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The drag on a rising sphere along the axis in a
short rotating cylinder of fluid: revisiting the
data and theory
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We revisit the problem of a solid sphere rising slowly in a rotating short container
filled with a slightly viscous fluid, with emphasis on the drag force. The data of the
classical experiments of Maxworthy (J. Fluid Mech., vol. 31, 1968, pp. 643–655) and
recent experiments of Kozlov et al. (Fluids, vol. 8 (2), 2023, paper 49), and the available
geostrophic and quasi-geostrophic theories, are subjected to a novel scrutiny by combined
reprocessing and comparisons. The measured drag is, consistently, about 20 % lower than
the geostrophic prediction (assuming that flow is dominated by the Ekman layers, while
in the inviscid cores the Coriolis acceleration is supported by the pressure gradient).
The major objective is the interpretation and improvement of the gap between data and
predictions. We show that the data cover a small range of relevant parameters (in particular
the Taylor number T and the height ratio H of cylinder to particle diameter) that precludes
a thorough and reliable assessment of the theories. However, some useful insights and
improvements can be derived. The hypothesis that the discrepancy between data and the
geostrophic prediction is due to inertial effects (not sufficiently small Rossby number Ro
in the experiments) is dismissed. We show that the major reason for the discrepancy is the
presence of relatively thick Stewartson layers about the cylinder (Taylor column) attached
to the sphere. The 1/3 layer displaces the boundary condition of the angular velocity
(ω = 0) outside the radius of the particle. This observation suggests a semi-empirical
correction to the theoretical quasi-geostrophic predictions (which takes into account the
Ekman layers and the 1/4 Stewartson layers); the corrected drag is in fair agreement
with the data. We demonstrate that the inertial terms are negligible for Ro T1/2 < 0.4.
We consider curve-fit approximations, and point out some persistent gaps of knowledge
that require further experiments and simulations.
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M. Ungarish

1. Introduction

The flow field and drag force generated by a rising rigid sphere in a rotating fluid are
of practical and academic interest. The applications vary from the cores of planets to
biological centrifuges. The theory is concerned with subtle structures like the Ekman
and Stewartson shear layers, and the fascinating long Taylor column. These problems
are characterized by a peculiar difficulty: apparently, there are significant discrepancies
between the measured drag force and theoretical predictions. In this respect, it is essential
to distinguish between ‘long’ and ‘short’ containers. In the first case (compared with
the diameter of the sphere), long detached conical Taylor columns appear in front of
and behind the sphere, and the measured drag is typically larger than the theoretical
predictions; see the recent paper by Aurégan, Bonometti & Magnaudet (2023), and the
references therein. Here, we consider the second case, in which the flow is structured
as z-independent cylindrical columns (cores) attached to the sphere and governed by the
Ekman layers on the bounding plates of the container and on the sphere (where z is the
axis of rotation). The typical height of the column is just a few diameters of the particle.
The classical measurements of Maxworthy (1968) and the recent measurements of Kozlov
et al. (2023) found a significantly smaller drag than predicted by the classical geostrophic
solution of Moore & Saffman (1968, 1969). The studies of Maxworthy (1968) and Kozlov
et al. (2023) will be referred to as Max68 and K23, respectively.

This paper revisits the problem of the drag discrepancy and the attempts for
interpretation and improvement. Our work is novel in several aspects. First, we use
the combined data of two independent parties, Max68 and K23, that differ in time,
methodology and apparatus. This increases the parameter range and improves the overall
reliability. Second, we reprocess the data ‘from scratch’ (as much as possible) in a form
that is more straightforward for insights and comparisons. Third, we make comparisons
with a wider range of theoretical predictions, significantly beyond the geostrophic solution.
In particular, we emphasize the strong connection between the angular velocity in the cores
and the drag force. The novel analysis leads to the rejection of the suggestion that inertial
effects are the reason for drag discrepancy. We demonstrate that the reason is the vertical
Stewartson layers (not included in the geostrophic drag result), and derive a semi-empirical
drag correction that agrees well with the data. We also consider curve-fit formulas and
point out their limitations.

We note in passing that various extensions of this problem have been considered in the
literature, e.g. Bush, Stone & Bloxham (1992, 1995) considered a drop with a non-rigid
surface, and Ungarish & Vedensky (1995) and Minkov, Ungarish & Israeli (2000) solved
the problem for a rising disk. These works strengthen the theoretical understanding of the
flow, but do not contribute to the clarification of the discrepancy considered in this paper.

The structure of the paper is as follows. Fundamental concepts and theoretical results
are presented in § 2, followed by a brief report of the theoretical balances and drag
calculation formulas that will support the comparisons with the data in § 3. Comparisons
are performed and discussed in § 4. Here, we explain the difficulties of the sets of data used
in our work. The comparison of the angular velocity suggests a semi-empirical correction
of the drag calculations. Detailed comparisons of the drag are performed next. Concluding
remarks are given in § 5. Curve-fit formulas are discussed in Appendix A.

2. Fundamental concepts and results

We consider a solid spherical particle of radius a and density ρp in a homogeneous fluid
of density ρ (> ρp) and kinematic viscosity ν in a system rotating with constant angular
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The drag on rising sphere in short rotating cylinder of fluid
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Figure 1. Sketch of the flow field, sphere in symmetric position. In the upper side, the fluid is transported
outwards in the Ekman layers and 1/4 Stewartson layer, then downwards in the 1/3 layer. The decrease of
the volume is compensated by the upward motion of the sphere with velocity W. The system of coordinates
co-rotates with the plates at rate Ω . The cores display azimuthal velocity v(r) relative to the system (negative
in the upper side). In general, a 1/4 layer appears also on the outer side of the 1/3 layer, but in the symmetric
position, this layer is not needed, and therefore not shown. The outer wall of radius rO is not shown, and is
unimportant under the assumption that the gap from the sphere is larger than the 1/3 and 1/4 layers. Here, H
is normalized with the radius of the sphere, a.

velocity Ω about the vertical axis z. The particle moves with a quasi-constant velocity
W along the vertical axis z (upwards), opposite the gravity acceleration g. The fluid fills
a co-rotating cylinder with solid horizontal lids (plates). The dimensionless parameter H
expresses the ratio of the height of the cylinder to 2a (the diameter of the particle). We
assume that the particle is at the midplane between the top and bottom plates (the relevance
of this situation to other positions is discussed in Appendix B). See figure 1.

We are concerned with the drag D on the particle. The quasi-steady state W implies
equilibrium with the known buoyancy

B = 4
3πρa3g′, g′ = (1 − ρp/ρ)g (2.1)

(where g′ is called reduced gravity). Measuring W for a known D = B in an experiment is
formally a straightforward task: set g′, release the particle near the bottom in the rotating
fluid, and record the trajectory (only results that show a steady-state are relevant). The
question that is the backbone of this paper is: what is the connection between D and W?
In other words, we are concerned with the prediction of D as a function of W, and the
understanding of the mechanisms that govern the result. Obviously, this must depend on
the dimensionless parameters of the flow.

The major parameters are

T = E−1 = Ωa2

ν
, Ro = W

Ωa
, (2.2a,b)
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where T is the Taylor number, E is the Ekman number and Ro is the Rossby number. For
later reference, we define the dimensionless parameters

ε = (H/2)1/2T−1/4, ε1/3 = H1/3T−1/3, (2.3a,b)

which are the typical dimensionless thicknesses (scaled with a) of the Stewartson layers
discussed later.

We are concerned with small Ro and large T , which is regarded as a flow field with
strong rotation and small viscous effects (confined to thin layers). Such flows display
the Taylor–Proudman columnar structure, in the sense that the moving particles induce
significant motion in columns ahead and behind. In this respect, two different types of
flow must be distinguished. In the long container, H > T/20 (approximately), the major
part of the Taylor column is a free domain of recirculation, of conical shape. In the short
container, 1.5 < H < T1/2 (approximately), the Taylor column is a cylinder of radius a
in which the pressure, radial velocity and angular velocity are independent of z, called
quasi-geostrophic flow. (In the case H < 1.5, the vertical gap at the centre is less than
half-radius. Although no qualitative failure of the quasi-geostrophic theory is expected as
long as the gap admits Ekman layers, i.e. for H > 1 + 6/T1/2, the small gap requires a
reconsideration of the matching between the inviscid core and the viscous layers. This
uncertainty is avoided by the H > 1.5 restriction.)

The different ‘long’ and ‘short’ quasi-steady flow regimes emerge from the boundary
conditions during the time-dependent process of formation. Initially (time t = 0), the
sphere is at rest and the fluid is in solid-body rotation. The rotating fluid supports inertial
waves. The beginning of the motion of the sphere along the axis generates waves. Consider
the upper z > 0 domain (the lower domain is symmetric). The waves produce a (Taylor)
column of increasing length, ∼0.7Ωat; see § 4.3 of Greenspan (1968), and Minkov,
Ungarish & Israeli (2002). The small viscous forces in the perturbed fluid tend to block
this propagation, but this can be achieved over a distance ∼aT/20. In the ‘long’ container,
the top boundary of the container is sufficiently far away, and this arrested column evolves
into a steady state. In the ‘short’ container, the wave hits the top plate at an early stage,
is reflected, and activates the viscous reaction of the solid boundaries (the Ekman layers).
The adjustment to steady state is then performed by the more conventional spin-up process
dominated by the Ekman layers. For a sufficiently small Ro, the time scale of the axial
motion, H/(RoΩ), is much longer than that of the initial adjustment, and this justifies a
steady-state analysis of the flow.

In this paper we will focus attention on the short container case only. We will
show that this case, although apparently simple due to the z-independent core, lacks an
assessed theory, and poses some questions that indicate the need for new experiments and
simulations.

Three viscous layers appear in the problem. We use the radius of the sphere a as the
reference length for the discussion of these layers. Ekman layers of typical thickness
T−1/2 = E1/2 connect the vertical core with the particle on one side and with the lid
on the other side; these are called ‘horizontal layers’. Stewartson layers of thickness
ε = (H/2)1/2T−1/4 embed the core in both inner r < 1 and outer r > 1 directions.
A Stewartson layer of typical thickness ε1/3 = H1/3T−1/3 is sandwiched between the 1/4
layers. For obvious reasons, these are also called the 1/4 and 1/3 (vertical) layers.

The theory is based on Ro → 0 approximation (called linear theory; Greenspan 1968)
and T → ∞ (thin viscous layers). Some details are given in § 3. The axisymmetric
Navier–Stokes equations are simplified using an expansion of the dependent variables in
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The drag on rising sphere in short rotating cylinder of fluid

powers of Ro and 1/T . The matching of the leading terms produces the following main
results for the drag.

(1) The geostrophic result (Moore & Saffman (1968) assuming ε → 0) is explicit:

D0 = 43
105

πT3/2 × (Wνρa) = 1.29T3/2(Wνρa). (2.4)

(2) The quasi-geostrophic (qg) result for a particle in the middle of the cylinder
(Ungarish (1996) assuming finite ε but ε1/3 → 0) is given implicitly as

Dqg = D(ε,H)T3/2 × (Wνρa). (2.5)

Here, D is of the order of unity, typically smaller than 1.29. The value of D is obtained
by standard numerical methods. The quasi-geostrophic results are amenable to some
extensions: non-middle position of the particle, nonlinear corrections (finite small Ro), and
dependency on the time t. These extensions provide useful insights concerning the trends
of these effects, but the addition of parameters (Ro,Hu/Hl, t) to the theory complicates
the discussion and will not be presented here. We restrict our comparisons to the results
of the simple steady-state quasi-geostrophic result for H = Hu, Hu/Hl = 1, Ro = 0. The
subscripts u, l denote the upper and lower domains of the flow.

The convenient connection between theory and experiments is via the dimensionless
D/D0, where D is the measured drag for a given set of parameters and W.

Conversely, suppose that the buoyant force on the sphere, B, is known (this is easy to
calculate or measure). Letting B = D0 (see (2.1) and (2.4)), we obtain the geostrophic axial
velocity

W0 = 140
43

(
g′a2

ν

)
T−3/2 = 3.26

(
g′a2

ν

)
T−3/2. (2.6)

Since the drag is proportional to W, we can write for a given experimental point

W
W0

= D0

D
, (2.7)

which means that the measurement of the speed W provides an excellent assessment for
the accuracy of the drag prediction.

For compatibility with the literature, we also introduced the drag coefficient cD =
2D/(ρπa2W2), the Reynolds number Re = Wa/ν, and the settling Reynolds number
ψ = (g′a2/ν)(a/ν). Some algebra yields the relationships

cD = 86
105

T1/2

Ro
D
D0
, ψ = 43

140
Ro T5/2 D

D0
, Re = Ro T. (2.8a–c)

3. Theory

We recall briefly some essential theoretical results, following Ungarish (1996); see figure 1.
The cylindrical system of coordinates is attached to the centre of the sphere and co-rotating
with the horizontal plates (lids) at constant angular velocity Ω . Gravity acts in the −z
direction, while the particles move with speed W in the opposite direction. The flow is
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M. Ungarish

axisymmetric and unbounded in the radial direction. Ekman layers are present on the
sphere and horizontal plates. The typical thickness of the Ekman layer is

δ = (ν/Ω)1/2 = aT−1/2. (3.1)

The sphere is given by

z = ±a f (r), f = (1 − ξ2)1/2, ξ = r/a, (3.2a–c)

while the position of the plates is ±aH. (Again, H is dimensionless.)
In the cores of fluid between the Ekman layers, the radial velocity u, azimuthal velocity v

and (reduced) pressure p are z-independent. Due to the symmetric position of the sphere,
the flows in the upper and lower sides are antisymmetric, and the torque on the sphere
vanishes. This means that the sphere is co-rotating with the plates, and it is sufficient
to solve the flow in one domain. (The symmetry condition can be relaxed by applying
matching conditions between the cores, but this is beyond the scope of this paper.) Let us
focus attention on the upper side.

Consider first the volume conservation. We use a cylindrical control volume of radius
r < a between z = a f (r) and z = aH. Fluid flows out via the core and via the Ekman
layers at the rate

Q(r) = 2πr
(

a[H − f (r)]u − 1
2δ[1 + (1 + f ′2)1/4]v

)
. (3.3)

This outflux is sustained by the volume compression of the cylinder at the rate
Q(r) = πr2W.

Consider next the momentum balances in the core. The dominant acceleration is due to
Coriolis. In the z direction, ∂p/∂z = 0 is satisfied by a general p(r). The radial Coriolis
term is balanced by the pressure, while the azimuthal Coriolis term is balanced by viscous
forces. This reads

−2Ωv = − 1
ρ

dp
dr
, (3.4)

2Ωu = ν
d
dr

1
r

d
dr

rv. (3.5)

Substitution of (3.5) into (3.3) and matching the radial flux with the axial compression,
we obtain one equation for the azimuthal velocity v(r). The symmetry between the upper
and lower cores imposes vu(r) = −vl(r). Therefore, using (3.4), the drag on the sphere is
given by

D = 4π

∫ a

0
|p(r)| r dr = 4πρΩ

∫ a

0
|v| r2 dr, (3.6)

where integration by parts was used. (We also used the condition that there is no pressure
jump at r = a.)

3.1. The dimensionless angular velocity ω
It is convenient to express the reduced volume and momentum balances in dimensionless
form. We scale lengths with a, and velocity with W. We introduce the scaled
angular velocity

ω(r) = T−1/2 v(r)/r (3.7)

and the dimensionless ε = (H/2)1/2T−1/4. After some algebra, the above-mentioned
equation for v(r) (obtained by the combination of volume continuity with the azimuthal
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The drag on rising sphere in short rotating cylinder of fluid

momentum equation) can be expressed as

2ε2(1 − f (r)/H)
(

d2ω

dr2 + 3
r

dω
dr

)
− [1 + (1 + f ′2)1/4]ω = 1 (0 ≤ r ≤ 1) (3.8)

with the boundary conditions ω(1) = 0, (dω/dr)(0) = 0. The drag prediction (3.6) is
then expressed as

D = 4πT3/2
∫ 1

0
(|ω(r)|) r3 dr × (Wνρa). (3.9)

The shear term on the left-hand side of (3.8) represents the contribution of the 1/4 layer
to the outward radial transport of the fluid; the next term represents the contribution of the
Ekman layers. The right-hand side of (3.8) represents the upward motion that generates
the radial fluxes. Evidently, a negative ω is needed in the upper core. (For the lower core,
not solved here, (3.8) with −1 on the right-hand side applies. Therefore −ω of the upper
core is the solution for the lower core.)

For ε = 0, we obtain analytically the geostrophic solution

ω0(r) = − (1 − r2)1/4

1 + (1 − r2)1/4
, D0 =

(
43
105

π

)
T3/2 × (Wνρa) = 1.29T3/2(Wνρa).

(3.10a,b)

For a finite ε, we use a finite-difference solution for (3.8) and (3.9). In this case, we must
specify H and T (or ε and one of these parameters). We obtain, numerically,

ωqg(r; ε,H), Dqg = D(ε,H)T3/2 × (Wνρa). (3.11a,b)

We expect ωqg(r)/ω0(r) < 1 and D < 1.29. Note the difference between (3.10a,b) and
(3.11a,b): the first depends only on T; the second predicts a more complex behaviour,
because for a given T , various values of ε and H are possible practically.

By setting f = 0, the rising disk problem is recovered; in this case, for ε � 1, (3.8)
reduces to ε2ω′′ − ω = 1/2, hence

ωqg disk = −1
2 [1 − exp((r − 1)/ε)], (3.12)

which illustrates the classical Stewartson 1/4 layer in this context. When ε is not very
small, curvature terms distort the exponential decay, and the ω(1) = 0 boundary condition
affects the entire domain, including a reduction of |ω(0)|. For simplicity of discussion,
we include this behaviour in the concept of the 1/4 Stewartson layer. Quantitatively, the
numerical solution of (3.8) that is used in our comparisons contains the curvature terms
and the effect of non-small ε.

We note that the reduced formulation (3.8) and (3.9) is based on reliable physical
balances (Ekman layer transport, volume conservation, momentum equations in radial,
azimuthal and axial directions). The simplicity of the result is a consequence of
simplifications that can be justified for asymptotic limits of the parameters. The physical
relevance of the results is for finite values of Ro, ε and ε1/3. The accuracy of the predictions
for realistic values of the parameters must be tested by comparison with realistic data.

979 A30-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
93

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1093


M. Ungarish

4. Comparisons

4.1. Difficulties
The assessment of the theory by the available experiments encounters various difficulties.
Formally, experiments for small Ro are expected to provide D/D0 and also ω(r), whose
dimensionless values are of the order of unity, that can be compared straightforwardly with
the theory. A close inspection of the major available data reveals that (1) they do not cover
the parameter range needed for a conclusive comparison, and (2) there are uncertainties
that cast some doubts on the data.

4.2. The angular velocity ω(r)
It is convenient to start the comparisons with the angular velocity in the cores. There is
consensus in the literature that the flow is dominated by the Ekman layers, and this requires
that (1) the azimuthal velocity v is of the order of magnitude T1/2W, and (2) vu < 0 while
vl > 0. (Again, u, l denote the upper and lower cores, respectively.) The behaviour of the
scaled v/r, denoted ω, as a function of the dimensionless r, is of interest; see § 3.1.

We note that the comparison concerning the data of ω(r) of the fluid in the cores is
inconclusive. Few data have been reported, and there is no overlap between Max68 (using
die tests) and K23 (using a particle image velocimetry technique).

Figure 10 of Max68 displays data of |ω| close to the centre versus Ro T obtained with a
towed sphere, for 4000 < T < 16 000. The figure provides the following conclusions. (1)
As expected, ωu(0) < 0 while ωl(0) > 0. (2) The value |ωu(0)| is slightly smaller than
ωl(0). This observation is surprising, because it contradicts the prediction of the theory
and is in contrast with the more detailed measurements of K23. (To understand this effect,
the extension of the quasi-geostrophic analysis for finite Ro must be used. Qualitatively, as
suggested by figure 1, the advection terms compress εu and enlarge εl, therefore |ωu|/ωl >
1 is expected.) (3) The typical value of ω(0) decreases from 0.45 to 0.35 as Ro T increases
from 7 to 28. The interpretation of this variation is problematic because apparently both
Ro and T were varied between the points (no details are provided). Max68 remarks that
there was big scatter in these data.

Figure 7 of K23 provides more detailed ω(r) information for T = 2890 and Ro =
0.0015 (approximately). We consider the measurements for a sphere in mid-position (the
points with open circle and full diamond in that figure). The digitized and rescaled data
of ω(r) are plotted in figure 2, together with the theoretical predictions (geostrophic,
quasi-geostrophic and corrected quasi-geostrophic).

We note that a quantitative comparison of ω data between Max68 and K23 is not
possible because of significant incompatibly of T and r position of the reported points. The
agreement concerning the signs of ωl and ωu is a trivial confirmation of the Ekman-layer
control of the flow. However, K23 report |ωu| > ωl|, in agreement with the theory (in
contrast with Max68). On the other hand, we note that the difference between ωl and |ωu|
reported by K23 is much larger than in Max68. We have no theoretical explanation for
this observation. Such a significant asymmetry is expected to produce a torque and thus
rotation of the sphere; but figure 4 of K23 indicates no such rotation for a sphere in middle
position. We speculate that the ωl of the K23 data was contaminated by some instability or
measurement problem. We conjecture that the data for ωu are correct, and, given the very
small Ro = 0.0015 of the experiment, a repeated experiment will find a close match in the
lower core.
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Figure 2. Plots of |ω| versus r for T = 2890. The lines with symbols are data for the upper and lower cores
from K23 figure 7. Also shown are the theoretical results: geostrophic (dotted line), quasi-geostrophic (solid
line), and corrected quasi-geostrophic (dash-dotted line).

4.2.1. Semi-empirical corrections of ω and D
The ω(r) data of K23 throw some light on the theory. Figure 2 indicates a significant
discrepancy between the predicted and measured ω(r) about the cylinder r = 1. The
theory uses the boundary condition ω(r = 1) = 0. The data indicate that this condition
is fulfilled at r ≈ 1.3. We note that a similar shift of the ω = 0 point has been detected
theoretically for a disk; see figure 5 of Minkov et al. (2000). We attribute this shift of the
ω = 0 condition to the presence of a thick 1/3 Stewartson layer: here, ε1/3 = 0.15. The
exact mechanism that connects the Ekman layers to this 1/3 layer is obscure presently. The
theoretical analysis of this flow is expected to be complicated and the results impractical,
because small powers of E = (1/T) are involved, and an asymptotic separation of terms
can be attained only for extremely large values of T (say 1012). For progress, we adopt a
semi-empirical approach.

Figure 2 suggests that the quasi-geostrophic |ω(r)| decreases too sharply to 0 at r = 1.
A more realistic profile is obtained by a shift of the ω = 0 point to r = 1 +Δ, where
Δ = c(2H/T)1/3, and c is a coefficient of the order of 1. (This 1/3 layer is on the outer
side of the sphere, hence the relevant dimensionless height is 2H, and the thickness is
21/3ε1/3.) Since the shift is due to the Stewartson layer, it should not affect the centre
domain. We postulate the corrected profile as

ωc(r) =
{
ωqg(r = 0) (0 ≤ r ≤ Δ),

ωqg(r −Δ) (Δ < r ≤ 1 +Δ),
(4.1)

where ωqg(r) is the quasi-geostrophic result defined in § 3. Numerical tests indicate
that c = 1.2 is a good choice for the range of parameters considered in this paper. The
corrected |ω(r)| is shown in figure 2. The agreement with the data for the upper core is
improved significantly, but no reliable conclusions can be drawn from one value of T . The
importance of this correction is that it suggest a significant contribution to the drag force,
which can be tested later for the points of tables 1 and 2.
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ip T Ro × 100 W/W0 D/D0 Ro T1/2 ε ε1/3 ψ × 10−6 cD × 10−3 x3 y3 rem

1 2500 4.577 2.44 0.41 2.29 0.32 0.16 5.9 0.4 8.43 0.34 *
2 2500 4.171 2.28 0.44 2.09 0.32 0.16 5.7 0.4 7.68 0.36 *
3 2500 3.758 2.08 0.48 1.88 0.32 0.16 5.6 0.5 6.92 0.39 *
4 4300 1.560 1.80 0.55 1.02 0.28 0.13 10.5 1.9 4.13 0.45 *
5 4300 1.489 1.63 0.61 0.98 0.28 0.13 11.1 2.2 3.94 0.50 *
6 4300 0.671 1.48 0.68 0.44 0.28 0.13 5.5 5.4 1.77 0.55 *
7 4300 0.633 1.43 0.70 0.42 0.28 0.13 5.4 5.9 1.67 0.57 *
8 4300 0.591 1.35 0.74 0.39 0.28 0.13 5.3 6.7 1.56 0.61
9 6000 0.557 1.36 0.73 0.43 0.26 0.12 11.4 8.4 1.84 0.60

10 6000 0.251 1.21 0.83 0.19 0.26 0.12 5.8 20.9 0.83 0.68
11 6000 0.155 1.17 0.85 0.12 0.26 0.12 3.7 35.0 0.51 0.70
12 8100 2.841 2.40 0.42 2.56 0.24 0.11 69.8 1.1 11.46 0.34 *
13 8100 0.905 1.58 0.63 0.81 0.24 0.11 33.7 5.1 3.65 0.52 *
14 8100 0.592 1.41 0.71 0.53 0.24 0.11 24.8 8.8 2.39 0.58 *
15 8100 0.183 1.07 0.93 0.17 0.24 0.11 10.1 37.4 0.74 0.76 *
16 11 000 0.272 1.29 0.78 0.29 0.22 0.10 26.8 24.6 1.35 0.64
17 11 000 0.095 1.21 0.82 0.10 0.22 0.10 10.0 74.5 0.47 0.68
18 11 000 0.076 1.22 0.82 0.08 0.22 0.10 7.9 93.6 0.37 0.67
19 11 000 0.077 1.08 0.92 0.08 0.22 0.10 9.0 102.7 0.38 0.76 *
20 15 000 0.380 1.51 0.66 0.47 0.21 0.09 69.1 17.4 2.31 0.54 *
21 15 000 0.136 1.23 0.81 0.17 0.21 0.09 30.4 60.0 0.83 0.67
22 15 000 0.041 1.16 0.86 0.05 0.21 0.09 9.8 208.7 0.25 0.71
23 15 000 0.036 1.18 0.85 0.04 0.21 0.09 8.3 239.4 0.22 0.70
24 18 800 0.179 1.28 0.78 0.25 0.20 0.08 67.7 48.8 1.27 0.64
25 18 800 0.078 1.21 0.83 0.11 0.20 0.08 31.3 119.2 0.55 0.68
26 26 000 0.071 1.24 0.81 0.11 0.18 0.07 62.6 149.9 0.62 0.66
27 26 000 0.033 1.23 0.81 0.05 0.18 0.07 29.0 326.3 0.29 0.66
28 26 000 0.013 1.19 0.84 0.02 0.18 0.07 12.4 824.2 0.12 0.69
29 26 000 0.011 1.19 0.84 0.02 0.18 0.07 10.0 1012.6 0.10 0.69

Table 1. Max68 data, where ε and ε1/3 are calculated with H = 10.5. A ∗ in the last column indicates that
the point is discarded because of too large Ro T1/2 or some big scatter from neighbouring points. Here, x3 =
Ro T2/3, y3 = cD Ro T−1/2 are the coordinates in figure 3 of Max68.

Recall the connection (3.9) between the drag and the angular velocity. The integral is
based on the balance between the pressure and Coriolis over/below the sphere. The shift of
the boundary condition ω = 0 to a larger radius does not affect this balance. Consequently,
the corrected ωc(r) (4.1) yields the corrected drag

Dc = 4πT3/2
∫ 1

0
|ωc(r)| r3 dr

= 4πT3/2

[
1
4
Δ4ωqg(0)+ (1 +Δ)3

∫ 1−Δ

0
|ωqg(r)| r3 dr

]
, (4.2)

where Δ = 1.2(2H/T)1/3. The implementation of this correction is straightforward. The
accuracy and insights of this correction will be discussed later.
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jp T Ro × 100 W/W0 D/D0 Ro T1/2 ε ε1/3 ψ × 10−6 cD × 10−3 x3 y3 rem

1 528 2.511 1.45 0.69 0.58 0.45 0.26 0.034 0.7 1.64 0.57 *
2 634 1.614 1.47 0.68 0.41 0.43 0.25 0.034 1.3 1.19 0.56 *
3 740 1.135 1.52 0.66 0.31 0.42 0.23 0.034 2.0 0.93 0.54
4 846 0.799 1.49 0.67 0.23 0.40 0.22 0.034 3.0 0.71 0.55
5 951 0.617 1.55 0.65 0.19 0.39 0.21 0.034 4.1 0.60 0.53
6 1057 0.466 1.52 0.66 0.15 0.38 0.21 0.034 5.7 0.48 0.54
7 1163 0.365 1.51 0.66 0.12 0.37 0.20 0.034 7.7 0.40 0.54
8 1268 0.288 1.48 0.67 0.10 0.36 0.19 0.034 10.1 0.34 0.55
9 1083 1.975 1.51 0.66 0.65 0.38 0.21 0.16 1.4 2.08 0.54 *

10 1155 1.648 1.48 0.67 0.56 0.37 0.20 0.16 1.7 1.81 0.55 *
11 1203 1.481 1.48 0.68 0.51 0.37 0.20 0.16 1.9 1.68 0.55 *
12 1275 1.266 1.46 0.69 0.45 0.36 0.19 0.16 2.3 1.49 0.56 *
13 1323 1.173 1.48 0.67 0.43 0.36 0.19 0.16 2.5 1.41 0.55 *
14 1396 1.015 1.47 0.68 0.38 0.35 0.19 0.16 3.0 1.27 0.56
15 1444 0.923 1.45 0.69 0.35 0.35 0.19 0.16 3.4 1.18 0.56
16 1564 0.767 1.47 0.68 0.30 0.34 0.18 0.16 4.2 1.03 0.56
17 1684 0.627 1.45 0.69 0.26 0.34 0.18 0.16 5.4 0.89 0.57
18 1805 0.539 1.48 0.68 0.23 0.33 0.17 0.16 6.5 0.80 0.55
19 1925 0.443 1.43 0.70 0.19 0.33 0.17 0.16 8.1 0.69 0.57
20 2045 0.387 1.45 0.69 0.18 0.32 0.17 0.16 9.6 0.62 0.56
21 2166 0.336 1.46 0.69 0.16 0.32 0.16 0.16 11.3 0.56 0.56
22 2286 0.286 1.42 0.71 0.14 0.31 0.16 0.16 13.7 0.50 0.58
23 2406 0.251 1.42 0.71 0.12 0.31 0.16 0.16 16.0 0.45 0.58
24 2527 0.224 1.42 0.70 0.11 0.31 0.15 0.16 18.4 0.41 0.58
25 5655 0.284 1.24 0.81 0.21 0.25 0.12 1.7 21.7 0.90 0.66
26 5994 0.244 1.23 0.82 0.19 0.25 0.12 1.7 26.0 0.80 0.67
27 6220 0.216 1.19 0.84 0.17 0.24 0.11 1.7 29.9 0.73 0.69
28 6560 0.193 1.22 0.82 0.16 0.24 0.11 1.7 34.4 0.68 0.67
29 6786 0.176 1.21 0.83 0.14 0.24 0.11 1.7 38.4 0.63 0.68
30 7351 0.143 1.20 0.83 0.12 0.23 0.11 1.7 49.1 0.54 0.68
31 7917 0.120 1.21 0.83 0.11 0.23 0.11 1.7 60.8 0.48 0.68
32 8482 0.099 1.19 0.84 0.09 0.23 0.10 1.7 75.8 0.41 0.69
33 9048 0.085 1.19 0.84 0.08 0.22 0.10 1.7 92.2 0.37 0.69
34 9613 0.072 1.19 0.84 0.07 0.22 0.10 1.7 111.0 0.33 0.69
35 10 179 0.062 1.17 0.85 0.06 0.22 0.10 1.7 133.6 0.29 0.70
36 10 744 0.054 1.18 0.85 0.06 0.21 0.10 1.7 156.0 0.26 0.70
37 11 310 0.048 1.17 0.85 0.05 0.21 0.09 1.7 183.2 0.24 0.70
38 11 875 0.043 1.20 0.83 0.05 0.21 0.09 1.7 206.9 0.22 0.68

Table 2. Data points of K23. Set I corresponds to jp = 1–9, set II corresponds to jp = 10–24, and the rest of
the points are for set III. Here, x3, y3 are defined as in the caption of table 1.

4.3. The drag
We recall (2.6)–(2.8a–c). We realize that the experiments of Max68 and K23 provide
(upon some simple reprocessing) about 70 data points of D/D0 for various combinations
of large T and small Ro. However, the strategies of variation of these parameters were
different between these studies. The full methodology of Max68 has not been reported in
the paper, and the original data are no longer available, so we must fill the gaps by some
plausible assumptions. The first assumption is that all experiments of Max68 share the
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same ν (of water; this hypothesis cannot be verified). Max68 used a cylinder of height
40 cm and outer radius rO = 14 cm.

Max68 presents clusters of D/D0 for a fixed T and various Ro. We infer that the same
size of sphere and the sameΩ were used for a certain T; the spheres differed in g′, and this
produced various buoyant forces B, and hence various W and various Ro. This explains the
clusters. However, a difficulty arises because Max68 has spheres of two sizes, a = 1.905
and 3.885 cm. Therefore, the unspecified parameter H was either 10.5 or 5.2. We infer that
the first value is relevant to the drag data. The justification is that the agreement with the
data of K23 (which have a known H = 9.4) suggests that the value of H in the Max68
drag measurements was close to 9.4. For use in this paper, the point data of Max68 were
digitized from figures 2 and 3 of that paper; see table 1.

In the experiments of K23, only one sphere was used, of radius a = 1.20 cm and
density ρp = 0.90 g cm−3. (K23 uses the notation ρf and ρS for the densities of the fluid
and sphere.) The embedding cylinder was of height 22.5 cm and radius rO = 2.65 cm.
Therefore only one value of the parameter H = 9.4 applies to all the experiments. K23 has
three sets of fluid density ρ and kinematic viscosity ν, as follows (in cgs units):

I ρ = 1.170, ν = 0.107;
II ρ = 1.127, ν = 0.047;
III ρ = 1.000, ν = 0.010.

⎫⎪⎬
⎪⎭ (4.3)

Each set has a fixed g′ (and hence a fixed buoyant force B). For each set, the variation
of Ω ∈ (35, 90) s−1 produced various T (determined by the definition (2.2a,b)) and Ro
(calculated from the measured W). This methodology does not produce clusters of data
points with the same T (as in Max68). Since T ∝ 1/ν, the typical T increases from set I
to II, and finally III. The point data used in our work were obtained from the first author
of K23 in private communication as (W,Ω) for the sets I–III (with the correction that in
set II, the values are ρ = 1.127, ν = 0.047, cgs units, not as printed in the journal); see
table 2.

Max68 and K23 released the buoyant particle near the bottom and recorded the upward
motion, from which the value of W was calculated. The initiations of the motion were
different: Max68 released the particle from a cage, while K23 changed rapidly the
orientation of the spinning cylinder from horizontal to vertical. In our opinion, this
difference has negligible influence on the subsequent propagation. There is, however, an
important point that apparently has been missed by both papers. The theory assumes that
the flow field is quasi-steady. This implies that the angular velocity of the cores between
the Ekman layers has been spun-up (at release, the fluid is in solid-body rotation ω = 0).
The estimate (verified by Ungarish 1997) of the spin-up time is 2HT1/2/Ω , which must be
smaller than Ha/W. The corresponding restriction is Ro T1/2 � 1. It turns out that not all
the data points satisfy this condition, and this may create considerable confusion (we will
discard points with Ro T1/2 > 0.4).

Another important difference is the ratio rO/a, which in Max68 was 7.3 (small particle)
and 3.6 (large particle), while in K23 it was only 2.2. Thus, as explained later, the influence
of the outer wall can be safely discarded for Max68, but could play some role in the sets I
and II of K23 (which display thick 1/4 layers).

Consider the data points for the drag analysis listed in tables 1 and 2.
Inspection of the tables reveals that in general, Max68 used larger values ofψ = g′a3/ν2

than K23. We attribute this to the fact that K23 used more viscous fluids (larger ν) for sets
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Figure 3. The data points D/D0 versus T: squares for Max68, circles for K23. (a) All the points of tables 1
and 2. (b) The data points after excluding those marked by asterisks in the tables, and hence satisfying
Ro T1/2 < 0.4.

I and II. This parameter was large in all cases, hence this difference between Max68 and
K23 is insignificant.

The main free parameter in these tables is T . The T overlap between the tables is the
interval 2500–11 000; since the data of Max68 for T = 2500 violated the Ro T1/2 < 0.4
restriction, the practical overlap is only from T1 = 4300 to T2 = 11 000. The large interval
(6700) is an illusion. The theory indicates that D/D0 depends on ε (the thickness of the
Stewartson 1/4 layer), i.e. the relative effective range variation is (T2/T1)

1/4 − 1 = 0.26.
In other words, agreement of D/D0 between Max68 and K23 will be encouraging, but
cannot serve as a criterion for assessing the accuracy of the combined data. (We reiterate
that the value of H was not the same, and this is also a source for disagreement between
Max68 and K23.)

K23 made a brief attempt at data comparison with Max68, using a plot of log W (similar
to − log D) versus T; see figure 8 of K23. The scatter and differences are obscured by the
log-log plot, and were not discussed. The suggested reconciliation between theory and
experiment (of both Max68 and K23) was based on a curve-fit formula for W (scaled with
4g′a2/ν) as a function of T . More details on this issue are presented in Appendix A.

The only comparison with theory in the papers of Max68 and K23 concerns the
geostrophic prediction (2.6). We attempt a more detailed analysis. In particular, we argue
that the dependent variable D/D0 (or W/W0) provides a much more clearer and reliable
accuracy test than W or D (in some scaled form) used in the previous studies.

Figure 3 displays the available D/D0 data versus T , where squares and circles
correspond to Max68 and K23. Figure 3(a) shows all the data points of tables 1 and 2. We
observe (1) a big scatter in the data of Max68, and (2) a change of slope, from negative
to positive, for the data of K23 for T < 800. (Points jp = 1, 2 of K23 (table 2) have large
ε and were prone to the influence of the outer wall of the cylinder. This may explain
the unexpected slope.) An inspection of these (apparently problematic) points reveals that
most of them belong to non-small values of Ro T1/2, i.e. violate the quasi-steady-state
assumption. We eliminate the problematic points (marked with asterisks in the tables)
from our analysis. The remaining data points are displayed in figure 3(b). The subsequent
analysis of D/D0 uses only these points, which satisfy the restriction Ro T1/2 < 0.4.
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1.0
Set III Geostrophic

Set II
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Quasi-geostrophic corrected
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0.4

Quasi-geostrophic

D/D0

ε

Figure 4. Drag as a function of ε; data of Max68 (squares) and K23 (circles). Also shown are the trend line,
the quasi-geostrophic prediction and the corrected quasi-geostrophic prediction. The predictions were obtained
by finite-difference solution of (3.8), (3.9) and (4.2) for H = 10.

The quasi-geostrophic theory predicts that D/D0 is a function of ε = (H/2)1/2T−1/4

and H. Since H ≈ 10 for all the data, we expect that D/D0 collapses on a line of ε. This
has motivated the plot in figure 4. We see that the data of Max68 and K23 collapse fairly
well on the trend line 1 − 0.9ε. There is some scatter in both directions, which can be
attributed to measurement errors. The scatter is smaller for the data of K23, which reflects
the significant progress of measurement and recording methods. (It is possible that the
novel techniques of particle release used by K23 have also contributed in this direction.)
The figure confirms that there is only a small overlap between the data of Max68 and K23:
sets I and II of K23 have significantly larger ε than the points of Max68. (We note that
the assessment of the theory could benefit greatly from smaller values of ε. Therefore,
additional experiments are still needed.)

The predictions of the geostrophic and quasi-geostrophic theories are also shown
in figure 4. The data correspond to ε > 0.2. The more than 20 % discrepancy with
the geostrophic approximation, derived for ε = 0, could be anticipated. However, the
weakness of the geostrophic theory is also on the qualitative aspect: it misses completely
the effect of the drag decrease when ε increases. The quasi-geostrophic line shows clearly
this qualitative effect. However, the quasi-geostrophic drag reduction with increasing ε is
exaggerated as compared to the data. We recall that the quasi-geostrophic approximation
assumes ε1/3 = 0, or rather ε1/3/ε � 1, i.e. a very thin 1/3 Stewartson layer. An
inspection of the data in the tables reveals that this requirement is fulfilled neither by
Max68 nor by K23. Since the 1/3 and 1/4 layers are inseparable, we infer that low
accuracy of the quasi-geostrophic prediction for the experimental data should be attributed
to the presence of a thick 1/3 layer.

This hypothesis is consistent with the measured profile of ω(r) discussed in § 4.2.1,
where a semi-empirical correction to D/D0 has been suggested. The effect of the
semi-empirical correction (4.2) is shown in figure 4. Evidently, the line for the corrected
drag Dc/D0 is much closer to the data than the lines of geostrophic and quasi-geostrophic
prediction. Since now the agreement is over a range of T , we can infer that this correction
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The drag on rising sphere in short rotating cylinder of fluid

captures correctly the physical mechanism that was missing in the original theories. The
geostrophic theory discards the influence of the Stewartson layers, and hence predicts
a constant D = D0 for all T . The quasi-geostrophic theory takes into account the 1/4
Stewartson layer, and hence predicts correctly that D/D0 decreases with ε ∝ T−1/4, but
overpredicts the rate of decrease (as compared with the available data). The present
investigation suggests that the 1/3 Stewartson layer reduces the influence of the 1/4 layers.
The details of this reduction are complicated, but there is evidence that the net effect
is a shift of the ω = 0 condition to a larger radius. This shift increases significantly the
quasi-geostrophic drag.

The agreement of the corrected drag Dc with the data is encouraging, but no clear-cut
conclusion can be drawn yet. We must keep in mind that the tests were performed for only
one value of H, while the correction contains an adjustable constant, c. The robustness of
such a correction needs additional verification.

4.3.1. The effect of Ro
Max68 has suggested that the difference between theory and data is due to inertial effects,
i.e. the non-sufficiently small Ro. Here, we reconsider this interpretation. Historically, Max
68 was of course unaware of the quasi-geostrophic theory (Ungarish 1996) that attributes
the drag discrepancy to the Stewartson layers (mostly). Max68 detected correctly that some
inertial terms become important in some momentum balances when Ro is not very small,
and naturally attributed to these terms the discrepancy with the linear (Ro = 0) theory.
However, the geostrophic theory is just a branch of the linear theory for ε → 0. The flows
of Max68 display non-small ε. We argue that the drag (which is an integral result) can be
affected more by the finite ε than by the finite Ro. Indeed, a careful inspection of the inertial
terms reveals that in steady state, they make opposing contributions to the pressure in the
upper and lower cores; therefore, the net contribution to the drag cancels out in favour of
the linear drag result. A significant inertial influence on the drag reduction (compared to
D0) is during spin-up, expected for Ro T1/2 > 0.5, because both the upper and lower cores
are close to the initial condition of zero drag. Max68 included such points in the analysis.
K23 did not extend the discussion of the inertial terms. We have deliberately excluded
from the analysis data points corresponding to Ro T1/2 > 0.4.

An inspection of the inertial terms discarded in the geostrophic and quasi-geostrophic
linear theories indicates that the relative local contributions are of the orders of magnitude
Ro, Ro T1/2 and Ro T2/3. The amplification of Ro appears because initial accelerations and
local flow-field gradients enhance the effect of the advection terms. We can now check the
influence of these parameters on the drag data.

Figure 5 displays the data points satisfying Ro T1/2 < 0.4 as a function of Ro, Ro T1/2

and Ro T3/2. It is evident that there is no tendency of D/D0 to approach 1 as Ro → 0.
While the data of Max68 show a slight decrease of D/D0 as Ro increases, the data sets
of K23 show a remarkable invariance with Ro. Note that the lines for sets I and II of K23
are clearly below the lines of set III and Max68 for all values of Ro, Ro T1/2 and Ro T2/3.
The points of the lower lines have larger ε (about 0.35) than these in the upper line (about
0.2); see figure 4. The change of D/D0 between the various sets is certainly not a result of
different values of Ro.

Note that figure 5(c) for (D/D0) versus Ro T2/3 is closely related to figure 3 of Max68.
With the aid of (2.8a–c), we find that the vertical axis of this figure is 0.82(D/D0), while
the horizontal axis is also Ro T2/3. We argue, however, that the representation in the
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Figure 5. Drag data as a function of (a) Ro, (b) Ro T1/2 and (c) Ro T2/3. Data of Max68 (squares) and K23
(circles).

figure of Max68 is confusing because: (1) it uses data of accelerating (during the spin-up
process) flows, which creates a bias toward small drag at larger Ro; (2) the horizontal
axis is logarithmic, which precludes extrapolation to Ro = 0. Our figure 5(c) is more
insightful, and, moreover, it has the benefit of the additional data of K23. We can derive,
with confidence, a conclusion concerning the effect of Ro.

The conclusion from figure 5 is that Ro had a negligible effect on D/D0 for the data
used in our analysis, i.e. for Ro T1/2 < 0.4. The effect of ε shown in figure 4 is sharper,
and supported by a clear-cut theory.

5. Concluding remarks

We revisited the problem of the flow field and drag force generated by a sphere slowly
rising along the vertical axis of a short rotating cylinder. We used the experimental data of
Max68 and K23, and the approximate solutions of the geostrophic and quasi-geostrophic
theories. The data of K23 are a valuable addition to the classical measurements of Max68,
but there are still various gaps concerning the tested parameter range, and also some
problematic scatter. Overall, there is almost no overlap of the data with the range of
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applicability of the available theories. However, some useful insights and progress in the
quantitative modelling of drag force and the angular velocity in the cores were derived.

Our work is novel in several aspects. First, we use the combined data of two independent
parties that differ in time, methodology and apparatus. This increases the parameter range
and improves the overall reliability. Second, we reprocess the data ‘from scratch’ (as much
as possible) in a form that is more straightforward for insights and comparisons. Third,
we make comparisons with a wider range of theoretical predictions, significantly beyond
the geostrophic solution. In particular, we emphasize the strong connection between the
angular velocity in the cores and the drag force.

In spite of the difficulties posed by the available data, the major qualitative insights of
the theory (dominance of the Ekman and Stewartson layers, dependency of the drag on T
and on ε) have been confirmed. In our opinion, the reason for the drag discrepancy between
theory and data is now understood, and a simple practical remedy has been proposed and
tested. A quick estimate of the drag by a curve-fit formula can also be used, under the
restrictions specified in Appendix A.

We pointed out that the major gap between theory and experiment is the presence
of relatively thick 1/3 Stewartson layers in the experimental flow fields. To close the
theoretical deficiency, we developed a semi-empirical correction of the quasi-geostrophic
results. This works well with the available data.

We dismissed the suggestion of Max68 that the D/D0 discrepancy is due to inertial
effects (not sufficiently small Ro) in the experiments. We demonstrated that the
contribution of the inertial terms to the drag force is negligible for Ro T1/2 < 0.4.

We assumed that the sphere is at middle position, Hu = Hl = H. In the more general
situation, the following major changes are expected to occur: The thicknesses of the
1/4 layers in the upper and lower sides differ, εu,l ∝ H1/2

u,l . Consequently, ωl /= |ωu|.
To accommodate the non-symmetric shear, the sphere must rotate and an external 1/4
layer appears. The problem can be solved with the quasi-geostrophic formulation (see
appendix D of Ungarish 1996), but the details are cumbersome and data for comparison are
scarce; this must be left for future work. We expect an increase of the drag when the sphere
is at a non-middle position (close to one of the boundaries). However, we can estimate that
the drag is changed only slightly (say at most 2 %) for�H/H = ±10 % variation from the
midplane position. Consider the drag integral

D = 2πT3/2
∫ 1

0
(|ωu(r)| + |ωl(r)|)r3 dr × (Wνρa). (5.1)

The values of εl and εu of the 1/4 layers change like 0.5�H/H in opposite directions,
which is expected to produce opposite increase/decrease effects in the |ωl| and |ωu| terms
as compared to the symmetric |ω|. This variation of |ω| in the lower and upper cores is
expected to cause a cancellation of the asymmetry changes in the drag integral (5.1). The
cancellation is not perfect because of the curvature, which explains a (small) increase of D
due to |�H| in more accurate calculations, and in practice. This estimate is in agreement
with the observations of K23. The conclusion is that the midplane drag value D/D0 is a
robust approximation for a significant distance of motion; some increase of the drag occurs
before and after the particle attains this position.

To close the gaps of reliable knowledge, further research is needed. Some theoretical
progress is possible, but this will be quite inconclusive in view of the status of the available
data for comparisons. Experiments (laboratory and simulations) are strictly necessary for
progress. In particular, it is interesting to (a) investigate the effect of H (in the range 2–10,
say) and of thin 1/3 Stewartson layer; (b) verify the prediction that the flow in the cores
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is z-independent; (c) visualize the 1/3 layers. While point (a) is suitable for laboratory
work, points (b) and (c) seem more amenable to numerical simulations of the type used
successfully by Aurégan et al. (2023) for the long-container counterpart problem. We are
confident that the present paper will provide useful guidelines for this further work.

The investigation can be extended in several directions, such as non-symmetric position
of the sphere, particles of non-spherical geometry, and a container with open upper
surface. The quasi-geostrophic theory is amenable to such conditions, but the available
experimental support is scarce. K23 demonstrated the ability of the new measurement and
visualization techniques to cope with non-symmetric cores in the laboratory, and we hope
that more work in this direction will be done in the future.
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clarification.
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Appendix A. Curve-fit formulas

An attempt to combine the data of Max68 and K23 is presented formally in figure 8 of
K23. The combination is performed by a single curve-fit formula for all the points.

Figure 8 of K23 shows the dimensionless V versus τ (denoted ω in that paper, but we
will use τ to avoid confusion with our ω) defined as

V = W/U, U = (4g′a2)/ν, τ = 4T. (A1a–c)

Using (2.6), we obtain the geostrophic V0 = 6.51τ−1.5.
The conversion between the dimensionless V and W/W0 is straightforward: V =

(W/W0)6.51τ−1.5.
K23 plotted the values of V corresponding to the points of tables 1 and 2 versus τ on

log-log coordinates for τ ∈ (2000, 105), and derived the curve-fit formula

V = 1.5τ−1.56, (A2)

which is seen in figure 8 of K23 to be a better approximation to the data than V0 =
6.51τ−1.5.

We argue that the use of (A2) as a correction to the geostrophic V0 may be misleading.
The form V = C1τ

C2 lacks theoretical justification. It is of the same form as V0, with two
adjusted constants, and there is no reason to expect that this fit remains valid for a different
range of τ and for a different H.

Let us employ (A2) for the convenient form

D
D0

= W0

W
= V0

V
= 0.472T0.06. (A3)

The result (A3) lacks theoretical justification. Neither the power 0.06 nor the coefficient
0.427 follows from physical arguments. For T → ∞, we expect convergence of D/D0 to
1, but (A3) diverges to ∞. For these reasons, we think that the use of the curve-fit (A2) or
(A3) should be avoided.
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Figure 6. The curve fits of K23 (solid line) and the present (A4) for D/D0 versus T , and the data points:
squares for Max68, circles for K23.

If a quick estimate is required, then we suggest the use of the trend line of figure 4 as
follows:

D/D0 = 1 − 0.9ε = 1 − 0.9(H/2)1/2T−1/4 = 1 − 2.0T−1/4 (A4)

(for the available data, H ≈ 10). Evidently, D/D0 converges to 1 for very large T , and the
power of T is provided by the Stewartson layer . Therefore, (A4) is more reliable than
(A3), but it is still just a curve fit. The adjustable constant is the coefficient 0.9 of ε.
Figure 4 suggests that this coefficient will increase as H decreases, hence this curve fit is
not expected to be valid in general.

Figure 6 shows the two curve fits and the data. We emphasize that these curve fits
were obtained for systems with H ≈ 10, and the use for a different H will be speculative.
Quantitatively, both formulas provide a fair approximation to the data in the tested T range.
For larger T , the use of (A3) is unreliable, because it does not converge to the physical
asymptote D/D0 = 1.

The fair agreement of the curve-fit formulas (A3) and (A4) with the data D/D0 over a
large range of T has an important indirect message: the drag discrepancy between the data
and the geostrophic theory is a function of T , not of Ro. This strengthens our conclusion
that the inertial effects are unimportant when Ro T1/2 < 0.4.

Appendix B. The effect of H

The quasi-geostrophic results presented in the paper are for H = 10. Figure 7 shows
the behaviour of D/D0 for various H, as T varies from 103 to 105. Again, these are
finite-difference solutions of (3.8) and (3.9). For a fixed T , the value of D/D0 decreases
when H increases, because the thickness ε of the 1/4 layer increases like H1/2. For a given
H, D/D0 increases with T because ε ∝ T−1/4.

In figure 7(b), we see that the values of D/D0 versus ε collapse on the same line for
H ≥ 5. When H is large, the gap between the sphere and the horizontal plates is not much
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Figure 7. Quasi-geostrophic D/D0 results for various H: (a) as a function of T (log scale), and (b) as a
function of ε.

affected by the presence of the sphere. The term f (r)/H in (3.8) becomes insignificant,
and the solution of (3.8) and (3.9), for a given ε, is independent of H.

The trends of the drag D/D0 predicted by figure 7 are expected to be relevant for realistic
systems, but for accuracy, some corrections for the 1/3 layer are necessary, and since the
thickness of this layer is ∼ H1/3, this effect will be more important for larger H. This topic
is left for future work, and will need experimental and/or simulation data that are presently
unavailable.
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