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Abstract

We present a characterisation of Banach spaces possessing the weak Radon—Nikodym property in terms
of finitely additive interval functions whose McShane variational measures are absolutely continuous with
respect to Lebesgue measure.
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1. Introduction

In [1], Bongiorno et al. have shown characterisations of Banach spaces possessing
the weak Radon—Nikodym property (WRNP) in terms of finitely additive interval
functions. They proved that a Banach space X has the WRNP if and only if, for
every X-valued finitely additive interval function ¢ that has absolutely continuous
Henstock variational measure, there is a Henstock—Kurzweil-Pettis integrable function
f:10, 1] = X such that

o(I) = (HKP) ff for every interval I C [0, 1], (1.1)
I

where (HKP) f1 f denotes the Henstock—Kurzweil-Pettis integral of f over I; see
[1, Definition 2.2].

In this paper, we present a characterisation of Banach spaces possessing the WRNP
in terms of finitely additive interval functions whose McShane variational measures
are absolutely continuous with respect to Lebesgue measure. We prove that a Banach
space X has the WRNP if and only if, for every X-valued finitely additive interval
function ¢ that has absolutely continuous McShane variational measure, there is a
weakly McShane integrable function f : [0, 1] — X such that (1.1) holds true for every
interval I C [0, 1] (but now the integral is the weak McShane integral).
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Henstock and McShane variational measures have been used extensively for
studying the primitives (indefinite integrals) of real functions. See, for example,
the papers by Di Piazza [3] and Lee [4] and the book Pfeffer [5] for relations to
integration; see also the fundamental general work by Thomson [10].

2. Basic definitions

Throughout this paper, X denotes a real Banach space with its norm || - ||. By X* we
denote the dual to X. Given a functional x* € X* its value on the element x € X will be
denoted by x*(x).

Let S be the unit interval [0, 1] of the real line equipped with the usual topology
and the Lebesgue measure 4. We denote by L the family of all Lebesgue measurable
subsets of S and by .7 the family of all nondegenerate closed subintervals of S.
The intervals / and J are said to be nonoverlapping if int(I) N int(J) = 0, where int(/)
denotes the interior of /.

A mapping v : L — X is said to be an X-valued measure if v is countable additive in
the norm topology of X. An X-valued measure is said to be A-continuous if A(E) =0
implies v(E) = 0. The variation of an X-valued measure v is denoted by |v/|.

A function ¢ :.¥ — X is said to be an interval function. An interval function
p: S —>X is said to be finitely additive if oI VUJ)=¢)+¢(J) for all
nonoverlapping intervals I, J € . with TU J € .. We denote by @ the family of
all finitely additive interval functions ¢ : . — X

A function ¢ € @ is said to be strongly absolutely continuous (or briefly sAC) if for
every € > 0 there exists 7 > 0 such that, for every finite collection {/;: i=1,2,...,n}
of nonoverlapping intervals in .,

DAy <= llell<e.
i=1 i=1

We denote by (a, b) the closed interval [min{a, b}, max{a, b}], a, b € R. A function
¢ € @ is said to be differentiable at s € S, if there exists x € X such that

o s s )
=0 |l

We write x = ¢’(s) to denote the derivative of ¢ at s.
We say that a function ¢ € ® is pseudodifferentiable on S if there exists a function
¢, - E — X such that, for every x* € X",

. Xe(s,s+h)) L,
}111_1;% |h| =X Spp(s)’

for almost all s € §. (The exceptional sets depend on x*.) The function ¢/, is said to be
a pseudoderivative of .
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A pair (I, s) of an interval I € .% and a point s € S is said to be the McShane tagged
interval; s is said to be the tag of I. Requiring s € [ for the tag of I we get the concept
of a Henstock—Kurzweil tagged interval.

A McShane partition (or M-partition) © in S is a finite collection of McShane
tagged intervals (/, s) whose corresponding intervals are nonoverlapping. Similarly,
a Henstock—Kurzweil partition (or HK-partition) n in S is a finite collection
of Henstock—Kurzweil tagged intervals (I, s) whose corresponding intervals are
nonoverlapping.

A function ¢ : E — (0, +o0) is said to be a gauge on E, where E is a subset of §.
We say that an M-partition 7 in S (HHK -partition 7 in §) is:

e an M-partition of S (HK-partition of §)if U e [ =S
. E-tagged if, for all (I, s) e n, s € E;
) o-fine, if, for every tagged interval (I, s) € m, I C (s — 6(s), 5 + d(5)).

Dernition 2.1. A function f:S — X is said to be McShane integrable on S and
wg € X is its McShane integral on S if, for every € > 0, there exists a gauge 6 on S
such that, for every o-fine M-partition 7 of S,

D, @A - ws

(I,s)ern

<E&.

We write wg = (M) fs f. A function f:S — X is said to be McShane integrable on
E c § if the function f: yg:S — X is McShane integrable on S, where yg is the
characteristic function of the set E. The McShane integral of f over E will be denoted

by (M) fEf. Thus we have
o [ 7=00 [ foxe.
E s

If f is McShane integrable on S then we obtain by [7, Theorem 4.1.6] that for every
E € L the function f is McShane integrable on E.

DeriniTion 2.2. We say that a function f:S — X is strongly McShane integrable
(or briefly SM-integrable) on S if there exists ¢ € @ such that, for every & > 0, there
exists a gauge § on S such that, for every §-fine M-partition 7 of S,

D IF®AD = (DIl < &.

(I,s)en

By [7, Proposition 3.6.16] we obtain ¢(I) = (M) f[ f,foreach I €.7.

Skvortsov and Solodov defined the McShane variational integrability of functions
f:1— X, where [ is a nondegenerate compact interval of R”, m € N; see [8]. This
notion coincides with S M-integrability from Definition 2.2.

If X is a finite dimensional Banach space then we obtain by [7, Theorem 5.2.2] that
Definitions 2.1 and 2.2 are equivalent.
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DeriniTioN 2.3. A function f:S — X is said to be weakly McShane integrable
(or briefly ‘W M-integrable) on S if, for every x* e X*, the real function x*f is
McShane integrable on S and, for every [€.”, there exists w; € X such that
(M) fl x*f = x*(wy). We call w; the weak McShane integral of f over I and we write
w; =(WM) [, f. The additive interval function F(I)=(WM) [, f is said to be the
‘W M-primitive of f.

According to [7, Theorem 5.2.3] a real-valued function is McShane integrable if
and only if it is Lebesgue integrable. It follows that, if a function f: S — X is Pettis
integrable, then the function f is ‘W M-integrable and, for every I € .,

(P) £f=(WM)ﬁf,

where (P) fl f denotes the Pettis integral of f on I. In [11], Ye and Schwabik have
shown that there exists a ‘W M-integrable function that is not Pettis integrable.
Given ¢ € @, a subset £ C S and gauge 6 on E, we define

VINE 8)=sup ) lle(Dll

(. Den

where the supremum is taken over all E-tagged, o-fine, M-partitions 7 in S. Then we
set
Mgy _ M .5
Vy(E) = 1nf{V¢ (E,0):01is a gauge on E}.

The set function Vé"( is said to be the McShane variational measure (or M-variational
measure) generated by ¢. According to Thomson’s results from [9], it is known that
Vé‘" is a Borel metric outer measure on S. We say that the McShane variational
measure V‘//J"( is absolutely continuous with respect to Lebesgue measure (or briefly
VM(E) < A, if A(E) = 0 implies that V)(E) = 0.

If we replace M-partitions by HK-partitions in the definition of McShane
variational measure we obtain the definition of Henstock variational measure,
[1, Definition 3.1]. We denote by VZ{ the Henstock variational measure generated
by ¢ € ©.

3. The main result

The following lemma was proved by Di Piazza in [3, Proposition 1]. (There she
considers real-valued functions, but the proof works also for vector valued functions,
after trivial changes.)

Lemma 3.1. If p € ©, then V(;V[ < Aifand only if ¢ is SAC.
We now present the main theorem.

Tueorem 3.2. Let X be a Banach space and let ¢ € ®. Then the following statements
are equivalent.
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(i) X has the WRNP.

a) If Vé\" < A, then ¢ is pseudodifferentiable on S .

i) If Vé"‘ < A, then there exists a function f: S — X such that f is W M-integrable
on S and, for every I € .7,

o) = (WM) j;f-

Proor. (i) = (ii). Assume that V;,V‘ < A. Since each HK -partition is an M-partition,
we obtain VZ" < A. Therefore the statement (v) of Theorem 4.5 in [1] implies that ¢ is
pseudodifferentiable on §.

(i1) = (iii). Assume that Véw < A and let (,o;, be a pseudoderivative of ¢. We will
prove that the function f = ¢, is ‘W M-integrable with ‘W M-primitive ¢.

Assume that an arbitrary 1 € . and an arbitrary vector x* € X* are given. Note
that x*¢ is sAC and (x*¢)'(s) = x*(f(s)) almost everywhere in S. Therefore,
Theorem 7.4.13 together with [7, Theorem 5.2.2] yields that the real-valued function
x* f is McShane integrable on S with the primitive x*¢. Thus,

(M)flx*f=(x*90)(1)=x*(90(1)),

and, since / and x* are arbitrary, we obtain that f is ‘W M-integrable on S and, for
every [ € .7,

(WM) f1f=<,0(1)-

(iii) = (i). Let v : L — X be a A-continuous countable additive measure of bounded
variation. We define a function ¢ € ® as follows:

o) =vl), I€Z.

Since v is A-continuous, its variation |v| is also A-continuous, and since |v| is a bounded
measure we obtain by [6, Theorem 6.11] that to a given € > 0 there exists n7 > 0 such
that, for every E € L,

AE)<n=|(E)<e.

Let D be a finite collection of nonoverlapping intervals in . such that

Ly <n.

IeD

D llehii= Y i< Y- win = (1)<

leD IeD IeD IeD

Then

This means that ¢ is sAC and therefore we obtain by Lemma 3.1 that Vé"( < A. Hence,
by (iii), there exists a function f : § — X such that f is W M-integrable on S and, for
every [ € .7,

v(I) = ¢(I) = (WM) flf-
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Now we will show that f is Pettis integrable on S. Since each real-valued McShane
integrable function is Lebesgue integrable we obtain that for each x* € X* the real
function x*f is Lebesgue integrable. Thus it remains to prove that for every E € £
there exists xg € X such that, for every x* € X*,

x'(xg) = (L) f x'f,
E

where (L) fE x* f denotes the Lebesgue integral of x* f over E.
First we consider an open subinterval I of S. We denote by I the closure of 7 in S

Note that
L f1 X f=(L) fl X f= x*((WM> f1 f) = x*(v(D).

Thus we have x; = v(I) = v(I).
Secondly, let G be an open subset of §. There exists a sequence (/) of pairwise
disjoint open subintervals of S such that G = | ;2 . Then

L *f=(L f = L *
<)fof ()u;;lzkxf ;()f,k"f

[e9)

= > X)) = ) X0 = lim X (I)
k=1 k=1 k=1

= tim x°( v(t) = (| ) = ' 016
R Na k=1
Hence, xg = v(G).
Finally, we consider a measurable set E € L. There exists a sequence (G,) of open
subsets of § such that, for every n € N,

ECGns Gn+1 CGn

and A(Gs\ E)=0, where Gs=(),_; G,. Since v is a A-continuous countable
additive measure and lim,_,. A(G,) = A(Gs) we obtain by [2, Theorem 1.2.1] that
lim, . v(G,) = v(Gs). Therefore,

L) f Xf=W) | xXf-(@) Xf=) | xXf
E Gs Gs

Gs\E

= lim (L) x'f = lim x*(xg,) = lim x*("(G,)) = X" ("(Gy)),

and so xg = v(Gs) = v(E).
Consequently the function f is Pettis integrable and, for every E € L,

V(E)=(P)ff-
E

This proves that X has the WRNP. O
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