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DETERMINATION OF A CONTROL PARAMETER
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Abstract

The authors consider in this paper the inverse problem of finding a pair of functions
(w, p) such that

ut = uxx +pu + F (x, t), 0<x<\,0<t<T,

u(x, 0) = f(x), 0 < x < 1,

Q,(O«J.(O, 0 + px(t)u(O, t) + yx{t)u(\, 0 = £ , (0 . 0 < t < T,

a2(t)ux(l, /) + fi2(t)u(0, t) + y2(t)u(l, t) = g2{t), 0 < t < T,

/ u(x, t) dx = E{t), 0 < t < T, 0 < s(t) < 1.
Jo

where F, f, E, s, a,-, /?,-, yt, gt, i = 1, 2 , are given functions.
The existence and uniqueness of a smooth global solution pair (u, p) which

depends continuously upon the data are demonstrated under certain assumptions
on the data.

1. Introduction

This paper is concerned with the following inverse problem of finding a pair
(M , p) such that
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150 J. R. Cannon, Yanping Lin and Shingmin Wang [2]

ut = uxx+p(t)u + F{x,t), 0<x<l,0<t<T, (1.1)

u(x,0) = f(x), 0 < x < l , (1.2)

a , ( o « , ( o , o + ^ ( O « ( o , O + y i ( O « ( i , O = * i ( O , o<t<T, (1.3)

o < r < r , (1.4)

s: udx = E(t), 0< t < T, 0<s(t) < 1, (1.5)

where F, f, s, E, gt, a., j8., yt, i = 1, 2 , are given functions.
Nonlocal boundary specifications like (1.5) arise from many important ap-

plications in heat transfer, thermoelasticity, control theory, life science, etc.
For example, in a heat transfer process, if we let u represent the tempera-
ture distribution, then (1.1)-(1.5) can be regarded as a control problem with
source control. A source control parameter p(t) needs to be determined so
that a desired thermal energy can be obtained for a portion of the spatial
domain. In an environment where heat transfer takes place between liquids
and solids, the heat flux is often taken to be proportional to the difference
in the boundary temperature of the solid and the temperature of the liquid,
and here, at, Pt,yt, i = 1,2, represent those proportionality factors. For
more examples, the reader is referred to [2]-[6], [10]—[12] and [14]—[16].

The authors of [20], [21], and [22] investigated problems similar to (1.1)-
(1.5) by employing abstract semi-group theory. In those problems, the equa-
tion similar to (1.1) was almost linear, and the coefficients were indepen-
dent of time. Cannon and Lin extended the investigation to quasilinear
parabolic equations [7], [8]. However, because of the restriction of the
method they used there, only local solutions were obtained. In this paper, we
will take a new approach to demonstrate the existence of the global solution of
(1.1W1.5).

We begin our investigation with a pair of transformations:

| j j (1.6)

and

v(x,t) = u(x,t)r(t). (1.7)
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Introducing (1.6) and (1.7) into (1.1)—(1.5), we obtain

vt = vxx + r ( t ) F ( x , t ) , 0<x<l,0<t<T, (1.8)

v(x,0) = f(x), 0 < x < l , (1.9)

a , ( 0 ^ ( 0 , t) + fix{t)v{Q, t) + y x { t ) v { \ , t) = r { t ) g x { t ) , 0<t<T,
(1.10)

a2(t)vx(l, t) + P 2 { t ) v { 0 , t) + y 2 ( t ) v ( l , t) = r ( t ) g 2 ( t ) , 0<t<T,
(1.11)

rs{t)

vdx, 0<t<T, 0 < s(t) < 1. (1.12)
Jo

Equations (1.8)—(1.11) have been studied substantially by many authors,
e.g., in [18], [19] and [23]. Instead of re-doing any of their work, this paper is
devoted to the solution of the inverse problem that involves an over-specified
condition (1.5), which now is represented by (1.12). The inclusion of (1.5)
has created a new scenario, and thus requires special consideration on its
solution. It is this consideration that constitutes our focus in this paper. In
what follows, we shall show that under some reasonable assumptions there
exists a unique solution pair (v, r) to (1.8)—(1.12) such that r(t) e C'[0, 1]
and r(t) > 0 . Thus a unique solution pair (w, p) can be obtained through
the following inverse transformations to (1.6) and (1.7):

') = ^ p , (1-13)

Jo

Now we proceed to approximate the solution pair (v, r) by the following
sequence of iterations:

/'si. (1.15)

For n > 1, v^ and r(n) are defined by the equations

u,(n) = v ^ + r ( " ~ V , 0<x<l, 0<t<T, (1.16)

v'"\x,0) = f(x), 0 < x < l , (1.17)

ai(t)vx
n)(0, t) + ^(^(O, t) + y^v^il, t) = r{"-l)

gi(t), 0<t<T,
(1.18)

a 2 ( / ) ^ n ) ( l , / ) + fi2{t)vw(0, t) + y 2 ( t ) v { n ) ( l , t) = r { n - l ) g 2 ( t ) , 0<t<T,
(1.19)

and

l f" v l n ) ( x , t ) d x , 0<t<T, 0 < s ( t ) < l . ( 1 . 2 0 )
Jo
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For convenience, in what follows we shall use the following definitions:

b{-^}' t>0' (L21)

6 ( x , t ) = Y l K(x + 2 m , t ) , t > 0 , (1.22)
m=—oo

for y/(x) denned on [0, 1], y/(t) denned on [0, T], y/(x, t) defined on
[ 0 , l ] x [ 0 , 7 1 ,

\\y/{x)\\= m^{\W{x)\}, (1.23)

a n d f o r a v e c t o r ( y , ( 0 , y/2{t)) , t e [ 0 , T ] ,

, \\V2{t)\\}-

ASSUMPTION (Al). We assume that F G Ca'a/2{[0, I] x [0, T]), for 0 <
a < 1 , / e c ' l O . l ] , ^ , ^ e C[0,T],E(0) = /J(O) f(x) dx > 0, E{t) >
O,s(t),E(t) G Cl[0, T],aitpit y, G C[0, T], i= 1, 2, and

, x 1 I ^ ( 0 ) , (1.24)

a2(0)fx(\) + fi2(0)f(0) + y2(0)/(l) = g2(0). (1.25)

We end this introduction with the statement of our first result which will
be demonstrated in Section 2 and Section 3.

THEOREM 1. Under assumption (Al), / / a , (0 # 0, a2(t) ^ 0, or a,(f) =
a2(t) = 0 and y?,y2 ^ ^ y , , <Aen there exists a unique solution pair (v, r)
to (1.8)—(1.12) in [0, 1] x [0, e] such that r(t) e C'[0, e] for some positive
constant e.

REMARK. This local solution will be extended to a global one.

2. The mixed boundary value case

2.1. Existence and uniqueness
We shall demonstrate Theorem 1 for the case of a,(f) ^ 0 and a2(t) ^ 0.

Without loss of generality, we can assume that a^t) = a2(t) = 1.
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[5] Determination of control parameter 153

PROOF OF THEOREM 1. Under the assumption (Al), it follows from [1] that
the unique bounded solution of (1.16)—(1.19) has the form

v(n)(x,t) = w ( x , t ) - 2 f 6 ( x , t - r ) ^
Jo

+ 2 f 6(x - 1, t - x)<j>f(x) dx + z{n\x, t),
Jo

(2.1)

where

w(x,t)= I {6(x -Z,t) + 6(x + Z, / ) } / ( { ) d i , (2.2)

rt /•!
z(n\x,t)= f f

Jo Jo (2>3)

and 0j"*(O, ^2"^) a r e ̂ e solutions of the following system of Volterra in-
tegral equations of the second kind:

r{n~l)(t)g,(t) = tf\t) + pt{t) [w(0, 0 - 2 f 6(0, t- r)<j>[n)(T)dx

+2 j ' e { - \ t t - x)<t>f{x)dx + z(n)(0, 0]

+ yt{t) [u;(l ,t)-2Jt0{\,t- x)<t>["\x)dx

+2 jT'ff(O, t - x)4>f(x)dx + z(n){\, 0] ,

1 = 1,2. (2.4)

Following [1], using

exp{-<^}<p!rP , f o r ^ > 0 , p = 0 , 1 , 2 , . . . , (2.5)

and
00

6(x, t) = 1 + 2 Yle\p{-k2n2t} cosknx, (2.6)

we can easily derive the following:

| 0 ( x , f - T ) | < _ £ = = , t>x, (2.7)
Z y I — X

where C is a positive constant,

I M * . Oil < 2H/II, (2.8)

( [6(0, t-x) + 6(l,t- x))dx < 2CVt, (2.9)
n) - rl"-\\\F\\. (2.10)
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From (2.4) we obtain

- cj>f || (|/?,| f\{-1, t - x)dx + \y.\ jf' 0(0, t- x

+ \ z { n + 1 \ l , t ) - z W ( l , t ) \ , ' = 1 , 2 . (2.11)

Applying (2.8), (2.9), and (2.10) to (2.11), we obtain

~ - n (2-12)

and this yields
• <p || <. t_ j ||' — T l l , \z.ij)

where

4CVt\\F\\ + \\g\\

4CVF(||j?|| + ||y||) < l , f o r r < £ ,

and e is a positive constant which is sufficiently small.

REMARK. In what follows, a finite number of different e 's will be needed.
To prevent the accumulation of symbols, we shall assume that this very first
£ will incorporate the minimum over all those e 's in order to validate all the
inequalities concerned.

Defining

v{n), / . = 1 , 2 , ( 2 . 1 4 )

qln) = rln+l)-rln), n = 0,\,..., (2.15)

we obtain from (2.1) and (1.20)

ft
Jo Jo

https://doi.org/10.1017/S0334270000006962 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006962


[7] Determination of control parameter 155

(2.17)f
Jo

It follows from (2.6), (2.13), (2.16) and (2.17) that

'll (2C, + \\F\\) \\q{n-l)\\. (2.18)

It can be shown by elementary estimates that there exists a constant e > 0
such that for t < e

8CV?||F|| + 2| |g | | 1 1 (2.19)
+ I|F|IJ - 2 '

and thus

II«WII < ̂ ^ " - " l l < ̂ lk(""2)ll < < j r l l A - (2-20)

This implies that {r("'} is a Cauchy sequence in C[0, e], and hence we can
conclude that

3 r{t) G C[0, e], such that r{n\t) -+ r{t) uniformly. (2.21)

3 z ( x , / ) e C ( [ 0 , l ] x [ 0 , e ] ) , zln\x,t)-+z(x,t) (2.22)

3 4>t(t) e C[0, e], <S>f{t) -• 0(/) uniformly, j = 1, 2. (2.23)

It follows immediately from (2.10) and (2.13) that

3 z(x, ,

uniformly, and

3 0,(0 e C

Summarising this, we see from (2.1) that

3 « ( x , 0 e C ( [ 0 , l ] x [ 0 , e ] ) , v{n)(x, t) ^v(x, t) (2.4)

uniformly.
Differentiating (2.1) with respect to x, we obtain

(x,t-T)<l>\n\T)dT
(2.25)

-l,t-r)<f>'2
n)(r)dT + zf{x,t).

It is easy to show from [1] that there exists a constant C2 > 0 such that

^-{x,t-x)dx<C2, (2.26)
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and

/o Jo

Because of this , t he un i form convergence of r^, (pf^, i = 1 , 2 , a n d (2.3),
w e can see t ha t

+ 2 / ' ° » , - i <227)

Jo dx ' 2 x > >
and that v satisfies (1.8)—(1.11). As to the condition (1.12), we have that
for 8 > 0 and sufficiently small,

/ v.dx= vxxdx+ r(t)F{x,t)dx
Js Js Js

= vx{s(t), t) - vx{8 ,t)+ r(t)F(x, 0 dx.
J $

Letting 8 —> 0, we obtain
fs(t) [ rs(t) ]

J vtdx=\vx(s(t),t)-vx(O,t) + J r(t)F(x,t)dx\zC[O,e],
(2(2.29)

which implies that r{i) = [E(t)] l fo
s^ v dx is difFerentiable with respect to

r,and r ; ( 0eC[0 , e ] .
Now we show that the solution pair (v, r) so obtained for (1.8)—(1.12)

is unique. Suppose that (n, p) is also a solution pair of (1.8)—(1.12), and
that /^(O, t) = y/j(O> /**(!> 0 = V2W • Then by the uniqueness of the
representation of the solution, we have

v-n = 2 [ d(x-l,t-x)((f>2-y/2)dT-2 f 9(x, t - T)(0, - y/Jdr
Jo Jo

f [i

Jo Jo (2.30)

r-p = [E(t)]-x f\v-n)dx. (2.31)
Jo

Following the same procedure leading to (2.20), we obtain

\\r-p\\<^\\r-p\\, (2.32)

which implies that r = p. A similar argument establishes the equality v = p..
Theorem 1 now has been proved for this case.
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[9] Determination of control parameter 157

In order to employ the inverse transformations (1.13) and (1.14), r{t) is
required to be positive in [0, e] . The positivity of r(t) depends on the
data given to the original problem. It would be too lengthy to list all the
possible combinations of the data. Instead, we shall investigate the following
situation, though it will not be difficult to establish sufficient conditions for
other specified settings.

First, we notice that r{t), being the limit of {r(n)(f)} . is bounded, i.e.,

3 | | r | | > 0 such that | r (0 |< | | r | | in [0,e]. (2.33)

Letting

w(x,t)= {d(x-Z,t) + d(x + £,t)}dt, (2.34)
Jo

we can easily obtain
w{x,t)=l. (2.35)

By our early analysis we know that v(x, t), being the limit of {v^"\x, t)} ,
satisfies (2.1)-(2.4) with all superscripts removed. An argument similar to
that for obtaining (2.13) leads to

ii i I I , , I I W I I f\\ i /-•./7n~\\\iE'\\\

(2.36)

for 4C\/F(||/?|| + Hyll) < 1. Under assumption (Al), using the representation
of v(x, t)

v(x,t) = w(x,t)-2 f 6{x,t-x)(t>x{x)dx
Jo (2.37)

+ 2 / d(x-l,t- x)(f>Jx) dx + z(x, t),
Jo

with (2.2), (2.35), and (2.36), we obtain

(2.38)
where

/min = j c™n]{/(x)}. (2.39)

ASSUMPTION (A2). We assume that F(x, 0 > 0 in [0, 1] x [0, T], and

4CVT [\\r\\\\g\\ + 2(|1/?|| + ||y||)(||/|| + Cy/T\\r\\\\F\\)]
m i n > l4C^( | |^ | | + ||||)
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THEOREM 2. Under assumptions (Al) and (A2), there exists a unique solution
pair (u, p) of{ 1.1)—(1.5) m [0, 1 ] x [0, e] for the mixed boundary value case.

PROOF. Under these two assumptions, it follows from (1.15)—(1.19), (2.22)
and (2.38) that

v{x,t)>0 i n [0 , l ] x [ O , e ] , (2.40)

and thus

r(t) = [E(t)]-1 [" v(x,t)dx>0, (2.41)
Jo

we can use (1.13), (1.14) to find (u,p).
For the important special case a1 = a2 = 1, /?, = fi2 = y, = y2 = 0, i.e.,

the second boundary value problem, the positivity of r(t) can be obtained
by assuming, in addition to assumption (Al), that gx <0,g2>0,F>0,
/ > 0, but not all identically zero.

REMARK. Using the existing results on the system described by (1.8)—(1.11),
a sequence of solution pairs {(/•", v")} can be generated. It can be shown
that the limit of this sequence also satisfies (1.12). The existence, uniqueness,
etc., then can be addressed in terms of a weak solution. This provides a new
proof to Theorem 1. The merit of the classical approach we took here is that
the positivity of v can be obtained together with other properties. This has
enabled us to derive a more concise proof for the second boundary value case
than through the weak solution.

2.2. Continuous dependence of (u, p) upon the data

THEOREM 3. The solution pair (u,p) obtained in Section 2.1 depends con-
tinuously upon the data.

PROOF. Let

(f,F,gl,g2,0l,02,y1,y2,E,s)

and _

(7 , ~F, 1X » ? 2 ' /?1 > ^2 ' ^1 ' ?2 ' ^> J )
be two sets of data. In what follows we shall use <// and If/ to denote
quantities associated with these two sets of data, respectively. Also, we shall
use Mi,, N;, i = 1, 2, . . . , to denote some positive constants.

It is easy to see that if ||^2|| < M, \\ y/{ \\ < N, then

IIViV2 -WiW2\\ ^ MHV, -Wi\\ + N\\^2-W2l (2-42)

From (2.2) we see, similar to (2.8), that

7l|. (2.43)
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[11] Determination of control parameter 159

It follows from (2.3) and (2.42) that

llz-zll^MJIr-rll + AgiF-FH. (2.44)
Applying (2.42), (2.43) and (2.44) to (2.4), we obtain

II* - 011 < M2\\f - 7|| + M3\\g - g\\ + M4\\F - F\\ + Ms\\fi - J\\

+ M6\\y-y\\ + M6\\r-r\\+Ms\\4>-4\\,

where

and hence

(2.46)
for M% < 1. It follows from (1.12) and (2.42) that

_ i-t rs(t)

\\r - f\\ < Ml0\\E - E\\ + Mu / ||v - v\\ dx + Mn / ||v|| dx. (2.47)
JO Js(t)

Using (2.42)-(2.47) with the representations of v and v , we can derive

\\r-r\\ < M 1 3 ( \ \ f f \ \ H g M H n H ^ l \ \ \ \ 7 n \ \ \ \ \\
(2.48)

and this implies that r{t) depends continuously upon the data. Then we see
from (2.37), (2.43)-(2.46) that v{x, t) depends continuously upon the data.

Differentiating (2.34) with respect to x, we can obtain a representation
for vx(x, t), and then vx(s(t), t). Using an argument similar to what we
demonstrated above, we can prove that vx depends continuously upon the
data as well. Then the continuous dependence of r'(t) upon the data follows
from (1.12) and (2.29). The continuous dependence of v, r, and r upon
the data guarantees the continuous dependence of (M , p) upon the data.

2.3. Regularity of the solution pair (u, p)

THEOREM 4. / / / , F, g, , g2, px, 02, y,, y2, E, s e C°° then u,peC°° .

PROOF. We have proved by (2.29) that r(t) e C ' [ 0 , e ] . Differentiating (1.8)
with respect to t, and letting U = vt, we obtain

u t = U x x + ( r F ) t > 0 < * < l , 0 < r < 7 \ (2.49)

U(x,0) = /\x) + r(0)F(x,0), 0 < x < 1, (2.50)

Ux(0, t) + /?,(/)£/((), 0 + y,(/)£/( 1, 0 = (/*,)' - p[v(0, 1) - Y[V(1 , t),

0<t<T, (2.51)
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Ux{\, t) + 0 2 { t ) U ( O , t) + y 2 ( t ) U ( l , t) = (rg2)' - fi'2v(0, 1) - y ' 2 v ( l , t ) ,

0<t<T, (2.52)

r\t) = [E(t)]-2[E(t) - E\t)] fS{t) U dx
Jo (2.53)

+ [ E ( t ) ] ~ l U ( s ( t ) , t ) s ' ( t ) , 0 < t < T , 0 < J ( 0 < 1 .

This equation with all its boundary conditions are analogous to (1.8)-
(1.12). Under the same assumptions and using the same techniques for ac-
quiring (2.29), we can show that r\t) e C'[0, e], i.e., r(t) e C2[0, e]. Upon
repetition of this procedure, we can prove that r(t) e C"[0,e],
n = 1 , 2 , . . . . The same argument applies to v(x, t) as well. Thus, the
regularity of (u, p) follows from (1.13) and (1.14).

2.4. Extension of the local solution of the global solution
The solution pair (v, r) obtained in the previous sections is a local solu-

tion in [0, 1] x [0, e]. It can be extended to [0, 1] x [0, T] for any T > 0
in the following way. Denning W(x, t) = v{x, t + e), for a,(<) = a2(t) = 1,
we obtain from (1.8)—(1.12)

Wt = Wxx + r ( t + e ) F ( x , t + e ) , 0 < x < 1 , 0 < t < T - e ,
(2.54)

, 0 ) = v { x , e ) , 0 < x < l , (2.55)

Wx(0, t) + Px{t + e)W(0, t) + yl{t + e)W{l,t) = r(t + e)gx{t + e),
0<t<T-e, (2.56)

0<t<T-e, (2.57)

rs(t+e)
) ^ Wdx, ( 2 5 g )

0 < t<T-e, 0 < s{t + e) < 1.

Recalling that, under the assumptions (Al) and (A2), the e obtained de-
pends on the global behaviour of the data, we see from the proof given above
that 3 e > 0 such that (2.54)-(2.58) has a unique solution pair (W, r(t + e))
in [0, 1] x [0, e], i.e., (1.8)—(1.12) has a unique solution in [0, 1] x [0, 2e].
Repeating the same procedure a finite number of times, the solution can be
extended to [0, 1] x [0, T] for any T > 0. Hence, the solution pair exists
on [0, l ] x [ 0 , r ] .
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3. The first boundary value case

When a , (0 = a2(t) = 0, and 0ly2 # 02yl, (1.1)—(1.5) can be reduced to
the following first boundary value problem.

v t = v x x + r ( t ) F ( x , t ) , 0 < x < l , 0 < t < T , (3.1)

v(x,0) = f(x), 0 < J C < 1 , (3.2)

v{O,t) = r(t)gl(t), 0<t<T, (3.3)

v(l,t) = r ( t ) g 2 ( t ) , 0<t<T, (3.4)

i fs{t)

l vdx, 0<t<T, 0 < s(t) < 1. (3.5)
Jo

Assuming the existence of r{t) and following [1], we can express the solution
of (3.1)-(3.5) as

v(x,t)= [
Jo

rt

t [I

o Jo
(3.6)

3.1. Existence and uniqueness
The problem (3.1)-(3.5) is a special case of (1.8)—(1.12). We now prove

Theorem 1 for this case.
PROOF. In (1.16)-(1.20), letting a, = a2 = P2 = yx = 0, Px = y2 = 1, we
have a sequence of iterations approximating (v, r). The same procedure
used in Section 2.1 yields the proof.

THEOREM 5. / / gx, g2, F, f > 0, E(0) = /J(0) f(x)dx>0, and E{t) > 0,
then v>0, r(t) > 0 .

PROOF. Since r(0) = 1, it follows from the iteration procedure that r(n) >
0, v{n) > 0, and this implies that r[t) > 0, v > 0 . Note that r(0) = 1. If
there exists a tQ > 0 such that r(t0) = 0 , then it follows from (3.5) that
v(x, t0) = 0 and, accordingly, vx(x, t0) = 0 . In particular vx(0, tQ) = 0 .

https://doi.org/10.1017/S0334270000006962 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006962


162 J. R. Cannon, Yanping Lin and Shingmin Wang [14]

However, according to the assumption, we see that v(0, t0) is a minimum
of v(x, t). It follows from the Hopf s lemma [1], [13] that vx(0, tQ)>0,
which is a contradiction, and thus the proof follows.

THEOREM 6. Under the assumption (Al) and that of Theorem 5, there exists
a unique solution pair (u, p) o/(l.l)-(1.5) for the first boundary value case.

PROOF. The proof follows from Theorem 5 and (1.13) and (1.14).

3.2. Continuous dependence of (M , p) upon the data

THEOREM 7. The solution pair {u,p) obtained in Section 3.1 depends con-
tinuously upon the data.

PROOF. The proof is similar to that of Theorem 3.

3.3. Regularity of the solution pair (u, p)

THEOREM 8. / / / , F, gx, g2,s, E e C°°, then u,peC°° .

PROOF. The proof is similar to that of Theorem 4.

3.4. Extension of local solution to global solution
The local solution pair (u, p) can be extended to the global solution for

(x, t) e [0, 1] x [0, T] for any T > 0 in the same fashion as we demon-
strated in Section 2.4.
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