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SUMMARY

Linear functions of Nei's genetic-distance statistic are calculated
frequently in the literature of population genetics. Variance estimates for
these linear functions are either not presented or incorrectly calculated.
Part of the problem stems from the common assumption that distance
statistics are independent random variables. This assumption is not
generally correct. We describe methods for estimating the variance of
linear combinations of genetic-distance statistics. We also suggest a
method for constructing confidence intervals on genetic-distance statistics
when these values are small (<(M0) and their distribution deviates
substantially from normal.

1. INTRODUCTION
Many questions of evolutionary interest require that genetic differences between

populations be expressed as a single statistic, often called 'genetic distance'.
Genetic distances are used, for example, to evaluate the degree of genetic
differentiation achieved during the speciation process or at other stages of
evolutionary divergence (review in Ayala, 1975). Genetic distances also are used
in the construction of phenograms (Sneath & Sokal, 1973) or cladograms (Farris,
1972) and have indeed provided valuable information for the reconstruction of
phylogenetic history on the basis of extant species.

Gel electrophoresis has made it relatively easy to characterize genetic differences
between population through the study of a number of gene loci coding for enzymes
and other proteins. The results of electrophoretic studies can be used to estimate
the genetic distance between pairs of populations. The distance measure proposed
by Nei (1971, 1972) is one of the most widely used, although many others exist
(Nei, 1973).

Nei's genetic-distance statistic is a complicated function of the underlying
observations: allele frequencies at several loci. Consequently the statistical pro-
perties of these quantities are rather complicated. The complications are most
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128 L. D. MUELLER AND F. J. AYALA

apparent when linear functions of distance statistics are computed. Linear
functions of distance statistics are routinely calculated in the literature (Hilburn,
1980; Kilias, Alahiotis & Pelecanos, 1980; Mulley & Latter, 1980; Ryman,
Reuterwall, Nygren & Nygren, 1980; Ward, 1980; Greenbaum, 1981; Guttman,
Wood & Karlin, 1981; Halliday, 1981). Oftentimes questions of biological
importance requires some statistical inference on these linear functions. We herein
describe methods for making statistical inferences on linear functions of Nei's
measure of genetic distance and illustrate these methods with several examples.
In addition we suggest a method of interval estimation on estimates of genetic
distance when these are close to zero.

2. NEI'S DISTANCE MEASURE

Under the assumptions that the substitution of electromorphs (and, hence,
electrophoretically detectable alleles) is well described by a Poisson process and
that the mean rate of this process is the same for all loci, Nei (1971, 1972) has
derived a 'genetic distance' statistic, which estimates the mean number of such
substitutions that have taken place since two populations shared their last common
ancestor. If x^ (y^) is the frequency of the kth allele at locus i in population
X(Y), then the j'-statistics may be defined as

where the summations are over all alleles at locus i. Nei has proposed the following
formula for estimating the genetic distance on the basis of n loci:

Dn=-\n\jxy/{jJv)h] (1)

where j x y , j x , and j y are the averages over all loci of j{xy,jx
i), a n d ^ . A method

for estimating the sampling variance of Dn is given by Nei and Roychoudhury
(1974).

The true genetic distance, D, would of course be obtained from equation (1) if
the summations were taken over all gene loci in the genome and if the allele
frequencies were obtained from examination of all the individuals in the population.
However, bias may be introduced into Dn in two ways: (1) because only a few
individuals and (2) because only a few loci are usually studied. In this discussion,
a small number of individuals means ten or fewer, whereas a large number of loci
means fifty or more. If a small number of individuals is sampled, then Dn may
be biased owing to a substantial bias in ]<£> and j ^ . Nei (1978) has proposed an
unbiased estimator of Dn when a small number of individuals has been sampled
at a large number of loci. However, a more common situation in electrophoretic
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Genetic Distance Statistics 129

studies is that a sufficient number of individuals is sampled at a small number of
loci. Mueller (1979) has shown that in this case the approximate magnitude of the
bias is given by

^ {Var (jxy)/J%y - J[Var (jx)/J% + Var (jy)/J
2
y]}, (2)

where Jxy = E(jxy), Jx = E(jx), and Jy = E(jy). It seems to be often the case that
(2) is positive, which means that E(Dn) > D. This bias may be reduced by the
jackknife method.

3. THE JACKKNIFE

The jackknife method offers an alternative estimator of D that may be less
biased than Dn (see Miller, 1974, for a review). Let Dni be the same as (1) except
that the ith locus has been omitted (i.e. Dni is based on n— 1 loci). There will be
n different values of Dni (i = 1, 2, . . . , n), which may be used to define n
pseudovalues as follows:

-{n-\)Dn4. (2a)

The jackknife estimator, Z)n, of D is simply defined as the mean of these n
pseudovalues,

D = il /n)Y* S (3)
i

The variance is defined, in the usual fashion, as

(Dn) = (l/n) V^r (Sn t) = [ l / n ( » - 1)] I (<Sn t-3n)*. (4)

4. STATISTICAL PROPERTIES OF THE ESTIMATORS

In order to evaluate the advantages of each of the two estimators, Dn and Dn,
we would like to know the following properties of the estimators: (i) the bias, (ii)
the variance, and (iii) the mean square error = (bias)2 + variance. The smaller the
values of (i), (ii), and (iii), the better the estimator will be. I t is not possible to derive
analytic expressions for properties (i), (ii), (iii), but computer simulations provide
some insights. Mueller (1979) has carried out nine sets of simulations. The bias was
smaller in all nine cases for Dn than for Dn\ the variance and the mean square
error were smaller in eight out of the nine cases. These results indicate that with
respect to properties (i), (ii), and (iii) the jackknife is superior to (1).

(i) Interval estimation

The results of Mueller (1979) show that the intervals generated by either method
are too small for samples of five (or fewer) loci, but are of about the correct
magnitude for samples of n ^ 15 loci. There is, however, an important exception
to this conclusion, namely when the value of D is very small (i.e. of the order of
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10~2). The genetic distance between two populations cannot be negative. Hence,
Dn can not be less than zero, and this causes the distribution of Dn values to be
asymmetric and to deviate substantially from a /-distribution whenever D is very
small (see Mueller, 1979).

If we make use of the third and fourth moments of Dn and Dn, then we can use
an Edgeworth expansion (see Bickel & Doksum, 1977, pp. 32-34) to obtain an
approximation to the true distribution of these statistics. Let Fn(x) denote the
distribution function of (/3n —i))/Var (-/)„)* and yln and y2n denote the coefficient
of skewness and kurtosis; then

[ 2 ~1

^(x2-l)+-^(x3-3x)+-^(xb-l0x3+l5x)\, (5.)
where <t>(x) and <fi(x) are the distribution and density function of a standard normal
random variable respectively. For the jackknifed estimator, Bn, the third and
fourth moments can be estimated from standard moment estimators using the
pseudovalues in a fashion analogous to (4). Obtaining these estimates for Dn is quite
a bit more difficult. In principle one would use the expression 1A in the appendix
to find E{[Dn — Bn]

3} and E{[Dn — Dn\
i). Once yln and y2n are estimated, equal tail

confidence intervals [Xx, X2] can be estimated from (5) by noting Fn(X-i) = 0-025
and Fn(X2) = 0-975. We can also examine the ability of the lognormal and gamma
distributions to describe the distribution of small values. If we assume that log
(Dn) has a normal or /-distribution then an equal tail confidence interval on Bn

will be given by

x2
u

= exp \%

= exp \i

= In Dn

i— -

t + -

- i

v/o-

\/V

In I

2 tn-lj-
2 <n-l,J.

Var (73,

A'j and A2 are somewhat more difficult to obtain for the gamma distribution. The
parameters and distribution function may be estimated from equations (24), (41-2)
and Thorn's approximation as given in Johnson & Kotz (1970, ch. 17). Evidence
for the usefulness of any of these approximations is given by the following
numerical experiment. Three thousand values of/52O were calculated using the data
from Ayala el al. (1974a) for the Barinitas and Tucupita populations of Drosophila
Iropicalis. The methods for generating the 3000 values were the same as described
in Mueller (1979). From the 3000 values D20, a

2, fi3n and /<4n were estimated and
used to estimate the Edgeworth, lognormal, and gamma distribution functions.
In Table 1 we have presented the empirical distribution, and the distributions
predicted from the Edgeworth expansion, the gamma, and the lognormal. The
Edgeworth expansion is only slightly better than the gamma distribution. In view
of the two additional parameters that one must estimate for the Edgeworth
expansion, it may be more accurate and easier to use the gamma distribution.
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(ii) Lack of independence between distance measures

Certain problems arise repeatedly in many empirical studies that utilize genetic
distance statistics. Their solution involves calculating statistics that are linear
functions of genetic distance values. Examples of these problems are: (i) whether
or not two distance values are significantly different from each other; (ii) what is
the mean distance between populations in a group; and (iii) constructing pheno-

Table 1. The empirical distribution, f{x), of 3000 values of D20; the Edgeworth,
gamma, and lognormal distributions. The 3000 randomly-generated distance values
were sampled from the data of Ayala et al. (1974a). x = (D20 — D)/\/Va,v (D20)

x f(x) Edgeworth Gamma lognormal

181
1-69
1 57
1-46
1 34
111
0644
0179
0-402
1-33
2-26
2-38
2-49
2-61
2-73
2-84
2-96

0003
000833
00167
00357
00543
0118
0-300
0-481
0-685
0-897
0-975
0-980
0-983
0-985
0-988
0-990
0-992

00055
00147
00278
00439
00659
0122
0-287
0-480
0-692
0-899
0-973
0-977
0-980
0-984
0-986
0-988
0-990

000173
000636
00157
00241
0-0528
0115
0-296
0-495
0-703
0-895
0-968
0-973
0-977
0-980
0-983
0-986
0-988

< 0001
00012
00053
00129
00271
00824
0083
0-512
0-728
0-898
0-959
0-964
0-967
0-971
0-974
0-976
0-979

grams or cladograms based on electrophoretic data. We can formalize these
questions. First, we introduce a change of notation by letting Sxyi and Dxy be the
same as Sni and Dn in equations (2a) and (3), except that the sample size
specification (n) has now been replaced by xy, which refers to the populations whose
genetic distance is being estimated. The problems mentioned above reduce to
considering the mean and variance of some linear combination, U, of m genetic
distance statistics. Thus if Cxy is a constant associated with Dxy then

Linear functions that are commonly encountered are sums or differences of means.
Since these can get quite complicated we find the notation given above useful. The
variance of U is given by,

Var (U) = 2 C* Var (Dh) + 2 I I Clf C. Cov (2), /5, ), (6)
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where lt, l^ e {AB, AC,..., XY}. The question of whether two distance values are
significantly different may be answered by calculating U = Dxy — Dwz and asking
whether U is significantly different from zero. In order to answer this, we must
obtain confidence intervals about U; but this in turn requires knowing the variance
of U. This will be given by

Var (U) = Var (Dxy) + Var (Dwz) - 2 Cov 0xy, Dwz). (7)

In a similar fashion, if we want to obtain the average of two distance values,
D = (Dxy-\-Dwz)/2> then the variance of D will be given by

Var (D) = i[Var (Dxy) + Var (Dwz) + 2 Cov (Dxy, Dwz)]. (8)

In general, the covariance term in (7) and (8) will not be zero. We may consider
two situations. The first situation is when x = z, which will be the case, for example,
when a matrix of pairwise genetic distances is calculated involving a group of
populations. If x = z, the two distance values are not independent since the same
data from population x are used to estimate Dxy and Dwx and, therefore, their
covariance cannot be assumed to be 0. The second situation is when x, y, w and
2 refer all to different populations. It might seem that in this case Dxy and Dwz

would be independent, but often it will not be so. The distance statistics will only
be independent if loci are sampled at random. This is clearly not the case due to
technical limitations in electrophoresis laboratories.

Usually the same set of loci (or largely overlapping sets) are used to estimate
Dxy and Dwz. Ancestral relationships between the four populations, as well as
possible similarities of selection pressures, may result in patterns of variation at
a particular locus that are correlated between populations. It is well known that
rates of evolution can differ appreciably between loci; e.g. the fibrinopeptides have
evolved very rapidly compared to proteins such as cytochrome-c (Dobzhansky et
al. 1977, pp. 301—303). Thus if a sample of loci contains many fibrinopeptide-like
loci then the estimate of Dxy is liable to be larger than it should be. If Dwz was
estimated from the same rapidly evolving loci, then it will also be larger than
expected and Dxy and Dwz will covary as a result of this non-random sampling
of loci. Hence, even when all populations are different, we cannot assume that
Cov (Dxy, Dwz) = 0.

Fortunately, the covariance term can be easily estimated from the pseudovalues
of the jackknife:

Co^ (Dxy, Dwz) = (1/TI) (£v (Sxy, Swz)

= [l/n(n-l)] I (SxyJ-Dxy) (SWZti-Dwz). (9)

If the two distance measures are calculated using the delta method as in (1), the
covariance term can also be calculated by means of the delta method (Kendall &
Stuart, 1969, pp. 231-232). This covariance is derived in the Appendix.
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5. APPLICATIONS

The first problem of general interest is whether the subdivision of a set of
populations into genetically similar groups is supported by estimates of genetic
distance. To illustrate this application we will use the data from Bruce & Ayala
(1979). The living hominoids, including humans and apes, can be divided into two
groups: one having the smaller apes, genera Hylobates (gibbon) and Symphalangus

Table 2. Results of two methods for testing the significance of intergroup

genetic distances

Parameter Method I Method II
(A)V&r{Dw) 0-71 xl(T3 311 xlO"3

(B) Var (DB) 139 x 10'3 31-2 x 10"3

(C) Cov (DW,DB) 0 3-63 x 10"3

(D) Var(£/) = A + B-2C 2-lOxKT3 271 x 1CT3

(E) 95% c.i. on U (0-35, 053) (Oil , 0-76)

Note. Calculated from Bruce & Ayala (1979). Dw = 0-283; DB = 0-720; U = 0-437. c.i. stands
for 'Confidence Interval'.

(siamang); and a second group having the great apes, Gorilla, Pan (chimpanzee),
and Pongo (orangutan), as well as humans. It is often thought that the evolutionary
lineage going to the small apes separated from the lineages going to the great apes
and humans before these separated fron one another. The question we may want
to raise is whether the species within each of these two groups are genetically more
similar to each other than they are to species from the other group. In order to
answer this question, we calculate three quantities: Dw = the average genetic
distance within groups, DB = the average genetic distance between groups, and
U = DB — Dw. If U is significantly greater than 0, the answer to the question raised
will be 'yes'.

We shall use two methods in order to estimate the variance of the three
quantities. Method I assumes that each distance value is an independent-and-
identically-distributed random variable. This method is the one most commonly
used in the electrophoretic literature (e.g. Ayala el at. 19746; Sene & Carson, 1977;
Hedgecock, 1978; Tabachnick, Munstermann & Powell, 1979). Method 11 makes
use of the concepts outlined in equation (6), and uses equation (9) to estimate the
covariances between distance values.

The results for the data of Bruce & Ayala (1979) are shown in Table 2. Both
methods lead to the same qualitative conclusion — namely, that species within
groups are genetically more similar than between groups — but it is apparent that
method I grossly underestimates the variance of U. If the magnitude of U had
been smaller, or if fewer loci had been used, method 1 and II might have lead to
qualitatively different conclusions.

A second problem, for which the methods discussed in this paper are relevant,
concerns the construction of cladograms or phenograms on the basis of genetic
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distances. Several methods exist that estimate the position of the branch points,
or leg lengths, as linear combinations of the distance values. Examples of such
methods are the Unweighted Pair Group method (Sneath & Sokal, 1973) and
Farris' (1972) method for finding a Wagner tree. Equation (6) can be used in such
cases for estimating the variances and, therefore, the confidence intervals of the
branch points. The Unweighted Pair Group method is used to construct a
phenogram for the data of Bruce & Ayala (1979) as shown in Fig. 1.

(0-14,0-66)

1-1) (0-1 ,0-57)

(0

(0023, 0-30)
(0-027, 0-40) H

019,0-51

(0034, 0-35)

(0034,0-35)
) 1

Gorilla

Homo

Pan troglodytes

Pan paniscus

Pongo p. pygmaeus

Pongo p. abelii

Hylobates lar

Hylobates concolor

Symphalangus

010 00-70 0-60 0-50 0-40 0-30 0-20

Genetic distance

Fig. 1. A phenogram of nine species of hominoids (Bruce & Ayala, 1979), constructed
by the unweighted pair group method. Confidence intervals (95%) are given for the
position of each branching point.

The branch points estimated for the unweighted pair group method are always
the sum of various mean genetic distances. Consequently when these branch points
are small it would be best to use a gamma distribution to construct the confidence
interval. It should be noted that the confidence intervals in Fig. 1 are not
independent. Thus if the branch point of//, lar with H. concolor were really close
to 0-35 then the branch point linking these species with Symphalangus would
probably also be larger than O27. Consequently, this information can be used to
make inferences on individual branch points but not on the overall topology of
the tree.

6. DISCUSSION
Based on the results of Mueller (1979) we recommend that the jackknife method

be used to estimate Nei's measure of genetic distance. Because the jackknife
estimator has smaller variance and bias than the estimator proposed by Nei, this
recommendation can be made unconditionally. The jackknife method is more
laborious - because ?ipseudodistancesmust be calculated, each usingw— 1 loci — but
it does not involve any more difficult computations than Nei's method.

Linear functions of distance statistics are computed often in empirical studies.
Some recent examples of work, where either phonograms or some other function
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of distance statistics were calculated, are: Hilburn, 1980; Kilias, Alahiotis &
Pelecanos, 1980; Mulley & Latter, 1980; Ryman et al., 1980; Ward, 1980;
Greenbaum, 1981; Guttman, Wood & Karlin, 1981; Halliday, 1981. This list is
certainly not exhaustive. The methods discussed in this paper could have been
applied in all these examples. It is obvious that if some statistical inference on these
linear functions is desired, the variance of the linear function must be computed.
Even if a formal hypothesis test is not being considered, confidence intervals should
be published to give readers some feeling for the underlying uncertainty in these
figures, especially since this uncertainty is usually great. As we have illustrated
in Table 2 the usual method for estimating the variance of linear functions leads
to severe underestimates. Thus, application of the methods described here may
lead to major qualitative changes in the interpretation of the data rather than to
minor quantitative changes.

Phenograms and cladograms are almost always presented without any indication
of the variance in leg lengths. Fossil or other evidence is sometimes available to
fix the time of one or more branch points in a cladogram. The approximate dates
can, then, be estimated for the various cladogenetic events in the phylogeny. Our
methods can also be used to calculate the confidence intervals of the dates.

7. APPENDIX

We will derive the expression for the covariance of Dxy and Dwz by the delta
method. First we expand the functions Dxy and Dwz about the expected values
°fjx>jy:3xy>jwjz> an^jzvz'' w e denote such expected values by Jx, Jy, etc. Ignoring
the second order and higher terms we get,

Dwz =wz

where the derivatives in (1A) and (2A) are evaluated at the points (Jx, Jy, Jxy)
and (Jw, Jz, Jwz) respectively. Using (1A) and (2A) we get an expression for
(Dxy — Dxy) (Dwz — Dwz). Taking expectations on both sides of the equation and
noting that

1

Jxy

we get

Cov (Dxy, Dwz)

(jx, Jw)/iJx Jw + Cov (jx, /Z)/4JX Jz - Cov (jx, jwz)/2Jx Jwz

(Jy,jrw)/*Jy Jtv + C0V {jy,jt)/4Jv J2-COV (jy,Jwz)/2Jy JWZ

(jxy> Jw)/2Jxy Jw ~ Cov (jxy, jz)/2Jxy Jz + Cov (jxy, jwz)/Jxy Jwz. (3 A)
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As an estimate of Cov (Dxy, Dwz) we replace the population quantities in (3 A) with
their sample analogs i.e. Cov {jx,jy) = Cov (jx,jy), Jx = j x etc.
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