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Vanishing Fourier Transforms and
Generalized Differences in L2(R)

Rodney Nillsen

Abstract. Let o, f € Rand s € N be given. Let §, denote the Dirac measure at x € R, and let * denote
convolution. If y is a measure, y* is the measure that assigns to each Borel set A the value u(—A). If
ueR, weputyyp, = e'u(a=P)/25, _ ¢iu(a+f)/28, Then we call a function g € L>(R) a generalized
(«, B)-difference of order 2s if for some u € Rand h € L?(R) we have g = [pq 5, + l‘;,ﬁ,u]s * h.
We denote by D, g (R) the vector space of all functions f in L2(R) such that f is a finite sum of
generalized (a, B)-differences of order 2s. It is shown that every function in D g ;(R) is a sum of

4s +1 generalized (a, B)-differences of order 2s. Letting f denote the Fourier transform of a function
f e L*(R),itisshownthat f € D, p.s(R) ifand only if F “vanishes” near & and 8 at a rate comparable
with (x — a)® (x — B)*. Infact, D, 4 (R) is a Hilbert space where the inner product of functions f
and gis [ (1+ (x —a) 2 (x - B)% ) (x)g(x) dx. Letting D denote differentiation, and letting
I denote the identity operator, the operator (D? — i(a + )D — afI)* is bounded with multiplier
(-1)*(x—a)*(x—PB)*, and the Sobolev subspace of L? (IR) of order 2s can be given a norm equivalent to
the usual one so that (D? —i(«+ ) D —afI)* becomes an isometry onto the Hilbert space D ap.s (R).
So a space D, g ;(R) may be regarded as a type of Sobolev space having a negative index.

1 Introduction

Let R denote the set of real numbers, let T denote the set of complex numbers of
modulus 1, and let G denote either R or T. Note that in some contexts T may be
identified with the interval [0,27) under the mapping ¢ ~ e’ (some comments on
this are in [9, p. 1034]). Then G is a group and its identity element we denote by e, so
thate = 0when G = Rand e = 1when G = T. Let N denote the set of natural numbers,
Z the set of integers, and let s € N. The Fourier transform of f € L*(G) is denoted by
7. and is given by f(n) = (27)™" [7" f(e'*)e™"" dt for n € Z (in the case of T), and
by the extension to all of L*(R) of the transform given by f(x) = [ e f(u) du
for x € R (in the case of R). Let M (G) denote the family of bounded Borel measures
on G. If x € G let §, denote the Dirac measure at x, and let * denote convolution
in M(G).

We call a function f € L*(G) a difference of order s if there is a function g € L*(G)
and u € G such that f = (8, — 8,)° * g. The functions in L*(G) that are a sum of
a finite number of differences of order s we denote by D, (G). Note that D(G) is a
vector subspace of L?(G). In the case of T it was shown by Meisters and Schmidt [5]
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that
Dy(T) = {f: f e L*(T) and F(0) = 0},

and that every function in D;(T) is a sum of 3 differences of order 1. It was shown in
[6] that, for all s € N,

(11) D,(T) = Dy(T) = {f: f € L*(T) and f(0) = 0},

and that every function in D;(T) is a sum of 2s + 1 differences of order s. It was also
shown in [6] that

oo | F(+)|2

(12) Ds(R) = {f : f e L*(R) and / |ﬁi)|c2)s| dx < oo},
and again, that every function in D, (R) is a sum of 2s+1 differences of order s. Further
results related to the work of Meisters and Schmidt in [5] may be found in [1-4,7].

The Sobolev space of order s in L?(G) is the space of all functions f € L*(G)
such that D*(f) € L*(G), where D denotes differentiation in the sense of Schwartz
distributions. Then D* is a multiplier operator on W*(T) with multiplier (in)*, in
the sense that D*(f) (n) = (in)*f(n) forall f ¢ W*(T) and n € Z. Also, D* is a
multiplier operator on W*(R) with multiplier (ix)*, in the sense that D*(f) (x) =
(ix)* f(x), for almost all x € R for f ¢ W*(R). Note that W*(T) is a Hilbert space
where the inner product of f, g € W¥(T) is ©°°_ (1 + |n|*)f(n)g(n). Note also

n=—o00

that W*(R) is a Hilbert space for which the usual inner product is given by

13 {f@w = [0+ rPIFEFE dx for fge WH(R),

Using these observations, together with Plancherel’s Theorem, it is easy to verify that

(1.4) DS(W*(T)) = {f: f € L*(T) and £(0) = 0}, and that
(1.5) D*(W*(R)) = {f:f e L*(R) and [,o |f|i’|2|2 dx < oo}.

In view of (1.4) and (1.5), (1.1) together with (1.2) can be regarded as describing the
ranges of D° upon W*(T) and W*(R) as spaces consisting of finite sums of differ-
ences of order s. Corresponding results have been obtained in [8] for operators ( D*—i
(e +B)D - ocﬁ]) ) acting on W*(T), where &, 8 € Z and I denotes the identity op-
erator. In this paper, the main aim is to derive corresponding results for the operator
(D2 —i(a+B)D-apl) *, where a, B € R, for the non-compact case of R in place of the
compact group T. Note that, in general, the range of a multiplier operator depends
upon the behaviour of Fourier transforms at or around the zeros of the multiplier of
the operator, as in (1.4) and (1.5). Note also that on R, (D2 —i(a+B)D - (xﬂI) “isa
multiplier operator whose multiplier is (-1)*(x — a)*(x — 8)°, which has zeros at «
and f3.

Given a, 8 € R and s € N, a generalized («, §)-difference of order 2s is a function
f € L*(R) such that for some g € L*(R) and u € R we have

Le)  f= [(eiu(#) + efiu(g))(so - (ei“(#)éu + e’i”(#)d_u)]s * g
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It may be called also an («, 8)-difference of order 2s, or simply a generalized difference.
The vector space of functions in L*(R) that can be expressed as some finite sum of
(a, B)-differences of order 2s is denoted by D, g ((R). Thus, f € D, g (R) if and
only if there are m € N, uj, us, ..., € Rand fi, fo, ..., fm € L*(R) such that

m . ap . a-p L asp L a+p
- Z[(em}'(T) +e (508, - (e’“j(T)5uj i 67'”"(7)57”].)]3 * fi.
=

We prove that if f € L*(R), f € D, g (R) if and only if 7 is “vanishing” near a and
B in the sense that

[ @) - By TP dx < oo,

in which case f is a sum of 4s + 1 («, §)-differences of order 2s. It follows that
Dy p.s(R) is a Hilbert space where the inner product of f, g € Dy g ((R) is

[0 e P ) FE)

In fact, it follows straightforwardly from the above that the usual norm on W2 (R),
as derived from (1.3), can be replaced by a natural equivalent norm in which the
operator (D? — i(a + )D — afI) *(R) is an isometry from W2 (RR) onto Daps(R).
Consequently, the space D, g ;(IR) may be thought of a “Sobolev-type” space with
a negative index, consisting of sums of generalized differences associated with the
operator.

2 Preliminaries and Proof of the Main Result

We need the following result, which characterises those functions that are a sum of
convolutions of other functions by given measures.

Theorem 2.1 Let f € L*(R) and let yy, yas ..., 4, € M(R). Then the following
conditions (i) and (ii) are equivalent.

(i) Thereare fi, fa, ..., fr € L*(R) such that f = Yot fi
(ii)
R
S spmp e

Proof 'This is essentially proved in [5, pp. 411-412], but see also [6, pp. 77-88] and
(7, p. 23]. n

Lemma 2.2 Let ], K be two closed intervals of positive length such that ] N K also has
positive length. Let £ € J and n € K be given. If § € Jn K put E=¢ and ifE¢ JnK, let
& be the end point of ] N K that is closest to & If y € JN K put ij = , and if ¢ ] K let
7 be the endpoint of ] N K that is closest to 1. Then

lx—&-|x—nl>|x-§-|x-7| forallxeJnK.
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Proof The result is immediate from the observation that forall x € Jn K, |x — & >
|x — & and |x — 5| > |x - 7| u

The main aim in this paper is to prove the following. In the proof we will A¢ denote
the complement of the set A.

Theorem 2.3 Lets € Nandleta, € R. Let D, g (IR) be the vector space of functions
in L*(R) that can be expressed as some finite sum of generalized (a, B)-differences of
order 2s. Then the following conditions (i)-(iii) are equivalent for a function f € L*(R).
@)
> (o)
o (o (- )

dx < oo.

(ii) f € Da,ﬁ,s(R)~
(iii) There are uy, uz, ..., usery € Rand fi, fo,..., fass1 € L*(R) such that

4s5+1

i (28 —iuy(%E i (2B —iuy (X
@1 f-= Z [(e i(F7) 4 emini(5 ))50—(6 (5 )5uj+e i(5 )8—14].)]5 % fi.
j=1

Furthermore, the following statements (iv), (v), and (vi) hold.

(iv) When the conditions (i)-(iii) hold for a given function f € L*(R), for almost
all (uy,ty, ... uger1) € R¥TL there are fi, fa, ..., fass1 € L*(R) such that (2.1)
holds.

(v)  Thevector space Dy, p,s(R) is a Hilbert space with the inner product (-,-), g ; given

by

oo 1 Y I
<f’g)oc,ﬁ,s = [00 (1+ (x —a)>(x _ﬂ)zs)f(x)g(x) dx, forf,ge Da,ﬁ,S(R)~

(vi) For f,ge W*(R), put

(f> &) weap = [:(1+ (x —a)*(x - ﬁ)zs)f(x)%dx.

Then (--)wa,q,p is an inner product on W**(R) that is equivalent to the usual
one on W*(R) as given in (1.3). The operator (D* — i(a + B)D — apI) * has the
multiplier (-1)°(x — a)*(x — B)°, and it is an isometry that maps W* (R) with
the inner product (-, )y o, onto Dy g o(R).

Proof If (iii) holds, then (ii) holds, by definition.
Let (i) hold. If u € R, define A, € M(R) by

| L as 1
(2.2) Ay = E[e’“(Tﬁ) + e"’“(Tﬂ)]éo - -

The Fourier transform 1, of 1,, is given for x € R by

(2.3) Tu(x) = ZSin( u(xz— “)) sin( u(xz— A) )
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Soifu e Rand f, g € L*(R) are such that f = 1S * g, we have
oo Tl )2
FoP
o (v apx f
=2 [°° sin® (u(x - a)/2) sinzs(u(x - ﬁ)/z)

= (- ayi(x - p)

Using (2.2), we deduce that (ii) implies (i).

Now we assume that (i) holds, and we will prove that (iii) holds. Let x € R be given
but with x ¢ {a, §}. Note that it may happen that a = f8. For each k € Z, put

km ’ - | kn/j', al - (k—1/2)7r’ and bl - (k—1/2)7r.
X —

[x —a [x = Bl
Then put, again for each k € Z,

1g(x)|* dx < oo.

24) ap= —"—
|x — af

(2.5) Ay =[ay,ar,] and  Bi = [b, by, ].

Note that aj is the mid-point of A, and by is the mid-point of By. The points ay are
the zeros of u ~ sin(u(x — «)), while the by are the zeros of u  sin(u(x - f)).
Using (2.4) and (2.5), we see that for each k € Z,

T
[x — Bl
We will use the notation that dz(w) denotes the distance from w € R to the nearest

integer. Note that dz(w) = |w|ifand onlyif -1/2 < w < 1/2. Note also that |sin(7w)| >
2dz,(w) for all w € R (for example see [7, p. 89] or [10, p. 233]).

26) MAY) = ——

and A(Bg) =
lx — o

Now
wes, o UmUDT_ Geijon
|x — af |x — af
— 1)2< |x—a|‘%— |x1a|‘ <1/2.
Soforu e Aj,
(2.7) lsin(u(x - a))| = ‘sin(n|x - af ‘ % o 1 p ‘ )‘
22dz(|x—(x|‘%— |xioc|‘)
_2|x—(x|‘f— |xioc|‘
:7|x—a|‘u— |x]_n“|‘
Similarly, for u € By,
. 2 ke
(2.8) lsin(u(x - B))| > ;|x—ﬂ|‘u - |x—ﬁ|‘
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We see from (2.7) and (2.8) that for all u € A; N By we have

Isin(u(x - a)) sin(u(x - B))| > iz|(x— a)(x—=B)||u- jn
7 af

| -

kn ‘
lx =B

[ Ju-

That is, for u € A; N By we have

2.9)  sin(u(x - a)) sin(u(x - B))| > %Kx —a)(x=B)|-|u—aj|-|u-bgl,

where a; and by are the points as given in (2.4).

Recall that x ¢ {a, B} has been given. Let also ¢ > 0 be given, and let the intervals
Ajsuch that A(Aj n[-c,c]) > 0be Ay, ..., Apysro1, and let the intervals By such
that A(Bx n[—c,c]) >0be By, ..., Byss-i1-

Then put
(210) ‘:PI = {Am1>Am|+1a‘--aAm]+r—1}a :PZ = {BmzaBmz+1w-->Bm2+s—l}-

Note that in (2.10), P; is a partition of some closed interval into closed subintervals
in the sense described in [8, p. 1430]. The same comment applies to P,. We put

Q1) A={(k):0<j<r—1,0<k<s—1 A(Ams+;N Bmysx) >0},
(212) P= {Am1+j n Bm2+k : (], k) € .A},
and we observe that

(2.13) [-c.c]e U Am+j N Bk
(ok)e

The family P of closed intervals in (2.12) is a partition of some closed interval into
closed subintervals, and by (2.11) and Lemma 3.2 in [8], we have

(2.14) (the number of intervals in P) = (the number of elements of A)
<r+s-1
Now from (2.6) we see that all lengths of the r intervals in the closed-interval par-
tition P; equal 7/|x — «f, so that (r — 2)7/|x — | < 2¢c. Hence,

(2.15) 1<r< +2=—(1+

T T

2¢c|x - af 26( 7 )| _d.

clx —af
Let 0 < 8 <1/2. Then if |x — «| > 78/ c, we have from (2.15) that
2c 1
(2.16) 1£r<;(1+5)|x—a|.
On the other hand, if |x — a| < 78/c, as 0 < § < 1/2 we have 2¢ < 7/|x — &/, and it
follows from (2.6) that [—c, ¢c] € Ay, so that m; = 0 and
(217) r=1

Again let 0 < § < 1/2. Then, as in the preceding argument, but with § replacing «,
if |x — | > nd/c we have

2c 1
(2.18) 1§s<;(1+5)|x—ﬂ|,
while if |x — 8| < md/c, we have

(2.19) s=1
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Now we again let 0 < § < 1/2. We see now from (2.16), (2.17), (2.18) and (2.19) that
if either |x — a| > nd/c or |x — | > 78/ c (perhaps with both holding), then we have

(2.20) r+s—1<2max{r,s}

meax{Z—ﬂC(l+ %)|x—tx|,27[c(1+ %)|x—ﬁ|}
4c

= ;(1+ %) max{|x - al,|x - B|}.

Also, observe that if 0 < § < 1/2, |x — a| < 7d/c and |x — ff| < 78/c, we have from
(2.17) and (2.19) that

r=s=1.

Note that in the above, ay, by, A, B, and so on, depend upon x and c. Also, r and s
depend upon x and c.
We now take m € N with m > 4s + 1, and we estimate the integral

f duiduy -+ duy,
[—ecl X7, sin® uj(x — &) sin® u;(x - B)’

allowing for the different values x may be, but recall that x ¢ {«, §}. We let P}, P, be
the partitions as given in (2.10) and let P be the partition as in (2.12). We have, using
the definitions and (2.4), (2.9), (2.12) and (2.13),

(2.21) f duiduy -+ duy,
[ceclm ¥

}”=1 sin® u;(x — a) sin® u;(x — B)
< > /
(jl’kl)’--u(jm:km)e"q H;nzlAml*franzH‘t
y duiduy -+ du,,
X sin® u;(x — a) sin® u;(x — B)
7_[45
< )
24s(x _ OC)ZS(X _ ﬁ)Zs
< 3 f
(jrsk1)seeos (jm-km)eA TT7%) Ay jy N By 1k
duiduy -+ du,, )
X .
z;’nzl(uj - am1+]})25(uj - bm2+kt)25

In (2.21) we have a1 j, € Ap,+j, and by, 1k, € By, +k,> but neither a,, 4 j, nor by, ,
necessarily belongs to A 4+ j, N By, sk, If Gyt j, € At O Boyak, PUt Gy, = Gyt jis
otherwise let d,, j, be the endpoint of A, 1 j, N By, 1k, closest to @y, j,. If by, ik, €
At j, N By, ik, put Bmﬁk, = Dy, +k,; Otherwise let l;mﬁkt be the endpoint of A, 4, N
B, +k, closest to by, j,. Then from Lemma 2.2, for all ¢ € {1,2,...,m}, we have that
in (2.21),

(222) |(u - uml+jt)(u - bm2+k,)| 2 |(M - dmﬁjr)(u - bm2+kp)|’
forall u € Ay tj, N Bk,
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Now let 0 < § < 1/2 and assume that we have either |x — a| > 78/c or |x - | > nd/c.
Then from (2.14), the right-hand side of (2.20) gives an upper bound for the number
of elements in P. Using (2.21) and (2.22), and then using (2.20), the assumption that
m > 4s + 1, and Lemma 4.1 in [8], we have in this case that

(2.23)

[ duiduy -+ du,,
[-e.clm 25 sin® uj(x — a) sin® u;(x - B)

71.43

<
24s(x _ “)Zs(x _ ﬁ)Zs

x 5 f
H:il Am1+j, n Bm2+kt

(jl)kl) ,,,,, (jm)km)e'A

duidu, -+ du,,
Z;nzl |u] - dm1+jt|25|uj - I;m2+kt|25
< M
- 24s(x _ (x)ZS(x _ ﬁ)Zs
m—4s
X Z (max{/\(Aml+jl anz+k1),---,A(Aml+jm ﬁBrnz+km)}) >

(uk1)seeos Gmokm ) eA
where M > 0 and M depends only upon m and s, as in Lemma 4.1 of [8],

< ﬂ4s—m(6 + 1)m22m—4scmM
BEECEORCEE

m—4s m—4s

x (max{|x—“|m,|x—ﬁ|m}min{ - . })’

|x _ (x|m—45 > |x _ /g‘m—éls

where we have used (2.6),

(=0 (x=p)%)
(=) (x-S

So far, x has been fixed with x ¢ {«, }, but allowing for the possibility that a = f.
The constant Q in (2.23) is independent of x, so we deduce that (2.23) holds for all
x € R such that either [x — a| > #8/c or |x — f| > m8/c. We now consider the cases
where & # S and a = f3.

<Q max{

Casel: o # .
In this case, choose 6 so that

0<8<min{%,c|‘xz;ﬁ|}.

Then define disjoint intervals ], K by putting

https://doi.org/10.4153/50008439518000061 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439518000061

Vanishing Fourier Transforms and Generalized Differences 401

Clearly, there is C; > 0 such that

(-0 (x-p)*
(=B (=)

As well, (x — )% is bounded on ], so we see that there is C, > 0 such that

(2.24) max{ } <C, forallxe(JUK)‘.

(2.25) max{ Ei : Z;z: , Ei : i;zi } (x-a)* <C,, forallxe]n{a}".

And, as (x — &)~ is bounded on K, there is C3 > 0 such that

(=0 (x=p)*
(=B (=)

We now have from (2.23), (2.24), (2.25) and (2.26), that

oo dulduz--~dum - 2
(2.27) .[oo ( f[—c,c]m Z;":l sin® uj(x —a) sin®* uj(x-p) ) () dx
AT F(x)P ()P
SCIQ [(]UK)C |f(x)| dx+C2Q jde-’-Cg,QfK (x—[)’)ZS dx

< 00,

(2.26) max{ }(x ~B)* < Cs, forallxeKn{B}.

as we are assuming that [ ()P (x = ) % (x - B) % dix < oo.

Casell. a = 8.
Let’s assume that a € (—¢, ¢) and that

! clelay

(2.28) 8 < min{ >
T

Put L = (a — n8/c, a + nd/c), and observe that because of (2.28), L ¢ (-c,c). Let
x € L be given. Then |x — a| < 7d/c and as § < 1/2, it follows that ¢ < 7/2|x — «|.
Consequently, using the definitions of Ay and By as given by (2.4) and (2.5), we see
that (=c, c) € Ag = By. Note that although Ay and By, each depends upon x, (—c, c) €
Ay = By occurs regardless of x € L. Putting j = k = 0in (2.9), we now deduce that for
allue(-c,c)andall x € L,

2
(2.29) lsin(u(x - a))| > =|ul - |x - a.
rz
Let C > 0 be such that

m m 2s
(2.30) Zu}“ZC(Zu?) ,  forall (ug,us,...,un)eR™.
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We now have from (2.29) and (2.30) thatif m >4s+1land x € L,

duiduy -+ duy, s duiduy -+ duy,
ea [ dindu; < — 5 T
[—eclm Xisin™ uj(x —a) =~ 2 S(x—a)¥ J-c,c]m X uj
< 1 *s f duiduy -+ du,,
T C 2% (x-a)b Jioan z
(x —a)* Jl-ec] (Z}il u?)
< B . 7.[45 /—c\/ﬁ rm—4s—1 dr,
C 2%(x-a)* Jo
for some D > 0, by [10, pp. 394-395],
G
S VY
(x _ 06)45

for some G > 0 that is independent of x € L n {a }°.
On the other hand, if x ¢ L we have |x — | > 7d/c, so that if we apply (2.23) with
a = f3 we have

duidu, -+ du,, <Q <o

2.32 [ <
( ) [-c,c]m Z;n:l sin4$ uj(x - (X)

Assuming that |«| < ¢, we now have, using (2.31) and (2.32), that

oo duiduy -+ duy, =~ 2
(2.33) f ([ VT ) x)|*dx
—oo [=c,c]m ijl SlI’l4 uj(x - 06) |f( )|

F ()P N2
SG[Lmdx+Qch|f(x)| dx
< o0,

as & = 8 and we are assuming that [ |f(x)[?(x — a) > (x - )% dx < oo.

We have considered both the cases « # f and a = 8. The dénouement results from
using Fubini’s Theorem, (2.27), and (2.33). We see that provided |a| < cand m > 4s+1,
in both cases we have

oo Y 2
f (f m i 2s /()] d'x s )dulduzu-dum < 00,
el \ S0 Y7L sin® uj(x — &) sin® u;(x - B)

J

We conclude from this that, for almost all (uy, us, ..., u,) € [-c, c]™,
oo Y 2
(2.34) f - f()l dxz < 00
—oo Y7y sin *(uj(x - a)) sin s(uj(x - /3))

By letting ¢ tend to oo through a sequence of values, we deduce that, in fact, the in-
equality in (2.34) holds for almost all (u, u3,...,u,,) € R™. But then, using (2.2),
(2.3) and Theorem 2.1, we see that provided m > 4s+1, for almost all (uy, 4y, ..., uy) €
R™ there are f,, f2,..., fm € L*(R) such that

f= Z[(eiuj(#) i e—iu,‘(#))é\o _ (eiuj(#)auj " e_iuj(#)a—uj)]s * fi.
=1
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We deduce that (i) implies (ii) in Theorem 2.3 and, by taking m = 4s + 1, we see that
(1) implies (iii).

We have now proved that (i), (ii) and (iii) are equivalent. Also, we have proved
statement (iv), that (iii) is possible for almost all (11, us, . . ., tiges;) € R**L

The final statements (v) and (vi) now follow in a routine way, using as needed
the equivalence of the statements (i), (ii) and (iii). This completes the proof of
Theorem 2.3. [ |

Note that in Theorem 2.3, if we take the special case &« = § = 0 we obtain the
identity (1.2) for the case s = 2, proved originally in [6] and [7].

In the case when «a, 8 € Z, and if we identify T with [0, 27) in the usual way, we
can define a generalized (a, B)-difference of order s in L*(T) to be a function as given
in (1.6), but with g € L*([0,27)) and u € [0,27). Then, by analogy with D, 4 ((R),
define D, g ;(T) to be the vector subspace of L*(T) consisting of finite sums of gen-
eralized («, B)-differences of order s in L*(T). It was proved in [8, Theorem 2.3] that

(2.35) Do ps(T) = {f: f € L*(T) and f(a) = f(B) = 0}.

There is an obvious similarity between this fact and the result derived from Theo-
rem 2.3 which is that

oo (x) 2

(236)  Dype(R) = {f . f e I*(R) and Lo o ‘gz((l' gy < oo}.
However, note in (2.35) that the right-hand side is independent of s whereas in (2.36)
the right-hand side depends upon s. At first sight this may seem surprising, but each
equality expresses a condition that f “vanishes” at or near a and . Since the dual Z
of T is discrete, the only way this can occur in the case of T is if f actually vanishes at «
and f3, and this forces the independence from s in the right hand side of (2.35). In the
case of R, however, because the dual of R is itself and so is a continuum, there is an
infinity of possible behaviours of f near « and 8 expressing the idea that f “vanishes”
near « and 3, and we observe a dependence upon s in the right-hand side of (2.36).

Another difference between D 3,(T) and D, g o (R) is that the former has finite
algebraic codimension in L?(T) while the latter has infinite algebraic codimension
in L*(R). Note further that when «, 8 € Z, it has been shown [8, Theorem 2.3] that
(D*-i(a+B)D-apI) * maps W (T) onto Dy.p.s(T) (which is independent of s),
while here we have seen that (D? — i(a + ) D - oc/)’I) * maps W (R) onto Dyp,s(R).

In [5] Meisters and Schmidt showed that every translation-invariant linear form on
L*(T) is continuous, but in [3] Meisters showed that there are discontinuous
translation-invariant linear forms on L*(IR), and this latter result may also be de-
duced from the identity (1.2) in the case s = 1. The following introduces, in the present
context, a notion corresponding to translation-invariant linear forms.

Definition 2.4 Let a, 3 € R and let s € N. Then a linear form T on L*(R) is called
(a, B, s)-invariant if, for all f € L*(R) and u € R,

T([(ei”(#) + eiiu(#))(so - (eiu(#)(su + eim(#)‘s—“)]s *f) =0.
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Equivalently, the linear form T on L*(R) is («, f3, s)-invariant when T(SDa,[;,S(R))
= {0}.

Alinear form T on L*(R) is (&, —a, 1)-invariant when, forall f € L*(R) and u € R,
T(27'(8u +8-4) * f) = cosaT(f),

from which we see that if T is a translation-invariant linear form on L*(R) it is
(0,0,1)-invariant.

When «, 8 € Z, we may also introduce the corresponding notion of («, 3, s)-
invariant linear forms on L*(T). It was shown in [8, Theorem 71] that an (a, 3,1)-
invariant linear form on L*(T) is continuous and, in fact, any («, f3, s)-invariant linear
form on L*(T) is continuous (proved by the technique used for the case s = 1in [8]).
However, the following corollary to Theorem 2.3 shows that the situation pertaining to
translation-invariant linear forms on L?(R) is mirrored by that for (a, §, s)-invariant
linear forms on L?(R).

Corollary 2.5 Leta,f3 € R and let s € N. Then there are discontinuous («, f3,5)-
invariant linear forms on L*(R).

Proof It isa consequence of Theorem 2.3 that D, g ;(IR) has infinite algebraic codi-
mension in L?(IR). Consequently there are discontinuous linear forms on L*(R) that
vanish on D, g ((R), and such forms are (a, §, s)-invariant. |
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