, 
where k is the order of the stabilizer in T of each edge of the cycle (see [13]). 
If k = 1, we refer to the cycle as being " inessent ia l" , and otherwise "essent ia l" . 
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The configuration formed by the fundamental polyhedron F together with 
all images y F (7 G T) is called the F-tessellation of B, each image y F being 
a "cell" of the tessellation. Two cells with a face in common are called 
"neighbours". By a standard argument it is shown that the set E C T con­
sisting of those elements which map F to a neighbour form a generating set 
for T. Furthermore (see [8; 9]), the canonical relations obtained as follows 
are a complete set of defining relations for T in generators E. Consider an 
edge of F at which n cells of the tessellation intersect. By pursuing a small 
closed path traced around the edge we get from one cell to the next by passing 
from a cell to a neighbour. Consequently the n cells, encountered in order, 
can be expressed as 

F, aiF, aia2F, aia2azF, . . . , axa2ad . . . an-iF, 

where a* G E, i = 1, 2, . . . , w — 1. Moreover, on completion of the path we 
enter cell a\a2az . . • anF (an G E) coincident with F and thereby obtain the 
canonical relation of the edge, aia2az . . . an = 1. It is easily seen that congruent 
edges of the ^-tessellation yield a cyclic re-ordering of the same canonical 
relation and hence there is one distinct relation for each cycle of F. 

3. An existence theorem. We have seen in the previous section how a 
discrete subgroup of PSL(2, C) gives rise to a hyperbolic polyhedron from the 
geometric properties of which an abstract presentation of the group can be 
obtained. Conversely, by constructing hyperbolic polyhedra with appropriate 
geometric properties, the existence of discrete subgroups of PSL(2, C) can 
be established. 

THEOREM 1. Let F be a bounded hyperbolic polyhedron with faces (finite in 
number) oriented coherently, and having the following additional properties: 

(i) The faces of F may be labelled in distinct pairs At and Ac1, i G 7, in 
such a way that At and Af1 are congruent hyperbolic polygons and for 
each i G I there exists at G PSL(2, C) which maps A f1 onto A t preserving 
the orientation; 

(ii) The congruence of pairs of faces of F induces a distribution of the edges 
into distinct cycles in such a way that the sum of the dihedral angles at the 
edges of each cycle is an integer submultiple of 2ir. 

Let T be the subgroup of PSL(2, C) generated by the elements {at: i G / } . 
Then T is a discrete subgroup for which F is a fundamental polyhedron. 

Theorem 1 is a special case of a more general result outlined by Poincaré in 
[13], where he permitted the polyhedron to be unbounded, corresponding to 
the case of Kleinian groups (non-compact orbit space). The converse situation 
for Kleinian groups, however, is not so pleasant as the account of the previous 
section; for example, Greenberg [5] has shown that there exist finitely 
generated Kleinian groups which have no fundamental polyhedron with a 
finite number of faces. Proofs of Poincaré's theorem have recently appeared 
(see [11; 12]). We have proved (unpublished) the case stated in Theorem 1 
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by means of a covering space argument. This type of argument has been 
developed by Macbeath [10] in a generalized existence theorem for groups of 
homeomorphisms of a simply connected space. 

4. The hyperbolic tetrahedral groups. Theorem 1 enables one to 
uncover many families of discrete subgroups of PSL(2, C) from a geometric 
approach. For instance, suppose that one constructs a hyperbolic polyhedron P 
each of whose dihedral angles is an integer submultiple of IT. Consider P*, the 
union of P and its reflection in one of its faces, say A. The faces of P* fall 
naturally into congruent pairs (each face and its reflection) for there is a 
unique orientation-preserving element which also takes each point of a face 
to its reflection in A. Under this congruency of faces, the cycle of an edge of P* 
contains only itself and its reflection and consequently the edges of the face A 
(where the dihedral angle in P* is twice that in P ) form 1-cycles whilst all 
remaining edges belong to 2-cycles. Therefore the sum of the dihedral angles 
at a cycle of P* is in all cases an integer submultiple of 2w and the hypotheses 
of Theorem 1 are fulfilled. The discrete subgroup T for which P* is fundamental 
is clearly the subgroup of index 2, consisting of the orientation-preserving 
elements, in the group generated by reflections in the faces of P , and is itself 
generated by elliptic elements. 

Lannér in [7] enumerated the hyperbolic tetrahedra possessing the above 
property of having all dihedral angles equal to an integer submultiple of 7r. 
Letting w/\i and w/pu i = 1, 2, 3, be the dihedral angles at opposite edges of 
the tetrahedron, where ir/\u i — 1, 2, 3, are the angles at the edges of a face, 
he showed that there are precisely nine such non-congruent tetrahedra which 
we list below describing each by its dihedral angles as [Xi, X2, X3 : Mi> M2, JU3]. 

T l [2, 2, 3 : 3, 5, 2], T4 [2, 2, 5 : 2, 3, 5], T7 [2, 3, 3 : 2, 3, 5], 
T2 [2, 2, 3 : 2, 5, 3], T5 [2, 3, 3 : 2, 3, 4], T8 [2, 3, 4 : 2, 3, 5], 

T3 [2, 2, 4 : 2, 3, 5], T6 [2, 3, 4 : 2, 3, 4], T9 [2, 3, 5 : 2, 3, 5]. 

The canonical presentation of the associated hyperbolic tetrahedral group is 

axi = JX2 = cx3 = (pcyi = (ca)M2 = (aby* = 1. 

5. The Reidemeister-Schreier method. In the subsequent work we will 
be looking for torsion-free discrete subgroups of PSL(2, C) and, to this end, 
we will be confronted with the following problem. Given a finitely presented 
group G and a homomorphism # whose kernel Go has finite index in G, find 
generators and defining relations for Go. There is a mechanical process of 
solution to this problem, due to Reidemeister and Schreier, which for com­
pleteness we outline here. 

Suppose that G is generated by {gi\ i Ç /} and that {Rj = 1: j G /} is a 
complete set of defining relations in these generators. Choose a Schreier 
system {ak: k G K] of right coset representatives for G0. Let <ï> be the function 
assigning to each element of G its Schreier coset representative of Go. Then 
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(see [6]) Schreier proved that G0 is generated by the set 

{ajcgi^i^gi)-1: i £ I,k £ K}. 

Moreover, Reidemeister [14] showed that when expressed in these generators, 

{akRjak-i = 1: j 6 / , k 6 K] 

is a complete set of defining relations for Go. 
When Go is of large index in G, the calculation is somewhat cumbersome 

and it is often preferable to break the process up into easier stages, as follows. 
Suppose that H is a proper subgroup of <t>(G) and that G* C G consists of 
those elements that are mapped by <j> onto H. Replacing {ak: k £ K) by a 
Schreier system {bk>\ k' G K'\ of coset representatives for G* in G, the 
prescribed method gives a presentation for G*. Now <j>*: G* —» H, the re­
striction of </> to G*, has the same kernel as <j> and so repetition leads to a 
presentation for Go. 

6. On fundamental groups of 3-manifolds. Let Y be a discrete sub­
group of PSL(2, C) and T0 the normal subgroup generated by the elliptic 
elements in V. By a standard result (see for example [2]), Y/Y0 is the funda­
mental group of the orbit space B/Y. Hence, if Ti and T2 are non-isomorphic 
torsion-free groups, then the orbit spaces B/Yi and B/T2 are distinct compact 
3-manifolds. 

In the analogous 2-dimensional situation it is well known that the Fuchsian 
triangle group with presentation 

x2 = y* = (xy)7 = 1 

contains as subgroups of different finite index the fundamental groups of all 
compact Riemann surfaces of genus ^ 2 . Of course one could not hope to 
classify compact 3-manifolds by similar means, but nevertheless it seems most 
likely that a hyperbolic tetrahedral group, for instance, will have an infinite 
family of non-isomorphic torsion-free subgroups thereby giving rise to an 
infinite set of distinct 3-manifolds. The Reidemeister-Schreier method provides 
a way of obtaining presentations of torsion-free subgroups of the hyperbolic 
tetrahedral groups, as illustrated by the following typical example. 

Consider the group T corresponding to T4: 
a2 = b2 = C 5 = (fcy = ( m ) 3 = (afc)5 = 1# 

Let N be a proper normal subgroup of Y and r, s, and / the respective images 
of a, by and c under the canonical homomorphism <£: Y —* T/N. Then r, s, 
and/generate T/N and the relations r2 = s2 = th = (s/)2 = {try = (rs)b = 1 
hold. Now if we had a Ç N, it would follow that r = 1, whence s = t = 1 
and N = T, which is a contradiction. Therefore a (£ N and, being normal, N 
does not contain any conjugate of a. The same argument shows that N does 
not contain any of the elements b, c, ab, be, and cay nor any of their conjugates. 
As these are the only elliptic elements in T, it follows that N is torsion-free. 

The smallest non-trivial group onto which Y can be mapped homomorph-
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ically is the alternating group A 5, a homomorphism ^ : r —> Ah being given by 

¥(a) = (15)(34), *(6) = (14) (23), ¥(c) = (12345) . 

The kernel of ^ is determined by the Reidemeister-Schreier method to be the 
group r 0 on six generators and defining relations 

abcde = 1, cxad~1e~1 = 1, 

axdb~1c~1 = 1, dxbe~1a~1 = 1, 

bxec~1d~1 = 1, exca~1b~1 = 1. 

This group is in fact the fundamental group of the "hyperbolic dodecahedron" 
of Weber and Seifert [15], the manifold obtained by identifying opposite faces 
of a dodecahedron with a twist of Sir/5. That the orbit space of T0 should be 
this manifold will become apparent from the work in the next section. 

7. Groups of the regular hyperbolic solids. All groups obtained directly 
by the approach of § 4 are generated by elliptic elements and so are certainly 
not torsion-free. In our quest for torsion-free groups, to by-pass use of the 
Reidemeister-Schreier method we seek polyhedra in hyperbolic space which 
fulfill the hypotheses of Theorem 1 in such a way that every cycle of edges is 
inessential. In the 2-dimensional case, all torsion-free Fuchsian groups with 
compact orbit space have regular hyperbolic polygons as possible fundamental 
domains. A natural starting point, therefore, is to examine the regular solids 
in hyperbolic space. There are basically five such solids, analogues of the 
Platonic solids of Euclidean space. However, whereas the dihedral angle of a 
Euclidean regular solid remains invariant under change of size of the solid, 
the dihedral angle of the hyperbolic solid varies, and in this sense there are 
infinitely many of each. But in the light of Theorem 1 we are only interested 
in those solids whose dihedral angle is an integer submultiple of 2TT, of which 
there are precisely four (see [4]), namely the hexahedron (2TT/5), the 
icosahedron (27r/3), the dodecahedron (27r/5) and the dodecahedron (ir/2). 

Barycentric subdivision cuts a regular solid into a number of copies of its 
"characteristic cell". If a discrete subgroup of PSL(2, C) has a regular solid 
as fundamental polyhedron, the symmetry group of the tessellation is the 
group generated by reflections in the faces of the characteristic cell. The 
characteristic cells of the forementioned regular hyperbolic solids are, respec­
tively, the tetrahedra T3(48), T2(120), T4(120), and T3(120), the bracketed 
integers denoting the number of cells in the subdivision. 

For the hexahedron (2TT/5) to fulfill the hypotheses of Theorem 1, we 
require to find a way of identifying its six faces orientably in three pairs so 
that the twelve edges are distributed into either 5-cycles (inessential) or 
1-cycles (essential). We see immediately that a torsion-free group could not 
possibly ensue since any solution must contain at least two essential cycles. 
Indeed, it is quickly checked that there is only one solution, that is, there is a 
unique group (up to isomorphism) for which the hexahedron is fundamental. 
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This group A is generated by two elliptic elements of order 5 and has defining 
relations 

as = hi = (b-ia-ibayba-^aba-1 = 1. 

Mapping a and b onto the same generator of the cyclic group Z5, A is mapped 
homomorphically onto Z5 in such a way that the kernel is a torsion-free 
subgroup Ao of index 5 in A. The Reidemeister-Schreier method gives the 
following presentation on five generators for A0: 

rv~lr(v~lu)2 = 1, ut~lu(t~ls)2 = 1, 
sr~ls(r~lv)2 = 1, vu~1v{u~1t)2 = 1. 
ts-His-h)2 = 1, 

Making the group abelian, the 3-manifold for which A0 is the fundamental 
group has first homology group Zn 0 Zn. We can construct this manifold 
in the following way. Since 1, a, a2, a3, and aA are coset representatives for A0 

in A, denoting the hexahedron by F, F* = F^J aFKJ a2F \J azF \J a4F is 
fundamental for A0. i7*, sketched in Figure 1, is a convex hyperbolic poly­
hedron with frontier consisting of twenty congruent square faces. From the 
pairing of faces of F in the group A, the pairing of faces of F* which results 
in the group A0 is determined as follows: 

ABCD^J'JKK', 
ADEF^B'BCC, 
AFGH^D'DEE', 
AHIJ <-> FFGG', 
AJKB<+H'Hir, 

The manifold is obtained from F* by identification of these faces. 

H 

A'B'CD' <-> C'D'DC, 
A'D'E'F'^E'F'FE, 
A'F'G'H' ^G'H'HG, 
A'H'TJ' Ir+I'J'JI, 
A'J'K'B' ^K'B'BK. 

FIGURE 1 
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A torsion-free group with the icosahedron (2TT/3) as fundamental polyhedron 
is possible, for we require to pair the faces orientably so that the thirty edges 
fall into ten 3-cycles. There are no fewer than three different solutions, which 
we present in Table 1 referring to the icosahedron shown stereographically in 
Figure 2. The corresponding manifolds are obtained by identifying the 
indicated pairs of faces of the icosahedron. 

Any discrete subgroup of PSL(2, C) with the dodecahedron (2ir/5) as 
fundamental polyhedron must be a subgroup of index 120 in the group 

FIGURE 2 FIGURE 3 

TABLE 1 : Manifolds from identifications of the icosahedron 

Fundamental group 
(Canonical presentation Homology 

Identified faces on ten generators) group 

ABC ^BEA ACI ^EBF b = a2 : ek-% = 1 
BCG ^GFJ : AED <-> FGB a~ldc = g~ldc~l = 1 
AID ^IHC : HIK <-* F EL j-ifh = r-i/ft-i = ] Z29 

GHJ ^DLE : DIK «-> KJH c~ljk = g~lj~lk = ] 
FJL ^KLD : CGH <-> KLJ drieb = fe~lb = ] 

ABC ++ICA ABE^LJF a = b2 : ah 1c = 
BCG ^ AID CI H <r+JLK c - & : fhrlg = 
CGH <-> FEB FGJ *->GJH e = p : JMr-i* = L Z35 

BFG *->HKJ • ADE <-> KIH e;"1^ = kj~ld = 
DIK «-• EFL • DEL «-> XLX> c;"1^ = &&g = 

ABC <^KDL • i4CJ ^>CGJ3 ad~lc = ca-"1^ = ] 
ABE^HJK : 4JZ> <->LZ)£ eb-y = ta"1* = 1 
AED <-> FJG : GHJ <-* IKD kj~la — jh~ld = ] z2© z2 
CGH <-> KLJ : IHK ++LFJ eh~lg = fo"1/ = ] 
CHI ^EBF BFG ++FLE df~lg = £g - 1 j = 1 
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TABLE 2: Manifolds from identifications of the dodecahedron 

Identified faces 

Fundamental group 
(Canonical presentation Homology 

on six generators) group 

ABCDE ^RSTPQ : AEJKL ++QGHIR a~Harleb = b^xb^ac = 
BALMN ^RIJKS : CBNOF <-> SKLMT c~Hc^bd = d^xdrHe • 
DCFGH <-* TMNOP : EDHIJ <-> POFGQ erHr*da = abode • 

ABCDE *->PQRST : AEJKL <-* IRQGH a^xb^ec = b"1xc1ad •• 
BALMN <-> KSRIJ : CBNOF <-* MTSKL c^xd^be = d^xe^ca 
DCFGH ++OPTMN: EDHIJ <^GQPOF e^xa~ldb = a&«fe = 

ABCDE <-* PQRST : i4EJJSZ <-» TOQPO a"1^"1^ = b^xa^ed • 
BALMN *-> DHGFC : CBNOF <-> JIHDE o~Hb^da = d~lxc~lbe = 
G^I^e ^STMLK : IJKSR ++ PONMT e^xd^ac = aftcJe = 

ABCDE <-+TPQRS : AEJKL <-> HIRQG abode = c&edx < 
BALMN <-» KSRIJ : C3M0F ^LMTSK bax~lcd~l = xae~Hb^ • 
DCFGH <-> TMNOP : ££>#/ / «-* POPGÇ a c ^ é r * = ^ e ^ a " 1 = 

ABCDE ^TPQRS : AEJKL ^ IRQGH abode = bed^xcr* 
BALMN <-> /2CSRI : C5iVOP <-> SKIMT xedac~l = exa^"1 : 
DCFGH <-> TMNOP : EDHIJ <-• PGÇPO cax&g"1 = acô^"1 

ABCDE *->TPQRS \ AEJKL ^QGHIR abode = cae^xd'1 

BALMN <-> JiLSPI : CBNOF <-> MTSKL xaebd-1 = axbeo'1 

DCFGH «-• NOPTM : EDHIJ <-* POFGQ dbxoar1 = fofee"1 

ABCDE ^KJEAL : DCFGH ^ JKSRI aH~lab^ = o2e~'da 
BALMN <-• KLMTS : EDHIJ *-> ÇPOPG e t e " 1 = «HK*-I& 
OBiVOF <-> tf/PÇC : MNOPT <-* PPSPQ ad"1*^ = cb^x^bx 

Z5® Z5@Z5 

Z5@Z5®Z5 

Zb ® Zi5 

Z 3 0 Z 3 

Z 3 0 Z 3 

Z 3 0 Z 3 

generated by reflections in the faces of T4 , its characteristic cell, and since i t 
contains only orientation-preserving elements mus t therefore be a subgroup 
of index 60 in the group T of § 6. Identifying opposite pairs of faces of the 
dodecahedron with a twist of 37r/5, the hypotheses of Theorem 1 are seen to 
be satisfied with six inessential cycles, and the ensuing torsion-free group is To, 
which we found in § 6 by means of the Reidemeister-Schreier method. There 
are seven further non-homeomorphic 3-manifolds obtained by identifying 
pairs of faces of the dodecahedron (27r/5), which are presented in Table 2 in 
which we refer to Figure 3. 

Finally, the dodecahedron (TT/2) , like the hexahedron, cannot be funda­
mental for a torsion-free group, for th i r ty edges cannot possibly be dis t r ibuted 
into 4-cycles (inessential). Nevertheless, there are several groups with torsion 
for which this dodecahedron is fundamental , and as in the case of the hexa­
hedron these groups contain torsion-free subgroups of small index which can 
be determined by use of the Reidemeister-Schreier method. 

For each of the icosahedron and dodecahedron there is a very large number 
of possible pairings of the faces and it is impracticable to investigate them all 
by hand. However, checking the lengths of edge cycles corresponding to a 
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given pairing of the faces is a mechanical process, and in compiling the lists 
of manifolds given in Tables 1 and 2 we called upon the assistance of an 
electronic computer. We remark also that the Reidemeister-Schreier method 
is readily accessible to a computer. 
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