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ABSTRACT

It is shown how the distribution-free method of Mack (1993) can be extended
in order to estimate the prediction error of the Chain Ladder method for a port-
folio of several correlated run-off triangles.
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1. INTRODUCTION

In Mack (1993), a distribution-free method was developed in order to estimate
the prediction error of Chain Ladder reserve estimates. For claims reserving
purposes, an insurance company usually subdivides its portfolio into several
subportfolios such that the development behavior of each subportfolio can be
assumed to be homogeneous. Then, for each subportfolio, the Chain Ladder
method can be applied in order to estimate the appropriate claims reserves and
their prediction error.

But what is finally needed, are the claims reserves for the whole portfolio
of the insurance company and their prediction error. Whereas the estimates
of the claims reserves of each subportfolio can simply be added together in
order to arrive at an estimate for the claims reserves of the whole portfolio, this
is only the case for the prediction variances if the subportfolios can be assumed
to be independent. But in long tail business, the development of different sub-
portfolios is influenced to a substantial degree by the development behavior
of bodily injury claims (medical and nursing costs). Even after correcting the
data for the claims inflation, further direct and indirect sources for correla-
tions between run-offs of a portfolio exist (see e.g. Houltram (2003)). There-
fore, subportfolios in general can not be assumed to be independent. Then,
the question arises how the prediction error of the aggregated portfolio can be
arrived at.

In this situation, applying the Chain Ladder method to the overall triangle
and taking the prediction error from this calculation is not a good solution
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because already the reserve estimates obtained in this way will not be identical
to the aggregation of the reserve estimates of the individual subportfolios, see
e.g. Ajne (1994). Moreover, the aggregation of run-off triangles with different
development patterns is like mixing apples and oranges and will normally lead
to invalid results.

Therefore in this paper, a new, more sensible approach is developed. We assume
that the correlation between two run-off triangles finds its manifestation in
a fixed correlation coefficient between the individual development factors of
the two corresponding development periods of the triangles. This correlation
coefficient may depend on the development period, but not on the accident
year. This assumption fits very well to the basic assumption behind the Chain
Ladder method that the individual development factors of each development
period fluctuate randomly around a fixed, but unknown age-to-age factor.

In actuarial practice, this approach enables the actuary to set up a range
and a prudential margin for the reserves of the whole portfolio as required
e.g. by several national accounting standards. The reserving bounds described
in this paper are solely based on stochastic assumptions and on the observed
data and not on assumed correlations between lines of business – as often
done – which do not refer to the peculiarities of the underlying portfolio.

Due to the increasing importance of stochastic methods in claims reserving
the prediction error of the reserves of a portfolio was subject of several publi-
cations, recently. In none of these papers, the author is aware of, the correla-
tion between segments is defined such rigorously as it is done here. In Brehm
(2002) for example, the correlation of the reserve distributions of the segments
is simply set equal to the correlation of the separated calendar period inflation
parameter estimate. Furthermore, Brehm does not use the Chain Ladder method
for the ultimate projection.

In our approach the prediction error for the reserve estimate of a portfolio
of correlated segments is based on a stochastic model. In a simulation based
approach, Kirschner (2002) extended the bootstrapping technique for estimating
the reserve variability of a single segment to a whole portfolio. This technique
produces samples of the portfolio, but it is not clear what statistical proper-
ties these samples have actually and which correlations of the original segments
are grasped in the samples at all. Aside, the bootstrapping technique assumes
independent increments in the segments which does not fit with the Chain Lad-
der assumptions.

The paper is organized as follows: Section 2.1 gives the basic notations and
repeats the recursive formulae for the prediction error of a single accident year
for one triangle. From this, the prediction error of the total claims amount of
all accident years is derived in section 2.2. In section 3, a second run-off tri-
angle is introduced as well as the decisive assumption on the correlation
between both triangles. In section 4, the recursive formulae for the prediction
error of the sum of the two triangles are derived. In section 5, a numerical
example is given including the derivation of a range for the best estimate of
the portfolio reserve. In the final section 6, some remarks regarding the impact
of claims inflation on the correlation of run-offs are made and properties of
a simplified model are presented.
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2. THE PREDICTION ERROR FOR ONE RUN-OFF TRIANGLE

2.1. The prediction error of the ultimate claims amount of one accident year

Let Cik > 0 be the cumulative claims amount of accident year i, 1 ≤ i ≤ n, after
k years of development, 1 ≤ k ≤ n, for a certain subportfolio. The amounts Cik
with i + k ≤ n + 1 are observable and we are interested in predicting the amounts
Cin for i = 2, 3, …, n. The Chain Ladder method does this recursively by

Ĉik = Ĉi,k – 1 · f̂k (1)

with starting value Ĉi,n +1 – i = Ci,n +1 – i and age-to-age factor
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In the following we consider numerous conditional expectation values and
variances. To avoid there lengthy expressions we introduce some notation. The
condition “Tk” means that all variables {Cij |1 ≤ i ≤ n, 1 ≤ j ≤ k, i + j ≤ n + 1}
of the run-off triangle up to and including development year k are given. Espe-
cially, the condition “Tn” indicates that the whole triangle is given. Furthermore,
we use Tik when the variables {Cij |1 ≤ j ≤ k} are given.

On the basis of the stochastic assumptions (see Mack (1993) and (1999),
where the further results of this section can be found, too)
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for all 1 ≤ i ≤ n and 2 ≤ k ≤ n where fk and s2
k are unknown parameters, the esti-

mation procedure (1) and (2) can be shown to be reasonable and condition-
ally unbiased, i.e. E(f̂k |Tk – 1) = fk and E(Ĉin |Tn + 1 – i) = Ci,n + 1 – i fn + 2 – i · … · fn =
E(Cin |Tn + 1 – i), if the accident years are independent. The assumptions (3) and
(4) together with the assumption of the independence of the accident years are
the basis for all considerations in this paper and are used without mentioning
explicitly each time.

The prediction error mse(Ĉin) for the ultimate claims amount of an accident
year is defined as

mse(Ĉin) := E((Cin – Ĉin)
2 |Tn)
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because for reserving purposes only the future variability given the observable
data is of interest. This can be written in the form

mse(Ĉin) = Var(Cin |Tn + 1 – i) + (E(Ĉin |Tn + 1 – i) – Ĉin)2

which for estimation purposes is approximated by 

mse(Ĉin) ≈ Var(Cin |Tn + 1 – i) + Var(Ĉin |Tn + 1 – i). (5)

In (5) Var(Cin |Tn + 1 – i) is called the random error and Var(Ĉin |Tn + 1 – i) the esti-
mation error. To keep the notation as simple as possible we omit from now on
the conditions in the expectations. So, whenever for i + k > n + 1 expectations
like E(Cik), E(Ĉik) and variances like Var(Cik) or Var(Ĉik) are considered, in the
strict sense E(Cik |Tn + 1 – i), E(Ĉik |Tn + 1 – i), Var(Cik |Tn + 1 – i) and Var(Ĉik |Tn + 1 – i)
are meant. The exact formulations of the following derivations can be found
in Mack (1993).

Now, we deduce recursions for the random error and for the estimation
error. For this purpose, the equations (3) and (4) are used in the form

E(Cik |Ti,k – 1) = Ci,k – 1 fk,

Var(Cik |Ti,k – 1) = Ci,k – 1s2
k.

Then we have for i + k > n + 1

Var(Cik) = E(Var(Cik |Ti,k – 1)) + Var(E(Cik |Ti,k – 1))
= E(Ci,k – 1)s2

k + Var(Ci,k – 1) f 2
k .

This yields for the estimator Var%(Cin) of the random error Var(Cin) of the ulti-
mate claims amount the recursion 

Var%(Cik) = Var%(Ci,k – 1) · f̂ 2
k + Ĉi,k – 1ŝ 2

k (6) 

with the starting value

Var%(Ci,n + 1 – i) = 0

as Ci,n + 1 – i is already known. An unbiased estimator of ŝ 2
k is given by 

ŝ 2
k = n k C1

,i k
i

n k

1
1

1

- -
=

+ -

! (Fik – f̂k)2. (7)

Similarly, Ĉik = Ĉi,k – 1 f̂k yields 

Var(Ĉik) = E(Var(Ĉi,k – 1 f̂k |Tk – 1)) + Var(E(Ĉi,k – 1 f̂k |Tk – 1))

= E(Ĉ 2
i,k – 1Var( f̂k |Tk – 1)) + Var(Ĉi,k – 1) f 2

k .
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From this the following recursion for the estimator Var%(Ĉin) of the estimation
error Var(Ĉin) of the ultimate claims estimate Ĉin can be deduced:

Var
%(Ĉik) = Var

%(Ĉi,k – 1) f̂ 2
k + Ĉ 2
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t
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because 

Var( f̂k |Tk – 1) = k

C
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-

. (9)

The starting value for this recursion is

Var
%(Ĉi,n + 1 – i) = 0

because Ĉi,n + 1 – i is already observed. This yields the joint recursion for the esti-
mate of the prediction error:
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2.2. The prediction error of the total ultimate claims amount of one run-off
triangle

Annual reports of insurance companies usually disclose estimates only for
reserves and claims amounts for all accident years together. To estimate a range
of those aggregated amounts, we have to consider the estimation error and
prediction error for all accident years together.

C1n is already known and no estimate is necessary. Therefore the first accident
year adds nothing to the random error and the estimation error for the whole
run-off. Taking this into account, the prediction error mse( ii 2=

C n
n! ) for all

accident years is defined as
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The random error of the total ultimate loss amount is Var( niC Tni

n

2=
! ). The

estimation error Var( ii 2=
C n

n! ) of the ultimate claims amount of all accident
years together is 
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It is important to note, that Var( i 1=
Cin

n! ) is only a notation for the right-hand-
side in (11) and that it is not a variance since the right-hand-side of the defi-
nition (11) can not be rewritten as one single conditional variance due to the
different conditions of the variances and covariances in the sum. This yields
the following approximation for mse( i 1=

Cin
n! ) (which is analogous to (5)):
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Again, we omit the condition for simplicity. The random error Var( ii 2=
C n

n! )
fulfills due to the independence of the accident years (which here implies that
the variables Cin, i = 1, …, n are conditionally uncorrelated, Mack (2002), p. 255)
the equation 
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(13) and the recursion (6) for the random error of one accident year yield the
recursion
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Note, Ĉ≥,k – 1 is the sum of the estimated claims amounts of development period
k – 1 plus the known amount Cn + 2 – k, k – 1 of the actual calendar year. This recur-
sion starts with k = 2 since for the first development year all claims amounts
Ci1, 1 ≤ i ≤ n, are already known. Here and in the following we use the con-
vention that an empty summation is equal to 0.

For the estimation error Var( ii 2=
C n

n! ) such a simple relation as (12) does
not hold since all correlations between the ultimate claims amount estimates
of different accident years have to be considered. A recursion for Cov% (Ĉin,Ĉjn)
can be achieved by (with k > n + 1 – i and i < j)

Cov (Ĉik,Ĉjk) = E(Cov(Ĉi,k – 1 f̂k,Ĉj,k – 1 f̂k |Tk – 1)) +

+ Cov(E(Ĉi,k – 1 f̂k |Tk – 1), E(Ĉj,k – 1 f̂k |Tk – 1)) 

= E(Ĉi,k – 1Ĉj,k – 1Var( f̂k |Tk – 1)) + Cov(Ĉi,k – 1,Ĉj,k – 1) f 2
k (15)

and using (9) 

Cov% (Ĉik,Ĉjk) = Cov% (Ĉi,k – 1,Ĉj,k – 1) f̂k
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starting with Cov% (Ĉi,n + 1 – i, Ĉj,n + 1 – i) = 0 since i < j and Ci,n + 1 – i is known.
(16) and (8) yield the following recursion for the estimation error:
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For the same reason as before, this recursion starts with k = 2.
The recursions for the random error Var( ii 2=

C n
n! ) and the estimation error

Var( ii 2=
C n

n! ) yield the recursion for the prediction error mse( ii 2=
C n

n! ) of the
total claims amounts for all accident years:
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The recursion starts with k = 2. Using (4) and (9) it can be shown that (17) is
the same recursion as the one already given in Mack (1999) for the prediction
error. Structure of recursion (17) is the same as in (10). The only difference
between the two recursions are the estimated claims amounts Ĉ≥,k – 1 instead of
the claims amount Ĉi,k – 1 for one accident year in (10).

The prediction error mse( ii 1=
C n

n! ) gives the mean squared deviation between
the estimated ultimate claims amount ii = 1

C n
n! and the true ultimate claims amount

ii = 1
C n

n! . The estimation error Var( ii = 1
C n

n! ) gives the mean squared deviation 
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between the estimated ultimate claims amount ii 1=
C n

n! and the expected ultimate
claims amount E( ii 1=

C n
n! ) = E( ii 1=

C n
n! ). Whereas the prediction error has to 

be used for the variability loading for a loss portfolio transfer, it is the estima-
tion error which has to be used when assessing a confidence interval (range)
around ii 1=

C n
n! for the best estimate E( ii 1=

C n
n! ) of ii 1=

C n
n! .

3. A CHAIN LADDER-TYPE MODEL FOR THE CORRELATION

BETWEEN TWO RUN-OFF TRIANGLES

Now assume we have another subportfolio with cumulative run-off data {Dik}
in addition to the data {Cik} of section 2. Considering that, we modify the
condition “Ti,k – 1”. In the following “Ti,k – 1” means, both sets of observable
variables {Cij | 1 ≤ j ≤ k – 1} and {Dij | 1 ≤ j ≤ k – 1} are given. Moreover, we
assume (3), (4), to hold for this “Ti,k – 1”.

Note, in this case (3) and (4) with the “Ti,k – 1” as introduced in Section 2.1
still hold, being just a consequence of the new assumption, i.e. we have by
using the notation Ck – 1 for the set {Cij |1 ≤ j ≤ k – 1} and Dk – 1 for {Dij |1 ≤ j ≤
k – 1}

E(Fik |Ck – 1) = E(E(Fik |Ck – 1,Dk – 1) | Ck – 1) = fk, (18)

Var(Fik |Ck – 1) = E(Var(Fik |Ck – 1,Dk – 1) | Ck – 1)

+ Var(E(Fik |Ck – 1,Dk – 1) | Ck – 1)

= .C ,i k

k

1

2
v

-

t
(19)

Aside, (18) and (19) justify actuarial practice using the Chain Ladder method
for a subportfolio without considering in addition the observables of all other
segments of the portfolio.

For the subportfolio with cumulative run-off data {Dik} we denote with gk
and t2

k its Chain-Ladder parameters corresponding to fk and s2
k , respectively.

The stochastic assumptions are

E(Gik |Ti,k – 1) = gk (20)

Var(Gik |Ti,k – 1) = k

D
t

,i k 1

2

-

. (21)

Again, the accident years i = 1,…, n are assumed to be independent.
We have the following estimators
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with

Gik := D
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For each of the data sets {Cik} and {Dik} the stochastic model for the Chain
Ladder consists of an own submodel for each development period k, 2 ≤ k ≤ n.
In order to arrive at formulae for expectation and variance of the ultimate
claims Din in terms of the observable amounts {Dik, i + k ≤ n + 1}, the submodels
are simply chained together.

Therefore it seems natural to restrict any assumptions regarding the corre-
lation between the arrays {Cik,1 ≤ i,k ≤ n} and {Dik,1 ≤ i,k ≤ n} to each of the
pairwise corresponding development years k, 2 ≤ k ≤ n, if we want to stay
within the chain ladder world. In this sense, the natural generalization of (4)
and (21) is the assumption 

i i
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which is equivalent to assuming that the correlation coefficient between the indi-
vidual development factors Fik and Gik
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is constant for k fixed.
Of course, different accident years of the portfolio consisting of the run-off

data sets {Cik} and {Dik} are assumed to be independent. Then we have

Cov(Cik,Djk |Tk – 1) = 0 for i ≠ j,

since

E(Cik · Djk |Tk – 1) = E(E(Cik · Djk |Tk – 1,Tik) |Tk – 1)

= E(CikE(Djk |Tk – 1,Tik) |Tk – 1)

= E(Cik |Tk – 1)E(Djk |Tk – 1). (25) 

(25) also holds for Fik and Gjk instead of Cik and Djk. This shows

Cov(Fik,Gjk |Tk – 1) = 0 for i ≠ j.
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In analogy of the estimation of s2
k and t2

k, the new parameter rk can be estima-
ted by 

r̂k =
n k w

C D
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The factor 
kn k w1

1
2

- - + instead of n k
1
- as for ŝ2

k and t̂2
k ensures that the estimator

r̂k for rk is unbiased. Note, that w2
k is positive and ≤ 1 (Cauchy-Schwarz inequality).

4. ESTIMATION OF THE PREDICTION ERROR OF THE SUM

OF TWO RUN-OFF TRIANGLES

First of all, we have to define the prediction error mse(Ĉin + D̂in) for the ultimate
claims amount of an accident year of the portfolio. It is defined analogously
as for one run-off:

mse(Ĉin + D̂in) := E((Cin + Din – (Ĉin + D̂in))2 | Tn).

This can be approximated by 

mse(Ĉin + D̂in) ≈ Var(Cin + Din |Tn + 1 – i) + Var(Ĉin + D̂in |Tn + 1 – i).

Here, Var(Cin + Din |Tn + 1 – i) is the random error and Var(Ĉin + D̂in |Tn + 1 – i) is
the estimation error. Again, we omit these conditions in the following.

Based on the assumption (24) which can be rewritten as

Cov(Cik, Dik |Ti,k – 1) = C D r, ,i k i k k1 1- - ,

we now can calculate the random error Var(Cin + Din) and the estimation error
Var(Ĉin + D̂in) of the combined triangle {Cik + Dik | i + k ≤ n + 1}. We have

Var(Cin + Din) = Var(Cin) + 2Cov(Cin, Din) + Var(Din)

and therefore, in addition to the recursions considered before, we need only a
recursion for Cov(Cin, Din), too. From

Cov(Cik, Dik) = E(Cov(Cik, Dik |Ti,k – 1))
+ Cov(E(Cik |Ti,k – 1), E(Dik |Ti,k – 1))

= E( C D, ,i k i k1 1- - )rk + Cov(Ci,k – 1, Di,k – 1) fkgk
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we deduce the recursion (for i + k > n + 1) 

i i, ,C D C DCov Cov , ,k k i k i k1 1= - -

% %
^ _h i f̂k ĝk + ,C D, ,i k i k1 1- - r̂k (27)

for the estimated covariance between Cik and Dik. The starting value is

Cov% (Ci,n + 1 – i , Di,n + 1 – i) = 0

as both variables have already been observed. Similarly, for the estimation error
we have

Var(Ĉin + D̂in) = Var(Ĉin) + 2Cov(Ĉin, D̂in) + Var(D̂in)

and

Cov(Ĉik, D̂ik) = E(Cov(Ĉi,k – 1 f̂k,D̂i,k – 1 ĝk |Tk – 1))

+ Cov(E(Ĉi,k – 1 f̂k |Tk – 1),E(D̂i,k – 1 ĝk |Tk – 1))

= E(Ĉi,k – 1D̂i,k – 1Cov( f̂k, ĝk |Tk – 1))

+ Cov(Ĉi,k – 1,D̂i,k – 1) fkgk

as well as

j j

j j

, ,

,
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F D
D
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,
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,
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k k k
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n k

j
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j
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n k
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1
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1

1

1

1

1

1

1
1

1

1 1

1 1

1

1

=

=

=

-
-

-

-

-

=

+ -

=
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-

-

-

-

-

-
=

+ -

- -

- -

=

+ -

!!

!

!

_ e

_

i o

i (28)

Taken together, we have the recursion

Cov
% (Ĉik, D̂ik) = Cov

% (Ĉi,k – 1, D̂i,k – 1) · f̂k ĝk

(29)

C D
C D
<, <,

, ,

k k

i k i k

1 1

1 1

$
+

- -

- - r̂k C D, ,j k j k
j

n k

1 1
1

1

- -
=

+ -

!

with starting value

Cov
% (Ĉi,n + 1 – i, D̂i,n + 1 – i) = 0.

This completes the derivation of formulae for the random error, for the esti-
mation error and taken together for the prediction error for the ultimate claims
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amount of one accident year in a portfolio consisting of two correlated sub-
portfolios.

For actuarial evaluation of the liabilities of a whole portfolio and their
potential adverse development the errors of the ultimate claims amount for all
accident years of the portfolio are important quantities. The prediction error
of the total ultimate claims amount i ii 2=

C Dn n
n

+! _ i is

j

i i i i i i

i i

i i i i

i i

i i i i

i i

i i i
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where min (i, j) denotes the Minimum of i and j. The first term is the random
error, the last three together are the estimation error. Note, here we used the
notation Var ii 2=

C n
n!` j and Var ii 2=

Dn
n!` j as introduced in section 2.2.

The random error Var i ii 2=
C Dn n

n +! _` ij – omitting conditions – can be writ-
ten as

i i

i i i i,

C D

C C D D

Var

Var Cov Var2

n n
i

n

n
i

n

n
i

n

n
i

n
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2

2 2 2 2
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=

= = = =

!
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^d

d d d

hn

n n n

For the random errors Var ii 2=
C n

n!` j and Var ii 2=
Dn

n!` j we have already derived
recursions in section 2. Therefore, only a recursion for the covariance of i 2=

Cn! in

and ii 2=
Dn

n! is needed. Due to the independence of the accident years – which
implies that the variables Cin and Djn with i, j = 1,…, n, i ≠ j are conditionally
uncorrelated – we have

i i i i, , .C D C DCov Covn
i

n

n
i

n

n n
i

n

2 2 2

=
= = =

! ! !d ^n h
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Using the recursions for Cov
%(Cik, Dik), 2 ≤ i ≤ n yields the recursion

i i,C DCov k k
i n k

n

i n k

n

22 = + -= + -

!!%
d n

(30)

,C DCov , ,i k i k
i n k

n

i n k

n

1 1
33

= - -
= + -= + -

!!%
d n f̂k ĝk + r̂k ,C D, ,i k i k

i n k

n

1 1
2

- -
= + -

!

starting with k = 2 since for the first development year all Ci1 and Di1 are known.
For the covariances Cov(Ĉin, D̂jn) in the estimation error we proceed as in

(15) and for (27). This leads to the recursion

Cov
% (Ĉik,D̂jk) = Cov

% (Ĉi,k – 1,D̂j,k – 1) f̂k ĝk +

C D
C D

<, <,

, ,

k k

i k j k

1 1

1 1

$
+

- -

- - r̂k C D, ,m k m k
m

n k

1 1
1

1

$- -
=

+ -

! (31)

with starting value k = n + 1 – min(i, j). Recursion (29) is a special case of (31).
The recursion for ,i j Cov! % (Ĉin, D̂jn) is then

Cov
,i j n k

n

2= + -

! % (Ĉik,D̂jk) = Cov
,i j n k

n

3= + -

! % (Ĉi,k – 1,D̂j,k – 1) f̂k ĝk

+ Ĉ≥,k – 1D̂≥,k – 1 r̂k C D
C D

< , < ,

, ,

k k

i k i ki

n k

1 1

1 11

1

$

$

- -

- -=

+ -!
(32)

starting with k = 2 (cf. definition of Ĉ≥,k – 1 in (14)). This recursion completes
the derivation of the recursions for the estimation error and the prediction
error for the ultimate claims amounts estimates of the sum of two correlated
subportfolios. The extension to more than two subportfolios is obvious.

5. NUMERICAL EXAMPLE

In our numerical example we use data published by the Reinsurance Association
of America (RAA) in their historical loss development study (RAA (2001)).
Cumulative incurred losses {Cik} of General Liability (GL) reinsurance business
are given in Table 1. Table 2 contains the corresponding data {Dik} for Auto
Liability (AL) reinsurance business. For details see RAA (2001). For a demon-
stration of our approach with these runoffs we assume that the claims devel-
opment comprised in each of these triangles is homogeneous so that we can
limit our analysis to the two given triangles and we have not to perform any
analysis of subtriangles. Moreover, we assume for simplicity that the develop-
ment stops after the fourteenth year for both run-offs. Therefore we dispense
with any extrapolation beyond the fourteenth development year.
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The Chain-Ladder method yields the development factors f̂k (for the GL
run-off) and ĝk (for AL run-off) and the parameter estimates ŝk (GL run-off)
and t̂k (AL run-off) as given in Table 3. The parameters s14 and t14 which can
not be estimated via (7) and (23) since there is only one individual development
factor in each run-off for the fourteenth development year, are selected as

ŝ 2
14 = min (ŝ 4

13 / ŝ 2
12, ŝ 2

12)

(see Mack (1993)) and t̂ 2
14 analogous. The parameters w2

k in the row 5 of Table 3
show that w2

k is approximately 1 for all development years in this example i.e.
we have 

kn k w n k1

1 1
2 .

- - + - . Rows 6 and 7 of Table 3 contain the estimate for rk

and for the correlation coefficient rk /(sktk). For development years 8 and 12 r̂k
is negative. This should not be overstated since the estimate of the covariance
parameter rk is based here only on seven and three observations, respectively
and has no substantial contribution to the total errors due to the small rk in
the later development periods. rk decays rapidly with respect to k, as it is usu-
ally the case for s2

k and t2
k (and also for fk and gk). Row 7 shows rk /(sktk) which

gives the correlation coefficient of the individual development factors. It can
be seen, that it is quite stable in the first seven development years.

Table 4 shows for each accident year i the estimated reserve Ĉin – Ci,n + 1 – i for
GL run-off and the estimated reserve D̂in – Di,n + 1 – i for AL run-off and the sum
of these two reserves (“Portfolio”). In the last column of Table 4 the estimated
reserve is given when aggregating first both data triangles to one single triangle
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TABLE 4

ESTIMATED IBNR RESERVES

Accident GL run-off AL run-off Portfolio Overall
Year (A) (B) (A)+(B) Calculation

1987 0 0 0 0
1988 1.945 –135 1.810 1.988
1989 5.394 –740 4.655 5.117
1990 10.616 1.211 11.827 11.083
1991 15.220 992 16.212 15.344
1992 25.988 3.132 29.120 28.010
1993 42.133 3.661 45.793 44.553
1994 75.959 10.045 86.004 81.339
1995 135.599 21.567 157.165 149.553
1996 289.659 54.642 344.301 329.840
1997 561.237 118.575 679.812 644.927
1998 1.033.307 254.151 1.287.458 1.230.370
1999 1.887.590 565.448 2.453.038 2.331.408
2000 2.070.616 1.031.063 3.101.679 3.080.525

All years 6.155.261 2.063.612 8.218.874 7.954.058
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and then estimating the reserve with the Chain-Ladder method. This (non-
sense) calculation is only done for comparison purposes and is denoted “over-
all calculation” in the following and in the tables. The example shows that the
overall calculation leads to another result which can be considered as unusable
here since run-offs with different development patterns were added together.
The reserve is about 265 Mio. lower than the one by separate calculation of
the GL and AL reserves. To evaluate this difference we have to consider the vari-
ability in our estimates.

Tables 5-7 show the square roots of the random error, the estimation error
and the prediction error, respectively for GL run-off in column 1 and AL run-
off in column 2. The column “Portfolio” of these tables shows the correspond-
ing figures for the whole portfolio consisting of the GL and AL subportfolios,
computed with our method as described in section 4 taking into account the cor-
relation between the individual development factors. Column 3a gives the implied
average coefficent of correlation, i.e. the solution r(X,Y) of the equation 

Var(X +Y ) = Var(X) + Var(Y ) + 2r (X,Y ) ( ) ( )X YVar Var (33) 

where X and Y are the reserves of the GL and AL run-off, and Var(X), Var(Y)
and Var(X +Y ) are the squares of corresponding errors from columns (1)-(3).
Columns 4 to 6 show the results of the calculation (33) but assuming a posi-
tive correlation of +1, no correlation and a negative correlation –1 between the
corresponding individual development factors of all columns of the GL and
AL run-off. In column 7 the roots of the errors are given for the overall cal-
culation. The errors for the reserve for “Portfolio” of each accident year and
all accident years together are between the ones assuming no correlation and
a correlation equal to 1. Note that, the overall calculation yields for the acci-
dent year 1988 and 1989 errors which are larger than the corresponding error
of the portfolio under the assumption of a complete positive correlation
between both run-offs. This is a further hint that the overall calculation is not
suited for the estimation of portfolio reserves and its range.

As discussed in subsection 2.2 we have to use the prediction error when
assessing a range for the reserve of the portfolio. Assuming a log-normal dis-
tribution for the reserve a range for the reserve of all accident years of the port-
folio can be calculated. For this, the mean of the distribution is set equal to the
estimated reserve (see table 4) and the variance equal to the prediction error
(see table 7 for the square root of the prediction error). Using the interval con-
taining 90% probability around the mean with 45% probability on each side as
range for the reserve, leads to a lower bound of 7.459.480 and an upper bound
of 9.157.228. This range can be interpreted as follows. Under our model
assumptions and the distribution assumption for the portfolio reserve the reserve
which is finally needed for the complete development of the accident years
1987 to 2000 of the portfolio, is with 90% probability in this range. Of course,
this ultimately necessary amount is not known until these accident years of the
portfolio are fully developed, while this range can be computed by now.

When assessing a range for the best estimate of the reserve instead of the
reserve itself, we have to use the estimation error instead of the prediction
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error. Assuming also a log-normal distribution for the best estimate of the
reserve, but with mean and standard deviation according to table 4 and 6 a rea-
sonable range for the best estimate for all accident years of our portfolio con-
sisting of the GL and the AL runoff can be calculated. The mean is equal to
the estimated reserve and the variance equal to the estimation error. We use
the interval containing 50% probability around the mean with 25% probability
on each side as range. This is a fair compromise between a non-informative
99%-range and the straight point estimate which would not contain the true
expected reserve with 100% probability. This 50%-range leads to a lower bound
of 8.008.292 and an upper bound of 8.438.171. Within this range, each amount
can be taken as best estimate. This range for the best estimate of the reserve
is much smaller than the range for the reserve itself as given above. The reserve
estimate of the overall calculation (see table 4) is outside the range for the best
estimate, since it is below the lower bound. This shows again that the overall
calculation is not reasonable.

6. FINAL REMARKS

Correlations between run-off triangles are often attributed to the claims infla-
tion affecting all or most of the segments of a portfolio in a similar way. For
this reason, it may seem obvious to derive the correlation between the reserves
from the correlation between the estimated inflation rates in the run-offs. But,
since the inflation affects the diagonals in the run-offs, the basic Chain Ladder
model assumption of independence of the accident years is violated. Therefore,
calculating reserve ranges by using calendar year based correlations (Brehm
(2002)) in conjunction with reserves estimated with the Chain Ladder method
is inadvisable. In principle, all calendar year based dependencies should be
removed from the run-offs, before the reserves are calculated with the Chain
Ladder method. Since the inflation influences mainly payments and less
incurred figures, applying the Chain Ladder method can be done for incurred
run-offs with less problems.

Furthermore, the inflation rate of a calendar year does not affect the acci-
dent years of a run-off in the same way, since the payments are for different
types of claims due to their different development periods. For instance, con-
sidering a fixed calendar year in a general liability portfolio, in earlier develop-
ment years mainly property damages are paid while for later development years
payments of bodily injury claims dominate. Thus, a run-off does not have a
uniform calendar year inflation rate for all accident years, from which the cor-
relation of the run-off triangles could be meaningful derived.

Our approach comes up with an individual correlation coefficent rk / (sktk)
for each development period k. In contrast to this, some other approaches
express the correlation between two run-offs by a single number, e.g. by a single
overall correlation coefficient. If one likes to do this with our approach – even
though it is not in line with the stochastic Chain-Ladder model which con-
sists of own parameters fk, sk for each development period k, 2 ≤ k ≤ n – one
can simply set in the basic assumption (24) for the covariance in section 3
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rk = csktk with sk and tk as before and – now by using data from all develop-
ment periods – estimate c by the weighted average of r̂k / (ŝkt̂k), i.e.

ĉ =
v

v1

kk

n k
k

n

k k

k

2

1
2

1

v x

t
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-
=

-

!
! t t
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with vk := n – k – 1 + w2
k and r̂k, ŝk and t̂k as given in sections 2 and 3. This sim-

plified model implies a constant correlation coefficient c for all development
years, i.e.

Corr(Fik,Gik |Ti,k – 1) = c (34) 

and using (9) and (28) yields

Corr( f̂k, ĝk |Ti,k – 1) = c
j j
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The last equation shows that the correlation of f̂k and ĝk depends on the devel-
opment period k even though f̂k and ĝk are weighted averages of individual devel-
opment factors Fik and Gik (see (2)) whose correlation (34) is independent of k.

For the rest of this section we consider the case of a non-negative c. It results
from the Cauchy-Schwarz inequality

Corr( f̂k, ĝk |Ti,k – 1) ≤ c.

Set r̂k = ĉŝkt̂k in the covariance estimates (27), (29), (30) and (32) of section 4.
Using

i i

i i

i i, :
,

C D
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C D
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(35)

as an estimate for the correlation of the ultimate claims amounts Cin and Din

it can be shown via the explicit formulas for Cov
% (Cin,Din), Var

%(Cin) (cf. Mack
(2002), p. 252) and Var

%(Din) instead of the recursive formulas (6) and (27) that 

Corr
% (Cin, Din) ≤ ĉ. (36) 

Defining the correlation estimates Corr
% (Ĉin, D̂in), i i,C DCorr n ni

n

i

n

22 ==
!!%

` j and

i i,Corr C Dn ni

n

i

n

22 ==
!!%

` j analogously to (35), it can also be shown

Corr
% (Ĉin, D̂in) ≤ ĉ, (37) 

i i,C DCorr n n
i

n

i

n

22 ==

!!%
d n ≤ ĉ, (38)
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i i,Corr C Dn n
i

n

i

n

22 ==

!!%
d n ≤ ĉ. (39)

The estimated correlations (36) and (37) depend on the accident year i and the
correlations (36)-(39) are different in general, but uniformly bounded by ĉ.
(37) shows, the correlation of the developments of run-offs is underestimated
by using the correlation of the ultimate estimates.

It can be easily seen by using the definition (33) and the identity

Var(X +Y) = Var(X) + 2Cov(X,Y ) + Var(Y)

that the correlation estimates on the left hand side of the inequalities (36)-(39)
are the implied coefficient of correlations for the considered random variables,
e.g.

Corr
% (Cin, Din) = r (Cin, Din).

Furthermore, calculating the implied coefficient of correlation r (Ĉin, D̂in) for
the prediction error mse(Ĉin + D̂in) it can also be shown that it is different from
ĉ generally and

r (Ĉin, D̂in) ≤ ĉ

indicating that our estimated correlation coefficient ĉ is at least as high as the
implied average one. This holds not only for each accident year i, but also for
all accident years together. To summarize, the implied coefficient of correla-
tion underestimates the correlation of the run-offs, independent of whether it
is calculated for the random error, the estimation error or the prediction error
and whether it is calculated for a single accident year or for all accident years
together.
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