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Abstract

In this paper we consider pseudo differential operators on local Hardy spaces hp (0 < p < 1) on
Chebli-Trimeche hypergroups of exponential growth.
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Since the introduction of the Hormander classes L"s of pseudo differential operators,
considerable effort has been made to establish the continuity of these on both Lebesgue
spaces V (p > 1) and local Hardy spaces hp (0 < p < 1) for the Euclidean space R"
(see [H, CV, F, G, PS]). Recall that a pseudo differential operator on K" is defined by

:= ITf(x) = p(x,D)f(x):

where Fo is the Fourier transform on K" and p(x, f) is called a symbol. A symbol
p(x, £) is said to belong to the class S™s (0 < r), S < 1, m e K) if for all multi-indices
a and p there exists a constant Coj3 > 0 such that

The operator p{-, D) is said to belong to the class L™4 if p(x, ^) e 5™,. In [H]
Hormander proved among other things that the operators in L° s (0 < S < rj < 1) are
bounded on L2. Calderon and Vaillancourt in [CV] extended this result to the case
0 < S = r) < 1. Fefferman [F] gave a different extension of Hormander's result and
showed that the operators in L~£ (0 < 5 < rj < 1, fi > n\\/p - 1/2|(1 — r))) map
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Lp into itself boundedly for 1 < p < oo. The continuity results concerning these
operators in the local Hardy space hp were discussed in [PS] and [G]. The Ll — L\
L2 — L2 and hl — L'-boundedness of certain pseudo-differential operators were also
investigated in [K] in the setting of noncompact symmetric spaces.

In this paper we study hp-boundedness for pseudo differential operators in the
classes L"s on Chebli-Trimeche hypergroups with exponential growth. In Section 1
we collect some basic facts of harmonic analysis on these hypergroups. We then
(Section 2) introduce pseudo differential operators on Chebli-Trimeche hypergroups
and prove L2-boundedness for operators in certain classes L™s. Finally, in Section 3 we
establish the continuity result for operators on the local Hardy spaces hp (0 < p < 1)
using the atomic and molecular decomposition of hp. It turns out that the extra
restriction of holomorphy on the symbols p(x, £) with respect to £ is necessary for
the operators to be bounded on hp when the volumes of balls grow exponentially.

Because of the exponential volume growth and the generalized convolution on
the hypergroup, the standard methods do not apply. Many basic facts relying on
the structure of a Euclidean space are largely unavailable; the Fourier transform
on hypergroups is far less well understood than on Euclidean spaces. We employ
techniques for noncompact symmetric spaces to overcome the difficulties caused by the
exponential growth, and use properties of the Fourier transform and estimates for the
characters to handle the problems arising from the generalized translation. Our method
is a combination of techniques for Euclidean spaces and for noncompact symmetric
spaces, and indeed the approach used here can be easily applied to noncompact
symmetric spaces.

1. Harmonic analysis on Chebli-Trimeche hypergroups

Chebli-Trimeche hypergroups (see Definition 1.1 below) form a class of 'one-
dimensional' hypergroups on R+ arising from Sturm-Liouville boundary value prob-
lems where the solutions coincide with the characters of the hypergroup in question.
The convolution structure of the hypergroup is related to the following second order
differential operator:

( 1 1 ) L L

where the function A is continuous on K+ , twice continuously differentiate on
R*+ = ]0, oo[ and satisfies the following conditions:

(1.2) A(0) = 0andA(;c) >Ofor;c > 0;
(1.3) A is increasing and unbounded;
(1.4) A'(x)/A(x) = (2a + l)/x + B(x) on a neighbourhood of 0 where a > - 1 / 2

and B is an odd C°°-function on K;
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204 Walter R. Bloom and Zengfu Xu [3]

(1.5) A'(x)/A(x) is a decreasing C°° -function on R*+ andhencep := l/21imJt_>+00

A'(x)/A(x) > 0exists.
Such a function A is called a Chebli-Trimeche function (see [BH, Section 3.5]).

DEFINITION 1.1. A hypergroup (R+, *) is called a Chebli-Trimeche hypergroup if
there exists a Chebli-Trimeche function A such that for any real-valued function/ on
K+ that is the restriction of an even nonnegative C°°-function on K the generalized
translation u(x, y) = Txf (y) (see (1.9) below) is the solution of the following Cauchy
problem:

ULA,x-LA,y)u(x,y)=0,
\u(x,0)=f(x), «,(*, 0) = 0, * > 0 .

We denote by (K+, *(A)) the Chebli-Trimeche hypergroup associated with A.

REMARK. In particular, if the function A is of the form A(x) := x2""1"1 with
a > —1/2 then (R+, *(A)) is a Bessel-Kingman hypergroup, and if A(x) :=
sinh2""1"1 x cosh2'*"1"1 x with a > /? > - 1 / 2 and a ^ - 1 / 2 then (R+,*(A)) is a
Jacobi hypergroup.

The hypergroup (R+, *(A)) is noncompact and commutative with neutral element
0 and the identity mapping as the involution. Haar measure on (R+, *(A)) is given by
co :— AAR+ where kR+ is the usual Lebesgue measure on R+. For an w-measurable
subset E we denote by \E\ its Haar measure and XE its characteristic function. For
x0 € K+ and r > 0 we denote by B(x0, r) the open interval ] max{0, xo — r], xo + r[.
The growth of the hypergroup is determined by the number p in (1.5). For the
hypergroup to be of exponential growth it is necessary and sufficient that p > 0 (see
[BH, Proposition 3.5.55]), for then (1.5) implies that A(x) > A(l)e2f>i"-l) for x > 1.
Otherwise we say that the hypergroup is of subexponential growth (which includes
polynomial growth). In the sequel we only consider hypergroups of exponential
growth.

The multiplicative functions on (R+, *(A)) coincide with the solutions <pk(X e C)
of the differential equation

(1.6) L<pk(x) = (X.2 + P
2)<pk(x),

and the dual space K^ can be identified with the parameter set K+ U i[0, p].
For 0 < p < oo the Lebesgue space LP(R+, Adx) is defined as usual, and we

denote by | | / | | P ,A the //-norm of/ e Lp(R+,Adx). Fo r / e Ll(R+,Adx) the
Fourier transform of/ is given by

f(k):= f f(x)<pk(x)A(x)dx.
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THEOREM 1.1 (Levitan-Plancherel; see [BH, Theorem 2.2.13]). There exists a
unique non-negative measure n on 0&* with support [0, oo[ such that the Fourier
transform induces an isometric isomorphism from L2(R+, Adx) onto L2(R+, n), and
for any f e L1 nL2(R+,Adx)

\f(x)\2A(x)dx= f \f(k)\2n(dk).

The inverse is given by

f(x) =

To determine the Plancherel measure it we must place a further (growth) restriction
on A. We assume that A has the form A(x) = x2a+lC(x) where C(x) is an even
C°° -function on R satisfying

(1.7) there exists a constant e > 0 such that for all x € [x0, oo[, x0 > 0

2 , + e D W

C(x) x
with D being a C°°-function bounded together with its derivatives (see [T2]).

We also assume that a > 0 and for each k € N, (A'(x)/A(x))(k) is bounded for
large* e K+.

THEOREM 1.2 (see [BX1, Proposition 3.17]). The Plancherel measure n is abso-
lutely continuous with respect to Lebesgue measure and has density |c(A)|~2 where
the function c satisfies the following:

(i) c(-k) = ~j
(ii) The function |c(A.)|~2 is continuous on K+ and there exist positive constants

Clt C2, K such that for any k € C

<C2|X|2, \k\<K;

< \c(k)\~2 < QIA.I2"-1-1, \k\ > K.

The following result can be found in [BX1, Lemma 2.5 and Lemma 3.28].

LEMMA 1.1. We have

A(jt)~;t2a+1 (x - • 0+)

and

A(x) ~ e2px (x -»• +oo).
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Let ex be the unit point mass at x e R+. For any x, y e l + the probability measure
ex * ey is ^-absolutely continuous with

(1.8) supp(€x*ey)C[\x-y\,x+y].

We denote by Txf the generalized translation of a function / by x e R+ defined by

(1.9) Txf(y):= [ f(z)(€x*€y)(dz).

The convolution of two functions / and g is defined by

(1.10) f*g(x)=[ TJ{y)g{y)A{y)dy.

We now introduce Schwartz functions and distributions on the hypergroup (see
[BX3]). For 0 < p < 2 the generalized Schwartz space yp(R+, *(A)) consists of the
restrictions to K+ of all functions in yp(R) where

yp(W) := {g e C°°(W) : g is even and ixp
kl{g) <oo,k,le No}

and

HP
kJ(g) := sup(l W 2 / V * )

For 0 < p < 2 set

with a = 2/p — 1 and p > 0 as in (1.5). Let y{&a) denote the extended Schwartz
space defined by all functions h that are even and holomorphic in the interior of &a,
and such that h together with all its derivatives extend continuously to &„ and satisfy
supX e^ \hlk)(k)\ < oo for any k,l e N. Also, we denote by <5%(IR+) the space of the
restrictions to K+ of the functions in <yfp(R) where

ytpVBL) = {g€ C°°(K) : g is even and v#(g) < oo}

with

Note that y0 = y(^0) is the usual Schwartz space on R+ and will be denoted by
y(R+). In the sequel we use F to denote the Fourier transform on the hypergroup, Fo

the classical Fourier transform and s/ the Abel transform (see [Tl] for the definition
of this last transform).
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THEOREM 1.3 (see [BX3])). Let a = 2/p - 1 with 0 < p < 2. Then the Fourier
transform F on (K+, *(A)) is an isomorphism from S?P(R+, *(A)) to 5^{^s), the
classical Fourier Fo an isomorphism from yfp(U.+) to y(&&), and the Abel transform
£/ an isomorphism from ^ , (R + , *(A)) to ^^(0^+) satisfying Ff = Fo(

A p-distribution on K+ is a continuous linear functional on yp(R+, *(A)); the
totality of p-distributions on R+ is denoted by ^p'(K+, *(A)). We define the Fourier
transform of/ e ^ ' (K+, *(A)) by

f{(j>):=f{F~x4>), ^

By Theorem 1.3, / is well defined as a distribution in y'{^?a) and F is continuous
on yp(K+, *(A)). The convolution of/ e ^p'(K+, *(A)) and <p e yp(R+, *(A)) is
a p -distribution defined by

We now give some useful estimates for characters and their derivatives.

LEMMA 1.2 (see [BX3, Lemma 3.4]). Let k = £ + iri e C.

(i) |^(JC) | < eMx<p0(x);
(ii) e~px < <Po(x) < C(l +x)e~px;

(iii) for any k e No we have

< xkeMx<p0(x).

LEMMA 1.3 (see [BX4]). Let k = £ + it) € C and k € No.

< 1, x <

We also have the following alternative estimate:

\<p[k\x)\ < CAA(xy1/2(\Mx)i/2'a\c(k)\(l + \k\)keMx, \X\x < 1, x > 1.

Finally, we shall use C to denote a positive constant which value may vary from line
to line. Dependence of such constants upon parameters of interest will be indicated
through the use of subscripts.
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2. Continuity of pseudo differential operators in L2(K+, Adx)

In this section we introduce Hormander's class L™a of pseudo differential opera-
tors on Chebli-Trimeche hypergroups and investigate their continuity properties with
respect to the L2 norm.

DEFINITION 2.1. A pseudo differential operator p(x, D) on (R+, *(A)) is defined
by

•=LTf(x)=p(x,D)f(x):= f(k)p(x,k)<pk(x)jr(dk), x e R+
Jo

where p (x, k) is an even function with respect to both x and k on K x C and is called
a symbol. A symbol p(x, k) is said to belong to the class S"s (0 < rj, S < 1, m e K)
if for all nonnegative integers k, I there exists a constant Cu > 0 such that

3* 3'
n (v ^ ^-/^* / I L H l\m~ nk+Sl7TT7r~7/H*>*) 5 Wi(l + |A )

3A* 3x'

The operator p(x, D) is said to belong to the class L™s if p(x, k) e S"s.
To obtain an L1 estimate we relate p(x, D) to a pseudo differential operator on K.

For x > 0 we put
21 fA'(x)\2 1 /A'OO

4 \A(x)/ 2 \A(x)4 \ A ( x ) / 2 \A(x)

Recall that for each k e C, A. ^ 0 the differential equation

has two linearly independent solutions 4>x and <t>_x over ]0, oo[ satisfying (see [BX1,
Section 3])

(2.2) (pk(x) = c(k)<t>k(x) + c(-k)<t>_k(x), x > 0

a n d

(2.3) <t>-k(x) = A(x)-l/2e-iXx(l + h(x,k)), x > 0, Im

where

(2.4) /i(x,X) =
j=0
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and

(2.5)

Pseudo differential operators on local Hardy spaces 209

hj (x, k) = hj+i(x, k) - hj (x, A.);

ho(x,k)=O;
1 f°°

hj (x,k) = — (1 - e2lX(*-()) G(r)(l + hj (t, k)) dt, j e No.

We have the following estimates for h(x,k) and its derivatives.

LEMMA 2.1. For any nonnegative integers k, I,

CA,*/O + |A.|)~*~'e~", x > 1, k > 0

where e is as in (1.7).

PROOF. In view of (1.7) and (2.1) we observe that

(2.6) \Gik\x)\ < CA,ke~", x > 1, Jfc = 0 , 1 , 2 , . . . .

By (2.5) we have

3* 3'

ho(x, k) = ^
(2.7) ! _ J - - . C

c, A.) = / (1 - e2lX(j£-()) G(0/i/ ( ,̂ A.) dt,
2ik Jx

Let <t>(x) = /x°° G(0 rfr (x > 1). Then integrating by parts gives

ho(x, k)= f eliX(x-')<^{t)dt, x > 1, k > 0

and

f00

_ I g2.X(x 0^,'^) fa X > 1, A. > 0.

Hence by induction we obtain for any nonnegative integer /

j e No

https://doi.org/10.1017/S1446788700001956 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001956


210 Walter R. Bloom and Zengfu Xu

Thus for any nonnegative integer k

A-A-£0(x,A) = (2/)<

< CA,kle~".

[9]

By (2.6) this gives for 0 < A < 1 and x > 1

a* a' ~
—-—ho(x,X)3A* dx>

For A > 1 we integrate by parts k + 1 times to obtain

2iA.*+> [ at.

Therefore,

(2.8)
3* 3' ~

\— K— 1 „—€X > 1, A > 0.

For hx(x, A), using (2.7) we have

3 ~
—hdx,k) = -

Now integrating by parts we have by induction

^-£,(*,A) = - f e
2'^-"l—-(G(t)ho(t,X))dt, x > 1, A > 0.

dxl Jx dt'~l

Hence for x > 1 and A. > 0

— t)]k~qe2'^x~') -
aXq at

(G{t)h0(t,X))dt.

If A > 1 then we integrate by parts k — q + 1 times for each q = 0, 1 , . . . , k. Thus
by (2.6) and (2.8) we obtain

3* 3' ~

~dXk"dxi

By (2.7) and induction we have j = 0 , 1 , . . .

3* 3 ' ~

" , x > 1, A > 0.

(2.9) < CAM{\ +Xyk-le-v+l)", x > 1, A > 0.

The lemma now follows immediately from (2.4) and (2.9). •
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For an even C°°-function / on R and a positive integer k let L°f = f and
Lkf = L(Lk~xf) where L is denned by (1.1).

LEMMA 2.2. (i) Lkf extends to an even C°°-function on IR.
(ii) There exist a > 0 and sk e No satisfying that for each x e [0, a] and

j = 0, 1, . . . , sk there exist £, = fy (x, k) e [0, x] such that

\Lkf(x)\ < CA,k ( ̂  X ) 1/0)(^)I + XZ 1^(°(JC)*) •

(iii) There exists a > 0 such that

2k-l

\Lkf(x)\<
0<x<a;

i=0
2k

l/(l)(*)l. x > a.
i=0

PROOF. Appealing to (1.1) and (1.4) there exists a > 0 such that

"'(x), 0 < x < a.
x

Hence by induction we obtain
2*-3

^ f \ ^ v—'WT f\(2k—2—O/v-M A ^ v- <r- r̂
_ * A.Jt / -̂  I\M/ / \-^/l» U •< X ^ c*

i=0

and

i=0

Consequently,

2Jt—1

U < x < a.
1=0

The proof of the remainder of the lemma can be found in [BX3, Lemma 4.18]. •

We now give L2-estimates for a class L™s of pseudo differential operators.

THEOREM 2.1. Suppose that m < 0, 0 < r) < 1 and p(x,k) 6 S"o. Then the
pseudo differential operator p(x, D) is bounded on L2(R+, *(A)).
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PROOF. Let V be an even C°°-function on R such that jjr(x) = 1 if |JC| < 1 and
xlr(x) = Oif 1JC| > 2. Putp,(je, X) = p(x, X)ir(x) andp2(x, X) = p(x,
Thus pi(x, X) € S™s (i = 1, 2) and, using Definition 2.1,

/ (X)p 1 (x ,A)^(x)7r (^ )+ /
Jo

for/ e t 2 (R + ,* (A) ) .
We first prove that px (x, D) is L2-bounded. For each X > 0 let Rk be the Fourier

transform of /?,(-, A) on K. Then by (1.1) and (1.6)

= / pi(x,X)Lk<pi(x)A(x)dx
Jo

= / Lk
Pl(x,k)tp((x)A(x)dx.

Jo

Hence using Lemma 1.2, Lemma 2.2 and Definition 2.1 we obtain for any nonnegative
integer k

In view of Theorem 1.1 we observe

Pl(x,D)f(x) = (I
lo

Therefore by Theorem 1.1, Theorem 1.2(ii) and (2.10) with k > a + 1

/*OO

IIPiO, D)f \\2,A < CA I \\Rxtt)f{X)\\2,n n{dt,)
Jo

<cA||/ | |2,T / (l + t;y2k\c(X)\-2dx
Jo

<CA\\f\\ZA.

It remains to show that/?2(*, D) is bounded on L2(K+, *(A)). Using Theorem 1.2,
(2.2) and (2.3) we have

/•OO

P2(x, D)f(x) = Co / f(X)P2(x, X)<P-k(x)c(Xyl dX
J—OQ

/*OO

= C0A{x)~{'2 / f(X)c(Xylp2(x, X)(l + h(x, X))elX* dX
J-oo

(2.11) = C0A(x)-l/2p2(x, D)g(x)
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where p2(x, k) = p2(x, A)(l + h(x, k)) and Fog(k) = f (k)c(X)~l is the classical
Fourier transform of g on IR. Now p2 (x, D) is a pseudo differential operator on DL In
view of Lemma 2.1 we see that p2(x, X) is a symbol in S™0 on R such that

Hence (see [F]) the operator p2{x, D) is L2-bounded on R. Therefore by (2.11),
Theorem 1.1 and Theorem 1.2 we have

/•CXI

\\Pl(x, D)f(x)\\\A = Co / \p2(x, D)g(x)\2dx
Jo

\f(X)c(X)-l\2dkr<cA /
J ~ o

— ^ A \ U I I 2 ,A-

This completes the proof of the theorem. •

3. Pseudo differential operators on local Hardy spaces

In this section we establish the continuity result for the class L™0 of pseudo differ-
ential operators on local Hardy spaces. We begin with the definition of the local Hardy
space hp and its atomic and molecular decomposition characterization (see [BX4]).

F o r / € ^ , ' (K+, *(A)) the local heat maximal function is defined by

H+f(x):= sup \f *h,(x)\
0<r<l

where h, is the heat kernel (see [AT, Theoreme II.2]).

DEFINITION 3.1. Let 0 < p < oo. The local Hardy space hp = hp(R+, *(A)) is
defined by

hp := [f € y;(R+, *(A)) : Ho
+/ € L"(R+, Adx)}.

Moreover, we introduce the quasi-norm | | / ||hP := || H$f \\PtA defining the topology
onhp.

We recall that for 1 < p < oo, hp coincides with LP(R+, Adx). The elementary
building blocks of hp are the (local) (p, q, ,s)-atoms. Assume throughout that the
exponents p and q are admissible in the sense that 0 < p < l , l < ^ < o o and
p < q, and put s = [(2a 4- 2) (1/p — 1)] where [0] denotes the largest integer not
exceeding p.
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DEFINITION 3.2. A (local) (p, q, s)-atom is a function a e Lq(R+, Adx) such that
for some *0 e R+ and r > 0, supp(a) C B(x0, r) and

\\a\\qA < m(B(x0, r))1"-1*

together with the following (local) moment condition: if r can be chosen not exceeding
1 then

/»OO

/ a(x)xkA(x)dx =0
Jo

for all integers k satisfying 0 < k < s.

The following result characterizes hp in terms of atoms.

THEOREM 3.1 (see [BX4]). Let 0 < p < 1. Then / 6 hp if and only iff can be
represented as a linear combination of {p,q, s)-atoms for any \ < q < oo, q > p,
that is

/=][>*'

where the at are (local) (p, q, s)-atoms and J^i Î /K < °°- Moreover, there exist
positive constants Q and C2 depending only on p and A such that

We now introduce the (local) molecules corresponding to the atoms defined above.

DEFINITION 3.3. For admissible components p, q and 5 and e > max{s/(2a +
2), \/p — 1} seta = 1 — l/p+e andb = l — l/q + €. A (local) (p, q, s, e)-molecule
centred at x0 e 1 + is a function M € Lq(R+, Adx) with M(x)\B(x0, \x - xo\)\

b e

L9(K+, Adx) satisfying the conditions

(i) \\M\\a
q

/bJM{x)\B(x0, \x -xo\)\b\\l~:'b := J"q{M) < oo;
(ii) Let CT be the positive number defined by |5(x0, <7)|1/9"1/p = ||M||,,4. Ifa < 1

then for any R with a < R < 1,

JB(XO,R)

M(x)(x -xo)'A(x)dx <CA,,(-) R'\B(xo,R)\l

for / = 0, 1 , . . . , s where f} = min{a, s + 2 — l/p}.

The following result gives the molecular characterization of hp.
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THEOREM 3.2 (see [BX4]). Let f e ^ ' (K+, *(A)). Then f e hp if and only if it
has a molecular decomposition

where the M, are (local) (p,q,s, e)-molecules such that

Moreover, if the above decomposition holds then

For each x e R+ write px(X) = p(x,X) and let Kx denote the inverse Fourier
transform of px in the distributional sense. For each nonnegative integer i define
K°x = Kx, Kx = d'Kx/dxi and denote by px the Fourier transform of Kx. Then
p[(X) = dlp(x, X)/dx'. Choose an even C°°-function f on K such that \fr(x) = 1 for
\x\ < 1/2 and \j/(x) = 0 for |JC| > 1, and fix once and for all a kernel decomposition
Kx = (Kx)° + (Kx)°° where (Kx)° = Kxf and (K^)00 = Kx(\ - f).

Before giving some estimates for these kernels we define a variant of the class S™s.

DEFINITION 3.4. For nonnegative integers i, N and 0 < p < 2 we say that a symbol
p(x, X) belongs to the class y™s(i, N, p) (0 < r},8 < \,m e R) if p(x, X) e S™s and
for each x € K+, px extends to an even analytic function inside J?a and the derivatives
p^ extend continuously to the whole of &a, and p(x, X) satisfies

dj 3'
— - — p(x,X)
dX> dx'

forj = 0 , 1 , . . . , N, where Q > 0 is independent of x.

The following estimates for the kernels Kx can be proved similarly to [An, Propo-
sition 5] and [BX4, Lemma 3.9].

LEMMA 3.1. Suppose that fj, > ( l - ? ? ) ( 2 a + 2 ) ( l / p - l / 2 ) (0 < J j < l , O < p < l )
andp(x, X) e y^(i, N, p) with N > (2a + 2)/p - a - 1 + 3/(2/7). Then for each
x 6 R+ andO < R < 1, (^')°° € Ll(K+, Adx) and

ii (Kir i
M

f
Jo
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and

[ y-l\(K'x)°(y)\A(y)dy < CAj,NR~l.
J R

Let <p be an even nonnegative C°°-function supported in {x e R : 1/2 < |JC | < 2}
and satisfying YlT=-<*> <l>(2~Jx) = l for* ¥" 0- Put</>; (x) = <t>(2~jx) for; = 1 , 2 , . . .
and^oOc) = 1 — EJ l i <P(2~'x). For p(x, k) e y~£(i, N, p) we fix once and for all
a dyadic decomposition p'x(k) — YlT=oPx t(^) w n e r e P* *M = PiM0*M- Thus
the corresponding decomposition for the kernel Kx is Kx(y) = YlT=o K'x k(y) where
K'x t(^) = Px »W- Let ^(") = E ~ o lx *(«) w h e r e Fo('i t) = pi *•

Throughout the remainder of the paper we shall always assume that for each x € K+,
p'x is rapidly decreasing (that is, p'x € «5*(«^o). the usual Schwartz space) although
none of our estimates will depend upon the actual rate of decrease. It suffices to
flatten p'x or, equivalently, to regularize Kx in the standard way. Thus by Theorem 1.3,

For p(x, k) e 5?Zf{i, N, p) choose an even C°°-function o>° such that

[0, |JC| > 1/2.

For any positive integer; andx,r > Oput/^ := (1—5,- ) /^ ,^^ := si~x(Vx ty)and
p'xk. := F0(lxkj) where Zj(x) := a>°(2-Jr~lx). Observe that lxk - lxkj is supported
in {u : |u| < 2' r}. Using properties of the Abel transform in [Tl] we have

(3.1) Kxk(y) = K'xkj(y) ifx > 2'~2r.

The following lemma is proved similarly to [BX4, Lemma 3.21].

LEMMA 3.2. Suppose that p(x, k) € y^(i, N, p) with 0 < p < I, a > 0 and
N > (2a + 2) Ip - a - 1 + 3/(2r)). Given j € No and r > 0 such that 2' r < 1 we
have for any nonnegative numbers L\ and L2 with L2 < N

(I 1/2 f C (2' r)~L'2k^2 2J+*r < 1-

< | A'l'N

CAJtN(2J r)~L22kiL'~Ll+l/2), otherwise.

Let a be a (local) (/?, oo, 5)-atom supported in B(x0, r)with^o £ K+and0 < r < 1.
For any positive integer j < jQ + 2 put 0y>(.x) = (p(2~jr~l(x — x0)), M\(x) =
EjL-oo Ta(x)<f>j,r(x) and M;(x) = Ta(A:)</);,r(x) (/ > 2) where 0 is defined as
before and;0 is the unique integer such that 1 < 2">r < 2.
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THEOREM 3.3. Suppose that p(x,k) € y^(i,N,p) with 0 < p < 1, or > 0,
N > (2a + 2)/p - a - 1 + 3/(2/7) and i = 0, 1, . . . ,s + l. Then for each integer
1 < j < jo + 2, Mj is a (local) (p,2, s, €)-molecule and

J

PROOF. For each x e K+ fix a dyadic decomposition p'x = YltLoPxk
corresponding decomposition Kx — YlT=o^xk a s before. By Definition 2.1, (3.1),
(1.8) and (1.9) and using the moment condition of an atom we observe for j =
2 , 3 , . . . Jo + 2

/•OO

Mj(x) = bAx) / a(y)TxKx(y)A(y)dy
Jo

OO «OO

= 4>jAx) Y, / a(y)TxKxAy)A(y) dy
t^n Jo

a(y)TxKx,kj(y)A(y)dy

= [ (1 - u)'-1 ( f a(y)(y-xoyGj,x,uAy)A{y)dy\du
Jo I Jo J

where

OO

Tx KXikj (y) - Tx KXtkj (x0), s = 0.

Put ^,u,^0 = xo + u(y — x0). In view of Theorem 1.1 and Theorem 1.2 we have

\Gj,x,uAy)\
OO / .OO

JO

:= 7i +
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Assume thatx0 < 2r. Then by the mean-value theorem, Theorem 1.2 and Lemma 1.3
and Lemma 3.2 (with Lx — s + a + 2 and L2 = N)

î < CAu\y -xo\<pjAx) E f \p*,kj(V<Pdx)(l+»s+l\\c(X)\-2dX

J2 f
u\y-*o\2kSl ^ °

CAu\y-x0\<t>jAx)

CAu\y-x0\cf>jAx)

1/2

< CAu\y - xo\<pjA

Similarly, we obtain

«|;y-Jto|2*>l

< CA(u\y -xo\)
N-

For x0 > 2r we argue similarly:

(3 2)

and

(3 3)

cAu\y-x0\4>jAx)A(x)-l(2Jr)-'-2,
x0 <

otherwise

7 < \CA{u\y-xQ\)N-s-l<l>JAx)A{xr\2'r)-\

Hence by Definition 3.2 and Lemma 1.1 we have fory = 2, 3, .

(3-4) \\Mj \\2,A < CA\B(x0, 2jr)\l/2

where

otherwise.

. ,j0 + 2

y =
min{5 + 2 - 1/p, Â  - l/p], otherwise.
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By Definition 3.2 and Theorem 2.1 we observe

(3.5) ||M,||2,A < CA||fl||2i>, < CA\B(x0, r)\1'2-^.

We now prove that the Mj satisfy Definition 3.3(i) (with q = 2). Using (3.4), (3.5)
and Lemma 1.1 we obtain for j = 1, 2 , . . . ,j0 + 2

||A/,(jc)|fl(jc0, \x -xo\)\
b\[-a

A
lb < C^WMjW^'^Bixo,!1 r)\b~a

(3.6) < CA,p2
YWb-l)J \B(xo,2

jr)\a/b(1/p-1/2).

Therefore by (3.4H3.6)

(3.7) JftMj) < CA,P2~», j = 1, 2, . . . Jo + 2.

It remains to show that the Mj satisfy Definition 3.3(ii). We first observe that
Theorem 2.1 and Definition 3.2 give

(3.8) \B(xo,r)\<CA,q\B(xo,a)\.

If R < 2r then we apply the Cauchy-Schwarz inequality, (3.8) and Lemma 1.1 to
obtain

f Mj
JB(xo,R)

(x)(x-xo)
lA(x)dx < CAR'\\Ta\\2tA\B(x0, R)\l/2

lfR>2r then write

f Mj(X)(X - xo)'A(x)dx= f Mj(x)irR(x)(x - xo)'A(x)dx
JB(xo.R) JB(XO,R)

+ f Mj (x)(l - irR(x))(x - xo)'A(x) dx
JB(XO,R)

where fR{x) = f((x-xo)/R). Let ER := {x e R+ : R/2 < \x - xo\ < R}. Then
by (3.7) and Lemma 1.1

\IR
2)\ <CA I \Mj(x)\\x -xQ\'A(x)dx

< CA,pR'\ER\i/2\B(x0, R)\-b\\Mj(x)\B(x0, \x -
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-yJR'\B(xQ,R)\l/2-''\B(xo,tT)\a

~" R'\B(x0, R)\l-l/p (?-]

To estimate IR
l)j we use the Taylor expansion of Kx (y) with respect to x at x = x0

to obtain

1R,J - I Vj.r\»-)\£R.i\*>\ i Txa(y)Kx(y)A(y)dy\A(x)dx
/o /

Txa(y)KXo(y)A(y)dy\A(x)dx

<I>JAX)QR.I+S+I(X)
i

x (J (1 - H)'"1 j TMy)Ks+u
l
jo(y)A(y)dydu\ A(x)dx

where QR,I = irR{x)(x -xo)',^x,u,xo =xo + u(x -x0) and^,r(x) = Yil^faAx) if
y = 1 and <pjAx) — <t>jAx) otherwise. Applying Lemma 3.1, [BX4, Lemma 3.11],
(3.8) and Lemma 1.1 and arguing in the same way as in the proof of [BX4, Lemma 3.12]
we obtain

\h,j\ < CA,pR
l\B{xa,

It suffices to obtain the same estimates for I2j. If j > 1 then by (3.1) we use
the cancellation property and the Taylor expansion of Tx K

s^x kJ (y) about y = x0 to
obtain

(S + 1)! t = 0 JBUO.R)

( I (1 - u)'-1 f a(y)TxK£\ k(y)A(y)dy du) A(x)dx
\Jo Jo ' ' ° /

4JAX)QRJ+,+I(X) ( f (1 - UY'1 f (1 - V)'
i.R) V^O Jo(5 + 1)!

a(y)(y-xoYGj^H,v,,(y)A(y)dydvdu\A(x)dx
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where

Gj,x,u,v,s(y) = '

Pseudo differential operators on local Hardy spaces

E ((r**wPW(Wo) - (TxK^jokjr(

221

oo

5 > 0;

5=0.
* = 0

A similar argument to the proof of (3.4) gives for j > 1

(3.9) +2-l/p

where /? > 2r.
We now consider the case when j = 1. Assume *0 < 2r and write

7 2 1 =
1

+ i;! k=0

n^ A{x)dx

+

( I (1 - « r ' I a{y)TxK
s+l <kiy)A(y) dydu) A(x) dx

\Jo Jo ° /

where ka is the unique integer such that 1 < 2*° r < 2. Using Theorem 1.1, Lemma 1.1
and Definition 3.2 a straightforward calculation gives

l r (D | <• r J+s+2a+3-(2a+2)/p
\l2\\ — *"A,pr

For 1^1 we observe

^l < CA,P [J2 f 4j.r(x)Q*.i+,+dx)

x Ij (1 - u)s-1 J a(y)TxK£^k(y)A(y)dydu\ A{x)dx

oo f3r

+ T.I *,A
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x ( j (1 - « r ' j a(y)TxK£u\ok(y)A(y)dydu\ A{x)dx

oo / .2"*

al /Or

(1 — u)s~l I a{y)TxK
s
t
+1

 k(y)A(y)dydu ) A{x)dx
oo

(j (1 - uy-1 j t a(y)TxK£jok(y)A(y)dydu\ A(x)dx\

Applying Theorem 1.1, Lemma 1.1 and Definition 3.2 we obtain

Ji < CA,P r'
+s+2a+i-Va+2»P, i = 1 , 2 , 3 .

Write

oo k

(j (1 - u)^1 J a{y)TxK
s+li)k{y)A{y)dydu\ A{x)dx

oo k pi''*1

a (l - «)'-' I a(y)TxK£\ <k(y)A(y) dydu) A(x) dx
Ji-i ° J

<PJAX)QR,1+S+I(X)
^ -y+2

al , 2 - ^ ' \

(1 - ii)'-1 / a(y)TxK£\ k(y)A(y)dydu A(x)dx
Ji-i " ° /

To estimate J4
(l)(i = 1,2, 3) we introduce smooth cut-off functions as in [An,

Section 2]. Let co be an even C°°-function on R such that o>(«) = 1 for \u\ < 1/4
and co(u) = 0 for \u\ > 1/2, and set O);(M) = ft)(2Jw) for each j e No. Then
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o)j(u) = 1 for \u\ < 2~J-2, coj(u) = 0 for |w| > 2"-'"1 and id'tOjM/du'] < Q2iJ,
i = 0, 1, 2, — For each x e R+ denote by l'x the inverse classical Fourier transform
of p'x as before. For a dyadic decomposition of p'x let lx(u) = Z X 0 ' i * ( M ) t>e the
corresponding decomposition where Fol'x k(X.) = p'x k(2~kk). Put l'xkj = (1 — COJ)1'X k

an&\eiKxkj = s/-x{lxkj)zn&pxkj = F0(l'xkj). Thenl'xk-l
l
xkj is an even C°° -function

supported in [—2~j~\ 2~J~l], and hence using properties of the Abel transform (see
[Tl, Theorem 6.4]) we see that Kxk - Kxkj = ^~l(ll

xk - Vx<kj) is also supported in
[-2~J~\2~J~1]. Consequently

Arguing as in [An, Lemma 15] we have for fi1 < fl2

'lid-

where / / / is the usual Sobolev space on K. Thus applying Definition 3.2, Theorem 1.1,
Theorem 1.2, Lemma 1.1, Lemma 1.2 and Lemma 1.3 and properties of the classical
Fourier transform we obtain

2-y-i

^o\TxK^xokj(y)\A(y)dydu\A(x)dx

oo k

< c r ' + j + i ( 2 2 > / ( + i )

x ( I ' {1°°'T x K^'°-k j i y ) | M i y ) d y \ du)A(x)dx

oo k

< c / - ' + i ( 2 + 2 > / < + i )

Similarly, we have

\J4 I _ *~A,pr i ' —
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Therefore, we have for x0 < 1r and R > 2r

( r \ s+2a+3-(2a+2)/p

- )

Arguing similarly we obtain for x0 > 2r and R > 2r

(3.10) " • '"
A,pK \O(X0, K)\ I — I , JCQ < « ,

( T
-

In view of (3.8)-(3.10) we have

and the theorem is proved. D

We have the following estimates for the derivatives of the heat kernel h,.

LEMMA 3.3. For any nonnegative integer k and 0 < t < 1 we have

C f-t/2-a-l a-p
2t n < /Z.

*-A,t' " > " **• X — Cov ' i

-phe-x
2/(4t)^ C o v / ^ <X <Cu\h?\x)\ <

,[*+o+l/2]+2

where CQ and C\ are positive constants.

PROOF. The lemma can be proved similarly to [BX2, Proposition 2.15] using
Theorem 1.1, Theorem 1.2, Theorem 1.3, Lemma 1.1, Lemma 1.2 and Lemma 1.3. •

For 0 < t < 1 define

[ h,{y)p{y,k)<p,{y)A{y)dy.[
o

LEMMA 3.4. Ifp(x, A.) € «5^"(i, N, p) with N > (2a + 2)/p - a - 1 + 3/(2JJ),

i = 0 ami 0 < /? < 1 then p, extends to an even analytic function inside &a and the
derivatives p,(t) extend continuously to the whole of &a and satisfy

\pf\x)\ < Q, t ( l + \k\)~k, U ^

fork = 0,1,.-. ,N.
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" PROOF. The fact that p(x, X) e ^ " O ' . N,p) with i = 0 implies that p, extends
to an even analytic function inside &a and the derivatives pf* extend continuously to
the whole of &a. Write

= t Q jf'A.W^J.0-.

E (•)/

Using Lemma 1.2, Lemma 3.3 and Lemma 1.1 we obtain for k e ^ and k = 0,

For X e ^ and |X| > VF"1 let / = k/2 if * is even and I = (k + l)/2 otherwise.
Then by (1.1), (1.6), Lemma 1.2, Lemma 1.3 and Lemma 3.3 we have

\p(,k)(x)\ =

V, (HI1 + A(y) dy

We now apply Lemma 1.1, Lemma 1.2, Lemma 1.3, Lemma 2.2 and Lemma 3.3 to
obtain for A. G &a, \k\ > V7"1 and k = 0, 1 , . . . , N

9*-'
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\ 3 * -

A(y)dy

A(y)dy

) A(y)dy

Hence for A. € ^CT, \k\ > V r 1 and k = 0, 1 , . . . , N

\p{,k)(x)\ < CA,k\X\-k

and this completes the proof of the lemma. •

Let K, denote the inverse Fourier transform of p, in the distributional sense.

LEMMA 3.5. Suppose thatp{x, X) e y^ii, N, p) with i-0,N> (2a + 2)/p -
a - 1 + 3/(2r?) andO < p < 1. Then for 0 < t < 1 and \x - y\ > 2

\TAK,)(y)\ < CA,p\x -y\-NA(xr1/2A(yrl<2e-°^

where a = 2/p — 1.

PROOF. The lemma is proved in the same way as in [BX4, Lemma 3.15] using
Lemma 3.4. •

Let co be a C°°-function on K such that co(u) —0 for u < 1/2 and a>(u) = 1 for
M > 1. For any integer j > 1 define an even C°°-function a)j by

a>j(u) = oH2(u + ; - \))a){2{-u + j - 1)).

For each x € K+ let p x (A) = p (x, A) and let Kx denote the inverse Fourier transform
of px as before. Denote by lx the Abel transform of Kx. Put lxJ — (1 — <w;)^, pxJ =
F0(lxJ) and AT^ = £/~l(lxJ). Since 4 — (*,; is supported in [—j + 5/4,7 - 5/4],
by properties of the Abel transform in [Tl, Theoreme 6.4] we see that K — Kj is also
supported in [—j + 5/4, j — 5/4] and hence

(3.11) = KXJ(u), if u

The proof of the following result is similar to that of [BX4, Lemma 3.19].

https://doi.org/10.1017/S1446788700001956 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001956


[26] Pseudo differential operators on local Hardy spaces 227

LEMMA 3.6. Suppose that p(x, A.) € «^ M ( i , N,p) with i = 0, 0 < p < 1 and
N > (2a + 2)/p - a - 1 + 3/(2?7). Then for any L with 0<L<N-l/2

Uoo 1 1/2

\pxj(k)(l+k)L\2dX\ < CA,pj-
Ne-*, 7 = 2 , 3 , . . . .

Finally we give hp-estimates of the pseudo differential operators of class L™s.

THEOREM 3.4. Suppose that for i = 0,1,... ,N, p(x, A.) e y^ii, N, p) with
N > (2a + 2)1 p - a - 1 + 3/(2/?) and 0 < p < 1. Then the pseudo differential
operator T given in Definition 2.1 is bounded on hp.

PROOF. We refer to the proof of [BX4, Theorem 3.22]. By Theorem 3.1 we are
reduced to showing that for any (local) (p, oo, s)-atom a

(3.12) l|rfl||h, <CA,P

where the constant CA_P is independent of a. Suppose that a is supported in B(x0, r)
with x0 € K+ and r > 0. Observe

(3.13) Ta*h,(x) = a*K,(x)

and

(3.14) Ta(x)= I a(y)TxKx(y)A(y)dy.
Jo

If r > 1 then we write

\\H+(Ta)\\p
bP = I" \H+(Ta)(x)\pA(x)dx

Jo

\H0
+(Ta)(x)\pA(x)dx

r°
/

Jxo
/

Jxo+r+2

••= h + h-

Note that both Ho
+ and T are L2-bounded and any (p, oo, s)-atom must be a (p, q, s)-

atom for all q > p, 1 < q < oo. Applying Holder's inequality and Lemma 1.1
then
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For y 6 B(x0, r) and x > x0 + r + 2 we have x — y > 2. Hence by (3.13), Lemma 3.5
and Lemma 1.1 we have for x > x0 + r + 2 and 0 < t < 1

\Ta*hl(x)\<CA,pA(Lx)-l"'(x-Xo-r)-N.

Consequently

/•OO

h < CA,P I (x-xo- ryNp dx < CA,P
Jxo+r+2

and (3.12) follows for r > 1.
We now assume r < 1. As before let f be an even C°°-function such that

\j/(x) = 1 if |JC| < 1/2 and i/f(x) = 0 if |JC| > 1, and 0 an even nonnegative C°°-
function supported in {x 6 K : 1/2 < |*| < 2} and satisfying I];

c*=_oo 4>{2~'x) — 1 if
x ^0. Write

OO

Ta(x) := J2 Ta(x)4>jAxW(x) + Ta(x)(l - $(x))
j = - 0 0

:= (Ta)^) + (Ta)2(x)

where 4>j,r(x) = <P(2'j r~l (x - JC0)) and \jr(x) = f((x - xo)/4). By Theorem 3.3 we
see immediately that {Ta)\ is a (p, 2, s, e)-molecule and

(3.15) ^ ( ( 7 ^ ) 0 < CA,P.< CA,P.

We now prove that (Ta)2 has an atomic decomposition. For eachy = 2, 3 , . . . let
Qj = {x € R+ : j < \x - xo\ <j + 1). Note that (Ta)2(x) = 0 if \x - xo\ < 2.
Hence

00 00

(Tah(x) =

Using (3.14), (3.11), (1.8) and (1.9) together with the cancellation property of an atom
we observe for x € Qj

y»OO

Ta(x)= a(y)TxKXJ(y)A(y)dy
Jo

= I a{y){y-x0Y f (1 - uY~xFj,x,u,s{y)duA{y)dy
Jo Jo

= I (1-M)1"1 f a(yKy-xoYFj,x,u,s(y)A(y)dydu
Jo Jo
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if s > 0, and

/•OO

Ta(x)= a(y)Fj,x,u,s(y)A(y)dy
Jo

if s = 0, where

_ u(y - x0)) - (TxKxJ)(
s)(x0), s > 0;

rj,*,u,sW) - J TxZxj(y) _ TXKXJ(XO), s = 0.

Thus applying Theorem 1.1, Theorem 1.2, Lemma 1.1, Lemma 1.2, Lemma 1.3 and
Lemma 3.5 and arguing similarly as in the proof of Theorem 3.3 (see the estimate of
Gj,x,H,s(y) on page 16) we obtain

\cAj-Ne-°»Ju\y-x0\A(xr1/2, xo<2;
\Fj,x,u,s(y)\ 5: {

-"Co

and hence by Definition 3.2

\cA.pj-
fie-"r>+l\B(x0, r)\^l<>XQj{x)A(x)-V\ x0 < 2;

<

' * " I CA.pj-
Ne-''r'+1\B(x0, r)|'-'/"XQj (x)A(xo)-l/2A(x)-^2, x0 < 2.

Thus by Lemma 1.1

\\bj\\2,A < CAJ-N\B(xo,j + l)|1 /2"1/p.

Observe that supp(fey) C B(xo,j + 1). Therefore, a, := C^pj
Nbj is a (local)

(p, 2, s)-atom for eachy = 2, 3 , . . . and

(3.16) ||(ra)2||hp < CA,P.

The estimate (3.12) now follows from (3.15), (3.16) and Theorem 3.2, and this com-
pletes the proof of the theorem. •
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