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Abstract. Magnetic fields are crucial to the generation of turbulence and the dynamics of
accretion and energy dissipation in accretion disks. Nevertheless, until now, there has been no
self-consistent analytic formalism that puts the evolution of turbulent magnetic fields on the
same footing as other dynamical processes such as mass flow and energy generation. We have
developed a self-consistent framework for turbulent, magnetized accretion disks with the aim
of studying the processes that power hot coronae. Utilizing this framework we have identified
the possible magnetic sources of power for the coronae of black hole accretion disks. The most
promising is the Poynting flux associated with the azimuthal-vertical magnetic stress. We also
determine how the emission from the disk is modified by the processes that power the corona
and related winds.

1. Introduction
The notion that accretion discs become turbulent because of the presence of weak

magnetic fields is now well known through the work of Balbus, Hawley, Stone and col-
laborators (e.g. Balbus & Hawley 1998; Miller & Stone 2000). The purpose of this work,
a complete desciption of which is presented in Kuncic & Bicknell (2004), is to develop
an analytical framework for accretion discs that incorporates the effects of turbulent
magnetic fields ab initio and which can be used as the basis for further analytical and
numerical investigations. One of the motivations driving this work has been the existence
of accretion disc coronae and the issues of how energy generated in the accretion disk is
propagated into the corona and dissipated there and how this relates to disk outflows.
Blandford & Payne (1982) and Pudritz & Norman (1983) have demonstrated the exis-
tence of outflows in the case of a strong magnetic field when nett nagentic flux threads
the disc. The initial focus of our work is to examine the issue of outflows in the case of
zero nett magnetic flux.

2. The Poynting flux
Haardt & Maraschi (1991) developed a phenomenological model for accretion disk

coronae that requires a substantial flux (∼ the accretion power) of energy into the corona
above the disk. An obvious candidate is the Poynting flux, expressed in cylindrical r(, φ, z)
coordinates as

Sz ≈
B2

r + B2
φ

4π
vz −

BφBz

4π
vφ (2.1)

where vz is the component of velocity perpendicular to the disk and vφ is the azimuthal
Keplerian velocity � (GM/r)1/2. Some key questions posed by this expression are (1)
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Does a vertical wind or buoyant velocity provide a sufficient Poynting flux? and (2) What
is the magnitude of the Poynting flux associated with the Keplerian velocity (the second
term in equation (2.1))?

3. Equations for the mean flow
3.1. Statistically averaged equations

In order to develop an analytic model for turbulent, magnetized accretion disks, we find
it useful to utilize the statistical mass–averaging technique introduced by Favre (1969).
In this method, all variables are expressed in terms of mean and fluctuating components,
with extensive variables such as the density averaged in a conventional way but intensive
variables such as velocity are mass–averaged. Thus, for example, denoted ensemble (or
time averages) by 〈〉

Density: ρ = ρ̄ + ρ′ 〈ρ′〉 = 0 Velocity: vi = ṽi + v′
i 〈ρv′

i〉 = 0
Pressure: p = p̄ + p′ 〈p′〉 = 0 Magnetic Field: Bi = B̄i + B′

i 〈B′
i〉 = 0 (3.1)

In this treatment we assume zero nett flux through the disk (i.e. 〈B̄i〉 = 0). Taking the
ensemble average of the MHD equations introduces several additional terms into the
equations for the mean flow. For example, the momentum equations become:

∂(ρ̄ṽi)
∂t

+
∂ (ρ̄ṽiṽj)

∂xj
= −ρ̄

∂φG

∂xi
− ∂p̄

∂xi
+

∂

∂xj

∂〈tij〉
∂xj

(3.2)

where φG is the gravitational potential, p is the thermal plus radiation pressure and the
total turbulent stress is the sum of the Reynolds and magnetic stresses, i.e.

〈tij〉 = −〈ρv′
iv

′
j〉 +

〈B′
iB

′
j〉

4π
− 〈B′2〉

8π
δij (3.3)

3.2. Thin disk approximation
Al of the dynamical equations can be put into a conservation law form and integrated
over the height of the disk, whose τ = 1 surfaces (τ = optical depth) are located at
z = ±h. Thus the generic conservation law:

1
r

∂(rAr)
∂r

+
∂Az

∂z
= S ⇒ d

dr

∫ +h

−h

2πrAr dz +2πr(A+
z −A−

z ) =
∫ +h

−h

2πr S dz . (3.4)

with the photosphere–corona boundary denoted by the ± superscript.

3.2.1. Mass flux
There are two important mass fluxes:

Mass accretion rate: Ṁa(r) = −2π
∫ +h

−h
rρ̄ṽr dz

Wind mass loss rate: Ṁw(r) = 4π
∫ ∞

r
rρ̄+ṽ+

z dr
(3.5)

with mass conservation telling us that Ṁa(r) + Ṁw(r) = Ṁ = accretion rate at r = ∞.

3.2.2. Radial and vertical momentum balance
The radial and vertical momentum balances are identical to the standard Shakura &

Sunyaev (1976) disk. We define the disk surface density, Σ and average scale height hav

by:

Σ(r) =
∫ +h

−h

ρ̄ dz hav(r) =

∫ +h

−h
ρ̄z dz

Σ(r)
(3.6)
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When the stress 〈trz〉 < ρ̄GM/r the azimuthal velocity is Keplerian, i.e. ṽφ � (GM/r)1/2.
When the vertical velocity in the disk is less than the sound speed then the disk is in
a quasiequilibrium state and hav/r ∼ ctot

0 /vK, where mid-plane sound speed, ctot
0 =

((p̄0 + 〈B2
0〉/8π)/ρ0)1/2 includes the radiation pressure and magnetic field.

3.3. Angular momentum
Solution of the angular momentum equation gives for the integrated rφ stress, Trφ =∫ +h

−h
trφ dz:

Trφ(r) = −Ṁa(r)vK(r)
2πr

[
1 − Ṁa(ri)rivK(ri)

Ṁa(r)rvK(r)

]
+

r2
i Trφ(ri)

r2
+

∫ r

ri

r′2

r2

[
ρ̄+vKṽ+

z − 〈t+φz〉
]
dr′

(3.7)
The first term on the right represents the standard result (apart from the effect of a
varying accretion rate); the other terms represent the effects of the inner disk stress, the
wind and the φz stress. The rφ and φz stress terms in this equation are comparable
when 〈tφz〉+ ∼ hav/r〈trφ〉 ∼ 10−3〈trφ〉0, reflecting the fact that the φz stress acts over
the surface of the disk but the rφ term acts across the disk cross-section. Moreover, the
φz stress (dominated by the magnetic field) has an important effect on the transport of
angular momentum when

−4πr2〈tφz〉+

ṀavK

∼
−4πr2〈B′

φB′
z〉+

ṀavK

∼ 1 (3.8)

leading to the numerical estimate for the magnetic field:

〈−B′
φB′

z〉1/2 ≈
(

mpc
4

GσT

)1/2 (
ṁ

M

)1/2 (
r

rg

)−5/4

= 7× 102

(
ṁ

M8

)1/2 (
r

10rg

)−5/4

Gauss

(3.9)
where ṁ is the mass accretion rate in units of the Eddington value, the mass of the black
hole is 108M8M� and rg is the gravitational radius.

4. Disk luminosity
Solution of the total energy equation for the disk gives an equation for the radiative

flux through the disk surface, integration of which gives the following equation for the
disk luminosity:

Ldisk =
GMṀa(ri)

2ri
− 2πrivK(ri)Trφ(ri) − Pwind (4.1)

The first two terms represent the usual gravitational power and the effect of a nonvanish-
ing stress at the inner disk boundary, respectively. The power in the wind is dominated
by kinetic, gravitational, magnetic terms and is given by:

Pwind =
∫ ∞

ri

[
−GM

2r
ρ̄+ṽ+

z +
〈B′2

r + B′2
φ 〉+

4π
ṽ+

z +
〈(B′2

r + B′2
φ )v′

z〉
4π

−
〈B′

φB′
z〉+

4π
vK

]
4πrdr

(4.2)
The terms in Pwind include the (negative) flux of kinetic plus gravitational potential
energy and three Poynting flux terms related to advection and buoyant turbulent diffusion
of magnetic energy plus a term proportional to the product of the φz magnetic stress and
the Keplerian velocity. Detailed comparison of the various terms shows that it is most
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likely the last term that dominates since it involves the Keplerian velocity. Thus, we have
the very interesting situation that the stress component 〈tφz〉 can have a dominant effect
on the energy transfer in an accretion disk–corona system even though it is numerically
small. The last term also figures in the condition for a wind. The energy flux density
in the wind is positive (i.e. the last Poynting flux component counteracts the negative
kinetic and potential energy component) when

−〈B′
φB′

z〉+

〈B′2〉
〈v2

A〉+
v2

K

>∼
hav

r

ṽ+
z

c0
(4.3)

This condition can be readily satisfied when 〈v2
A〉+ > v2

K but could also be satisfied
for much lower magnetic fields, reminding one of the “magnetic switch” from loosely
collimated wind flow to jet flow (Meier 1999).

5. Accretion power and wind power
Disks in which the dominant stress is 〈trφ〉 and 〈tφz〉 = 0 have dominated the field

ever since the work of Shakura and Sunyaev. Ignoring the effect of stress on the inner
boundary, such a disk is characterized by:

Ldisk =
GMṀa(ri)

2ri
Pwind = 0 (5.1)

The other extreme is one in which 〈trφ〉 = 0 and 〈tφz〉 �= 0 which gives:

Ldisk = 0 Pwind =
GMṀa(ri)

2ri
(5.2)

i.e. all of the gravitational power ends up in the wind. Real disks are probably intermedi-
ate between the two extremes. However, this is the first time that the partition of power
between disk luminosity and winds has been put on a physical basis.

6. Concluding remarks
We have established a self-consistent framework for magnetized accretion disks and

have shown that the φz magnetic stress can have an important dynamical and energetic
effect even though it may be numerically small compared to to other stresses. Signifi-
cant gravitational accretion power can be channeled into the corona via the Poynting
flux associated with this stress. Future work will involve the nature of wind flows from
radiative magnetized disks and the manner in which Poynting flux can be dissipated in
the corona.
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