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Vanishing Fourier Transforms and
Generalized Differences in L2(R)
Rodney Nillsen

Abstract. Let α, β ∈ R and s ∈ N be given. Let δx denote the Diracmeasure at x ∈ R, and let ∗ denote
convolution. If µ is ameasure, µ⋆ is themeasure that assigns to each Borel set A the value µ(−A). If
u ∈ R, we put µα ,β ,u = e iu(α−β)/2δ0 − e iu(α+β)/2δu . hen we call a function g ∈ L2(R) a generalized
(α, β)-diòerence of order 2s if for some u ∈ R and h ∈ L2(R) we have g = [µα ,β ,u + µ⋆α ,β ,u]

s ∗ h.
We denote by Dα ,β ,s(R) the vector space of all functions f in L2(R) such that f is a ûnite sum of
generalized (α, β)-diòerences of order 2s. It is shown that every function in Dα ,β ,s(R) is a sum of
4s + 1 generalized (α, β)-diòerences of order 2s. Letting f̂ denote the Fourier transform of a function
f ∈ L2(R), it is shown that f ∈Dα ,β ,s(R) if and only if f̂ “vanishes” near α and β at a rate comparable
with (x − α)2s(x − β)2s . In fact,Dα ,β ,s(R) is aHilbert space where the inner product of functions f
and g is ∫ ∞−∞(1 + (x − α)−2s(x − β)−2s) f̂ (x)ĝ(x) dx. Letting D denote diòerentiation, and letting
I denote the identity operator, the operator (D2 − i(α + β)D − αβI)s is bounded with multiplier
(−1)s(x−α)s(x−β)s , and the Sobolev subspace of L2(R) of order 2s can be given anorm equivalent to
the usual one so that (D2− i(α+β)D−αβI)s becomes an isometry onto theHilbert spaceDα ,β ,s(R).
So a spaceDα ,β ,s(R) may be regarded as a type of Sobolev space having a negative index.

1 Introduction

Let R denote the set of real numbers, let T denote the set of complex numbers of
modulus 1, and let G denote either R or T. Note that in some contexts T may be
identiûed with the interval [0, 2π) under the mapping t ↦ e i t (some comments on
this are in [9, p. 1034]). hen G is a group and its identity element we denote by e, so
that e = 0whenG = R and e = 1whenG = T. LetN denote the set of natural numbers,
Z the set of integers, and let s ∈ N. he Fourier transform of f ∈ L2

(G) is denoted by
̂f , and is given by ̂f (n) = (2π)−1

∫

2π
0 f (e i t)e−int dt for n ∈ Z (in the case of T), and

by the extension to all of L2
(R) of the transform given by ̂f (x) = ∫

∞
−∞ e

−ixu f (u) du
for x ∈ R (in the case of R). Let M(G) denote the family of bounded Borel measures
on G. If x ∈ G let δx denote the Dirac measure at x, and let ∗ denote convolution
in M(G).

We call a function f ∈ L2
(G) a diòerence of order s if there is a function g ∈ L2

(G)

and u ∈ G such that f = (δe − δu)s
∗ g. he functions in L2

(G) that are a sum of
a ûnite number of diòerences of order s we denote by Ds(G). Note that Ds(G) is a
vector subspace of L2

(G). In the case of T it was shown by Meisters and Schmidt [5]

Received by the editors June 19, 2018; revised September 14, 2018.

AMS subject classiûcation: 42A38, 42A45.
Keywords: Fourier transform, generalized diòerence,Hilbert space,multiplier.

Canad. Math. Bull. Vol. 62 (2), 2019 pp. 393–404

Published online on Cambridge Core March 15, 2019.

https://doi.org/10.4153/S0008439518000061 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000061


R. Nillsen

that
D1(T) = { f ∶ f ∈ L2

(T) and ̂f (0) = 0},

and that every function inD1(T) is a sum of 3 diòerences of order 1. It was shown in
[6] that, for all s ∈ N,

(1.1) Ds(T) =D1(T) = { f ∶ f ∈ L2
(T) and ̂f (0) = 0},

and that every function in Ds(T) is a sum of 2s + 1 diòerences of order s. It was also
shown in [6] that

(1.2) Ds(R) = { f ∶ f ∈ L2
(R) and ∫

∞

−∞

∣
̂f (x)∣2

∣x∣2s
dx <∞} ,

and again, that every function inDs(R) is a sumof 2s+1diòerences of order s. Further
results related to the work ofMeisters and Schmidt in [5]may be found in [1–4,7].

he Sobolev space of order s in L2
(G) is the space of all functions f ∈ L2

(G)

such that Ds
( f ) ∈ L2

(G), where D denotes diòerentiation in the sense of Schwartz
distributions. hen Ds is a multiplier operator on W s

(T) with multiplier (in)s , in
the sense that Ds

( f )̂ (n) = (in)s ̂f (n) for all f ∈ W s
(T) and n ∈ Z. Also, Ds is a

multiplier operator on W s
(R) with multiplier (ix)s , in the sense that Ds

( f )̂ (x) =

(ix)s ̂f (x), for almost all x ∈ R for f ∈ W s
(R). Note that W s

(T) is a Hilbert space
where the inner product of f , g ∈ W s

(T) is ∑∞
n=−∞(1 + ∣n∣2s)̂f (n)ĝ(n). Note also

that W s
(R) is aHilbert space for which the usual inner product is given by

(1.3) ⟨ f , g⟩W s = ∫

∞

−∞
(1 + ∣x∣2s)̂f (x)ĝ(x) dx , for f , g ∈W s

(R).

Using these observations, together with Plancherel’s heorem, it is easy to verify that

Ds
(W s

(T)) = { f ∶ f ∈ L2
(T) and ̂f (0) = 0}, and that(1.4)

Ds
(W s

(R)) = { f ∶ f ∈ L2
(R) and ∫

∞

−∞

∣
̂f (x)∣2

∣x∣2s
dx <∞} .(1.5)

In view of (1.4) and (1.5), (1.1) together with (1.2) can be regarded as describing the
ranges of Ds upon W s

(T) and W s
(R) as spaces consisting of ûnite sums of diòer-

ences of order s. Corresponding results have been obtained in [8] for operators (D2
− i

(α + β)D − αβI)
s
acting on W2s

(T), where α, β ∈ Z and I denotes the identity op-
erator. In this paper, themain aim is to derive corresponding results for the operator
(D2

− i(α+β)D−αβI)
s
,where α, β ∈ R, for the non-compact case ofR in place of the

compact group T. Note that, in general, the range of a multiplier operator depends
upon the behaviour of Fourier transforms at or around the zeros of themultiplier of
the operator, as in (1.4) and (1.5). Note also that on R, (D2

− i(α + β)D − αβI)
s
is a

multiplier operator whose multiplier is (−1)s
(x − α)s

(x − β)s , which has zeros at α
and β.

Given α, β ∈ R and s ∈ N, a generalized (α, β)-diòerence of order 2s is a function
f ∈ L2

(R) such that for some g ∈ L2
(R) and u ∈ R we have

(1.6) f = [(e iu(
α−β
2 )

+ e−iu( α−β2 )
)δ0 − (e iu(

α+β
2 )δu + e−iu( α+β2 )δ−u)]

s
∗ g .
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Itmay be called also an (α, β)-diòerence of order 2s, or simply a generalized diòerence.
he vector space of functions in L2

(R) that can be expressed as some ûnite sum of
(α, β)-diòerences of order 2s is denoted by Dα ,β ,s(R). hus, f ∈ Dα ,β ,s(R) if and
only if there are m ∈ N, u1 , u2 , . . . , um ∈ R and f1 , f2 , . . . , fm ∈ L2

(R) such that

f =
m

∑

j=1
[(e iu j( α−β2 )

+ e−iu j( α−β2 )
)δ0 − (e iu j( α+β2 )δu j + e

−iu j( α+β2 )δ−u j)]
s
∗ f j .

We prove that if f ∈ L2
(R), f ∈ Dα ,β ,s(R) if and only if ̂f is “vanishing” near α and

β in the sense that

∫

∞

−∞
(x − α)−2s

(x − β)−2s
∣
̂f (x)∣2 dx <∞,

in which case f is a sum of 4s + 1 (α, β)-diòerences of order 2s. It follows that
Dα ,β ,s(R) is aHilbert space where the inner product of f , g ∈Dα ,β ,s(R) is

∫

∞

−∞
( 1 + (x − α)−2s

(x − β)−2s
)
̂f (x)ĝ(x) dx .

In fact, it follows straightforwardly from the above that the usual norm on W2s
(R),

as derived from (1.3), can be replaced by a natural equivalent norm in which the
operator (D2

− i(α + β)D − αβI)
s
(R) is an isometry from W2s

(R) ontoDα ,β ,s(R).
Consequently, the space Dα ,β ,s(R) may be thought of a “Sobolev-type” space with
a negative index, consisting of sums of generalized diòerences associated with the
operator.

2 Preliminaries and Proof of the Main Result

We need the following result, which characterises those functions that are a sum of
convolutions of other functions by given measures.

heorem 2.1 Let f ∈ L2
(R) and let µ1 , µ2 , . . . , µr ∈ M(R). hen the following

conditions (i) and (ii) are equivalent.
(i) here are f1 , f2 , . . . , fr ∈ L2

(R) such that f = ∑r
j=1 µ j ∗ f j .

(ii)

∫

∞

−∞

∣
̂f (x)∣2

∑
r
j=1∣µ̂ j(x)∣2

dx <∞.

Proof his is essentially proved in [5, pp. 411–412], but see also [6, pp. 77–88] and
[7, p. 23]. ∎

Lemma 2.2 Let J, K be two closed intervals of positive length such that J∩K also has
positive length. Let ξ ∈ J and η ∈ K be given. If ξ ∈ J ∩ K put ξ̃ = ξ, and if ξ ∉ J ∩ K, let
ξ̃ be the end point of J ∩K that is closest to ξ. If η ∈ J ∩K put η̃ = η, and if η ∉ J ∩K let
η̃ be the endpoint of J ∩ K that is closest to η. hen

∣x − ξ∣ ⋅ ∣x − η∣ ≥ ∣x − ξ̃∣ ⋅ ∣x − η̃∣ for all x ∈ J ∩ K .
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Proof he result is immediate from the observation that for all x ∈ J ∩ K, ∣x − ξ∣ ≥
∣x − ξ̃∣ and ∣x − η∣ ≥ ∣x − η̃∣. ∎

hemain aim in this paper is to prove the following. In the proofwewill Ac denote
the complement of the set A.

heorem 2.3 Let s ∈ N and let α, β ∈ R. LetDα ,β ,s(R) be the vector space of functions
in L2

(R) that can be expressed as some ûnite sum of generalized (α, β)-diòerences of
order 2s. hen the following conditions (i)–(iii) are equivalent for a function f ∈ L2

(R).
(i)

∫

∞

−∞

∣
̂f (x)∣2

(x − α)2s
(x − β)2s dx <∞.

(ii) f ∈Dα ,β ,s(R).
(iii) here are u1 , u2 , . . . , u4s+1 ∈ R and f1 , f2 , . . . , f4s+1 ∈ L2

(R) such that

(2.1) f =
4s+1

∑

j=1
[(e iu j( α−β2 )

+ e−iu j( α−β2 )
)δ0 − (e iu j( α+β2 )δu j + e

−iu j( α+β2 )δ−u j)]
s
∗ f j .

Furthermore, the following statements (iv), (v), and (vi) hold.
(iv) When the conditions (i)–(iii) hold for a given function f ∈ L2

(R), for almost
all (u1 , u2 , . . . , u4s+1) ∈ R4s+1, there are f1 , f2 , . . . , f4s+1 ∈ L2

(R) such that (2.1)
holds.

(v) he vector spaceDα ,β ,s(R) is aHilbert spacewith the inner product ⟨⋅, ⋅⟩α ,β ,s given
by

⟨ f , g⟩α ,β ,s = ∫
∞

−∞
( 1 +

1
(x − α)2s

(x − β)2s )
̂f (x)ĝ(x) dx , for f , g ∈Dα ,β ,s(R).

(vi) For f , g ∈W2s
(R), put

⟨ f , g⟩W2s ,α ,β = ∫

∞

−∞
( 1 + (x − α)2s

(x − β)2s
)
̂f (x)ĝ(x) dx .

hen ⟨⋅, ⋅⟩W2s ,α ,β is an inner product on W2s
(R) that is equivalent to the usual

one on W2s
(R) as given in (1.3). he operator (D2

− i(α + β)D − αβI)
s
has the

multiplier (−1)s
(x − α)s

(x − β)s , and it is an isometry that maps W2s
(R) with

the inner product ⟨⋅, ⋅⟩W2s ,α ,β onto Dα ,β ,s(R).

Proof If (iii) holds, then (ii) holds, by deûnition.
Let (ii) hold. If u ∈ R, deûne λu ∈ M(R) by

(2.2) λu =
1
2
[e iu(

α−β
2 )

+ e−iu( α−β2 )
]δ0 −

1
2
[e iu(

α+β
2 )δu + e−iu( α+β2 )δ−u].

he Fourier transform ̂λu of λu is given for x ∈ R by

(2.3) ̂λu(x) = 2 sin(
u(x − α)

2
) sin(

u(x − β)
2

) .

396

https://doi.org/10.4153/S0008439518000061 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000061


Vanishing Fourier Transforms and Generalized Diòerences

So if u ∈ R and f , g ∈ L2
(R) are such that f = λs

u ∗ g, we have

∫

∞

−∞

∣
̂f (x)∣2

(x − α)2s
(x − β)2s dx

= 2s
∫

∞

−∞

sin2s
(u(x − α)/2) sin2s

(u(x − β)/2)
(x − α)2s

(x − β)2s ∣ĝ(x)∣2 dx <∞.

Using (2.2), we deduce that (ii) implies (i).
Nowwe assume that (i) holds, andwewill prove that (iii) holds. Let x ∈ R be given

but with x ∉ {α, β}. Note that it may happen that α = β. For each k ∈ Z, put

(2.4) ak =
kπ

∣x − α∣
, bk =

kπ
∣x − β∣

, a′k =
(k − 1/2)π
∣x − α∣

, and b′k =
(k − 1/2)π
∣x − β∣

.

hen put, again for each k ∈ Z,

(2.5) Ak = [a′k , a
′
k+1] and Bk = [b′k , b

′
k+1].

Note that ak is themid-point of Ak and bk is themid-point of Bk . he points ak are
the zeros of u ↦ sin(u(x − α)) , while the bk are the zeros of u ↦ sin(u(x − β)) .
Using (2.4) and (2.5), we see that for each k ∈ Z,

(2.6) λ(Ak) =
π

∣x − α∣
and λ(Bk) =

π
∣x − β∣

.

We will use the notation that dZ(w) denotes the distance from w ∈ R to the nearest
integer. Note that dZ(w) = ∣w∣ if and only if−1/2 ≤ w ≤ 1/2. Note also that ∣sin(πw)∣ ≥

2dZ(w) for all w ∈ R (for example see [7, p. 89] or [10, p. 233]).
Now

u ∈ A j Ô⇒
( j − 1/2)π
∣x − α∣

≤ u ≤

( j + 1/2)π
∣x − α∣

Ô⇒ −1/2 ≤ ∣x − α∣ ∣
u
π
−

j
∣x − α∣

∣ ≤ 1/2.

So for u ∈ A j ,

∣sin(u(x − α)) ∣ = ∣sin(π∣x − α∣ ∣
u
π
−

j
∣x − α∣

∣ ) ∣

≥ 2dZ( ∣x − α∣ ∣
u
π
−

j
∣x − α∣

∣ )

= 2∣x − α∣ ∣
u
π
−

j
∣x − α∣

∣

=

2
π
∣x − α∣ ∣u −

jπ
∣x − α∣

∣ .

(2.7)

Similarly, for u ∈ Bk ,

(2.8) ∣sin(u(x − β)) ∣ ≥
2
π
∣x − β∣ ∣u −

kπ
∣x − β∣

∣ .
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We see from (2.7) and (2.8) that for all u ∈ A j ∩ Bk we have

∣sin(u(x − α)) sin(u(x − β)) ∣ ≥
4
π2 ∣(x − α)(x − β)∣ ∣u −

jπ
∣x − α∣

∣ ⋅ ∣u −
kπ

∣x − β∣
∣ .

hat is, for u ∈ A j ∩ Bk we have

(2.9) ∣sin(u(x − α)) sin(u(x − β)) ∣ ≥
4
π2 ∣(x − α)(x − β)∣ ⋅ ∣u − a j ∣ ⋅ ∣u − bk ∣,

where a j and bk are the points as given in (2.4).
Recall that x ∉ {α, β} has been given. Let also c > 0 be given, and let the intervals

A j such that λ(A j ∩ [−c, c]) > 0 be Am1 , . . . ,Am1+r−1, and let the intervals Bk such
that λ(Bk ∩ [−c, c]) > 0 be Bm2 , . . . , Bm2+s−1.

hen put

(2.10) P1 = {Am1 ,Am1+1 , . . . ,Am1+r−1}, P2 = {Bm2 , Bm2+1 , . . . , Bm2+s−1}.

Note that in (2.10), P1 is a partition of some closed interval into closed subintervals
in the sense described in [8, p. 1430]. he same comment applies to P2. We put

A = {( j, k) ∶ 0 ≤ j ≤ r − 1, 0 ≤ k ≤ s − 1, λ(Am1+ j ∩ Bm2+k) > 0},(2.11)
P = {Am1+ j ∩ Bm2+k ∶ ( j, k) ∈ A},(2.12)

and we observe that

(2.13) [−c, c] ⊆ ⋃

( j ,k)∈A
Am1+ j ∩ Bm2+k .

he family P of closed intervals in (2.12) is a partition of some closed interval into
closed subintervals, and by (2.11) and Lemma 3.2 in [8], we have

(2.14) (the number of intervals in P) = (the number of elements ofA)

≤ r + s − 1.

Now from (2.6) we see that all lengths of the r intervals in the closed-interval par-
tition P1 equal π/∣x − α∣, so that (r − 2)π/∣x − α∣ < 2c. Hence,

(2.15) 1 ≤ r <
2c∣x − α∣

π
+ 2 =

2c
π
( 1 +

π
c∣x − α∣

) ∣x − α∣.

Let 0 < δ < 1/2. hen if ∣x − α∣ > πδ/c, we have from (2.15) that

(2.16) 1 ≤ r <
2c
π
( 1 +

1
δ
) ∣x − α∣.

On the other hand, if ∣x − α∣ ≤ πδ/c, as 0 < δ < 1/2 we have 2c < π/∣x − α∣, and it
follows from (2.6) that [−c, c] ⊆ A0, so that m1 = 0 and

(2.17) r = 1.

Again let 0 < δ < 1/2. hen, as in the preceding argument, but with β replacing α,
if ∣x − β∣ > πδ/c we have

(2.18) 1 ≤ s <
2c
π
( 1 +

1
δ
) ∣x − β∣,

while if ∣x − β∣ ≤ πδ/c, we have

(2.19) s = 1.
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Now we again let 0 < δ < 1/2. We see now from (2.16), (2.17), (2.18) and (2.19) that
if either ∣x − α∣ > πδ/c or ∣x − β∣ > πδ/c (perhaps with both holding), then we have

r + s − 1 < 2max{r, s}

≤ 2max{
2c
π
( 1 +

1
δ
) ∣x − α∣,

2c
π
( 1 +

1
δ
) ∣x − β∣}

=

4c
π

( 1 +
1
δ
) max{∣x − α∣, ∣x − β∣}.

(2.20)

Also, observe that if 0 < δ < 1/2, ∣x − α∣ ≤ πδ/c and ∣x − β∣ ≤ πδ/c, we have from
(2.17) and (2.19) that

r = s = 1.

Note that in the above, ak , bk , Ak , Bk , and so on, depend upon x and c. Also, r and s
depend upon x and c.

We now take m ∈ N with m ≥ 4s + 1, and we estimate the integral

∫[−c ,c]m
du1du2 ⋅ ⋅ ⋅ dum

∑
m
j=1 sin

2s u j(x − α) sin2s u j(x − β)
,

allowing for the diòerent values x may be, but recall that x ∉ {α, β}. We let P1, P2 be
the partitions as given in (2.10) and let P be the partition as in (2.12). We have, using
the deûnitions and (2.4), (2.9), (2.12) and (2.13),

∫[−c ,c]m
du1du2 ⋅ ⋅ ⋅ dum

∑
m
j=1 sin

2s u j(x − α) sin2s u j(x − β)

≤ ∑

( j1 ,k1), . . . ,( jm ,km)∈A
∫
∏m

t=1 Am1+ jt∩Bm2+kt

×

du1du2 ⋅ ⋅ ⋅ dum

∑
m
j=1 sin

2s u j(x − α) sin2s u j(x − β)

≤ (

π4s

24s
(x − α)2s

(x − β)2s )

× ( ∑

( j1 ,k1), . . . ,( jm ,km)∈A
∫
∏m

t=1 Am1+ jt∩Bm2+kt

×

du1du2 ⋅ ⋅ ⋅ dum

∑
m
j=1(u j − am1+ j t)

2s
(u j − bm2+k t)

2s ) .

(2.21)

In (2.21) we have am1+ j t ∈ Am1+ j t and bm2+k t ∈ Bm2+k t , but neither am1+ j t nor bm2+k t

necessarily belongs to Am1+ j t ∩Bm2+k t . If am1+ j t ∈ Am1+ j t ∩Bm2+k t put ãm1+ j t = am1+ j t ;
otherwise let ãm1+ j t be the endpoint of Am1+ j t ∩ Bm2+k t closest to am1+ j t . If bm2+k t ∈

Am1+ j t ∩Bm2+k t put b̃m2+k t = bm2+k t ; otherwise let b̃m2+k t be the endpoint of Am1+ j t ∩

Bm2+k t closest to bm2+ j t . hen from Lemma 2.2, for all t ∈ {1, 2, . . . ,m}, we have that
in (2.21),

∣(u − am1+ j t)(u − bm2+k t)∣ ≥ ∣(u − ãm1+ j t)(u − b̃m2+k t)∣,
for all u ∈ Am1+ j t ∩ Bm2+k t .

(2.22)

399

https://doi.org/10.4153/S0008439518000061 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000061


R. Nillsen

Now let 0 < δ < 1/2 and assume that we have either ∣x − α∣ > πδ/c or ∣x − β∣ > πδ/c.
hen from (2.14), the right-hand side of (2.20) gives an upper bound for the number
of elements in P. Using (2.21) and (2.22), and then using (2.20), the assumption that
m ≥ 4s + 1, and Lemma 4.1 in [8], we have in this case that

∫[−c ,c]m
du1du2 ⋅ ⋅ ⋅ dum

∑
m
j=1 sin

2s u j(x − α) sin2s u j(x − β)

≤

π4s

24s
(x − α)2s

(x − β)2s

× ∑

( j1 ,k1), . . . ,( jm ,km)∈A
∫
∏

m
t=1 Am1+ j t ∩ Bm2+k t

×

du1du2 ⋅ ⋅ ⋅ dum

∑
m
j=1 ∣u j − ãm1+ j t ∣

2s
∣u j − b̃m2+k t ∣

2s

≤

π4sM
24s

(x − α)2s
(x − β)2s

× ∑

( j1 ,k1), . . . ,( jm ,km)∈A
(max{λ(Am1+ j1 ∩ Bm2+k1), . . . , λ(Am1+ jm ∩ Bm2+km)})

m−4s
,

where M > 0 and M depends only upon m and s, as in Lemma 4.1 of [8],

≤

π4s−m
(δ + 1)m22m−4scmM

δm
(x − α)2s

(x − β)2s

× (max{∣x − α∣m , ∣x − β∣m}min{
πm−4s

∣x − α∣m−4s ,
πm−4s

∣x − β∣m−4s }) ,

where we have used (2.6),

≤ Q max{
(x − α)2s

(x − β)2s ,
(x − β)2s

(x − α)2s } .

(2.23)

So far, x has been ûxed with x ∉ {α, β}, but allowing for the possibility that α = β.
he constant Q in (2.23) is independent of x, so we deduce that (2.23) holds for all
x ∈ R such that either ∣x − α∣ > πδ/c or ∣x − β∣ > πδ/c. We now consider the cases
where α ≠ β and α = β.

Case I: α ≠ β.
In this case, choose δ so that

0 < δ < min{
1
2
,
c∣α − β∣

2π
} .

hen deûne disjoint intervals J ,K by putting

J = [α −
πδ
c
, α +

πδ
c

] and K = [β −
πδ
c
, β +

πδ
c

] .
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Clearly, there is C1 > 0 such that

(2.24) max{
(x − α)2s

(x − β)2s ,
(x − β)2s

(x − α)2s } ≤ C1 , for all x ∈ (J ∪ K)
c .

As well, (x − β)−2s is bounded on J, so we see that there is C2 > 0 such that

(2.25) max{
(x − α)2s

(x − β)2s ,
(x − β)2s

(x − α)2s }(x − α)2s
≤ C2 , for all x ∈ J ∩ {α}c .

And, as (x − α)−2s is bounded on K, there is C3 > 0 such that

(2.26) max{
(x − α)2s

(x − β)2s ,
(x − β)2s

(x − α)2s }(x − β)2s
≤ C3 , for all x ∈ K ∩ {β}c .

We now have from (2.23), (2.24), (2.25) and (2.26), that

∫

∞

−∞
(∫[−c ,c]m

du1du2 ⋅ ⋅ ⋅ dum

∑
m
j=1 sin

2s u j(x − α) sin2s u j(x − β)
) ∣

̂f (x)∣2 dx

≤ C1Q ∫(J∪K)c
∣
̂f (x)∣2 dx + C2Q ∫

J

∣
̂f (x)∣2

(x − α)2s dx + C3Q ∫
K

∣
̂f (x)∣2

(x − β)2s dx

<∞,

(2.27)

as we are assuming that ∫
∞
−∞ ∣

̂f (x)∣2(x − α)−2s
(x − β)−2s dx <∞.

Case II. α = β.
Let’s assume that α ∈ (−c, c) and that

(2.28) δ < min{
1
2
,
c(c − ∣α∣)

π
} .

Put L = (α − πδ/c, α + πδ/c), and observe that because of (2.28), L ⊆ (−c, c). Let
x ∈ L be given. hen ∣x − α∣ < πδ/c and as δ < 1/2, it follows that c < π/2∣x − α∣.
Consequently, using the deûnitions of A0 and B0 as given by (2.4) and (2.5), we see
that (−c, c) ⊆ A0 = B0. Note that although A0 and B0 each depends upon x, (−c, c) ⊆
A0 = B0 occurs regardless of x ∈ L. Putting j = k = 0 in (2.9), we now deduce that for
all u ∈ (−c, c) and all x ∈ L,

(2.29) ∣sin(u(x − α)) ∣ ≥
2
π
∣u∣ ⋅ ∣x − α∣.

Let C > 0 be such that

(2.30)
m

∑

j=1
u4s

j ≥ C(
m

∑

j=1
u2

j)
2s
, for all (u1 , u2 , . . . , um) ∈ Rm .
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We now have from (2.29) and (2.30) that if m ≥ 4s + 1 and x ∈ L,

∫[−c ,c]m
du1du2 ⋅ ⋅ ⋅ dum

∑
m
j=1 sin

4s u j(x − α)
≤

π4s

24s
(x − α)4s ∫[−c ,c]m

du1du2 ⋅ ⋅ ⋅ dum

∑
m
j=1 u4s

j

≤

1
C
⋅

π4s

24s
(x − α)4s ∫[−c ,c]m

du1du2 ⋅ ⋅ ⋅ dum

(∑
m
j=1 u2

j)
2s

≤

D
C
⋅

π4s

24s
(x − α)4s ∫

c
√

m

0
rm−4s−1 dr,

for some D > 0, by [10, pp. 394–395],

≤

G
(x − α)4s ,

(2.31)

for some G > 0 that is independent of x ∈ L ∩ {α}c .
On the other hand, if x ∉ L we have ∣x − α∣ ≥ πδ/c, so that if we apply (2.23) with

α = β we have

(2.32) ∫[−c ,c]m
du1du2 ⋅ ⋅ ⋅ dum

∑
m
j=1 sin

4s u j(x − α)
≤ Q <∞.

Assuming that ∣α∣ < c, we now have, using (2.31) and (2.32), that

∫

∞

−∞
(∫[−c ,c]m

du1du2 ⋅ ⋅ ⋅ dum

∑
m
j=1 sin

4s u j(x − α)
) ∣

̂f (x)∣2 dx

≤ G ∫
L

∣
̂f (x)∣2

(x − α)4s dx + Q ∫
Lc

∣
̂f (x)∣2 dx

<∞,

(2.33)

as α = β and we are assuming that ∫
∞
−∞ ∣

̂f (x)∣2(x − α)−2s
(x − β)−2s dx <∞.

We have considered both the cases α ≠ β and α = β. he dénouement results from
using Fubini’sheorem, (2.27), and (2.33). We see that provided ∣α∣ < c andm ≥ 4s+1,
in both cases we have

∫[−c ,c]m
(∫

∞

−∞

∣
̂f (x)∣2 dx

∑
m
j=1 sin

2s u j(x − α) sin2s u j(x − β)
) du1du2 ⋅ ⋅ ⋅ dum <∞.

We conclude from this that, for almost all (u1 , u2 , . . . , um) ∈ [−c, c]m ,

(2.34) ∫

∞

−∞

∣
̂f (x)∣2 dx

∑
m
j=1 sin

2s
(u j(x − α)) sin2s

(u j(x − β))
<∞.

By letting c tend to ∞ through a sequence of values, we deduce that, in fact, the in-
equality in (2.34) holds for almost all (u1 , u2 , . . . , um) ∈ Rm . But then, using (2.2),
(2.3) andheorem 2.1,we see that providedm ≥ 4s+1, for almost all (u1 , u2 , . . . , um) ∈

Rm there are f1 , f2 , . . . , fm ∈ L2
(R) such that

f =
m

∑

j=1
[(e iu j( α−β2 )

+ e−iu j( α−β2 )
)δ0 − (e iu j( α+β2 )δu j + e

−iu j( α+β2 )δ−u j)]
s
∗ f j .
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We deduce that (i) implies (ii) in heorem 2.3 and, by taking m = 4s + 1, we see that
(i) implies (iii).

We have now proved that (i), (ii) and (iii) are equivalent. Also, we have proved
statement (iv), that (iii) is possible for almost all (u1 , u2 , . . . , u4s+1) ∈ R4s+1.

he ûnal statements (v) and (vi) now follow in a routine way, using as needed
the equivalence of the statements (i), (ii) and (iii). his completes the proof of
heorem 2.3. ∎

Note that in heorem 2.3, if we take the special case α = β = 0 we obtain the
identity (1.2) for the case s = 2, proved originally in [6] and [7].

In the case when α, β ∈ Z, and if we identify T with [0, 2π) in the usual way, we
can deûne a generalized (α, β)-diòerence of order s in L2

(T) to be a function as given
in (1.6), but with g ∈ L2

([0, 2π)) and u ∈ [0, 2π). hen, by analogy with Dα ,β ,s(R),
deûneDα ,β ,s(T) to be the vector subspace of L2

(T) consisting of ûnite sums of gen-
eralized (α, β)-diòerences of order s in L2

(T). It was proved in [8,heorem 2.3] that

(2.35) Dα ,β ,s(T) = { f ∶ f ∈ L2
(T) and ̂f (α) = ̂f (β) = 0}.

here is an obvious similarity between this fact and the result derived from heo-
rem 2.3 which is that

(2.36) Dα ,β ,s(R) = { f ∶ f ∈ L2
(R) and ∫

∞

−∞

∣
̂f (x)∣2

(x − α)2s
(x − β)2s dx <∞} .

However, note in (2.35) that the right-hand side is independent of s whereas in (2.36)
the right-hand side depends upon s. At ûrst sight this may seem surprising, but each
equality expresses a condition that ̂f “vanishes” at or near α and β. Since the dual Z
ofT is discrete, the only way this can occur in the case ofT is if ̂f actually vanishes at α
and β, and this forces the independence from s in the right hand side of (2.35). In the
case of R, however, because the dual of R is itself and so is a continuum, there is an
inûnity of possible behaviours of ̂f near α and β expressing the idea that ̂f “vanishes”
near α and β, and we observe a dependence upon s in the right-hand side of (2.36).
Another diòerence betweenDα ,β ,s(T) andDα ,β ,s(R) is that the former has ûnite

algebraic codimension in L2
(T) while the latter has inûnite algebraic codimension

in L2
(R). Note further that when α, β ∈ Z, it has been shown [8, heorem 2.3] that

(D2
− i(α + β)D − αβI)

s
maps W2s

(T) ontoDα ,β ,s(T) (which is independent of s),
whileherewehave seen that (D2

− i(α + β)D − αβI)
s
mapsW2s

(R)ontoDα ,β ,s(R).
In [5]Meisters and Schmidt showed that every translation-invariant linear formon

L2
(T) is continuous, but in [3] Meisters showed that there are discontinuous

translation-invariant linear forms on L2
(R), and this latter result may also be de-

duced from the identity (1.2) in the case s = 1. he following introduces, in the present
context, a notion corresponding to translation-invariant linear forms.

Deûnition 2.4 Let α, β ∈ R and let s ∈ N. hen a linear form T on L2
(R) is called

(α, β, s)-invariant if, for all f ∈ L2
(R) and u ∈ R,

T([(e iu(
α−β
2 )

+ e−iu( α−β2 )
)δ0 − (e iu(

α+β
2 )δu + e−iu( α+β2 )δ−u)]

s
∗ f ) = 0.
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Equivalently, the linear form T on L2
(R) is (α, β, s)-invariant when T(Dα ,β ,s(R))

= {0}.
A linear formT on L2

(R) is (α,−α, 1)-invariantwhen, for all f ∈ L2
(R) andu ∈ R,

T(2−1
(δu + δ−u) ∗ f ) = cos αT( f ),

from which we see that if T is a translation-invariant linear form on L2
(R) it is

(0, 0, 1)-invariant.
When α, β ∈ Z, we may also introduce the corresponding notion of (α, β, s)-

invariant linear forms on L2
(T). It was shown in [8, heorem 7.1] that an (α, β, 1)-

invariant linear formon L2
(T) is continuous and, in fact, any (α, β, s)-invariant linear

form on L2
(T) is continuous (proved by the technique used for the case s = 1 in [8]).

However, the following corollary toheorem 2.3 shows that the situation pertaining to
translation-invariant linear forms on L2

(R) ismirrored by that for (α, β, s)-invariant
linear forms on L2

(R).

Corollary 2.5 Let α, β ∈ R and let s ∈ N. hen there are discontinuous (α, β, s)-
invariant linear forms on L2

(R).

Proof It is a consequence ofheorem 2.3 thatDα ,β ,s(R) has inûnite algebraic codi-
mension in L2

(R). Consequently there are discontinuous linear forms on L2
(R) that

vanish on Dα ,β ,s(R), and such forms are (α, β, s)-invariant. ∎

Acknowledgement he author thanks the referee for helpful suggestions that have
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