
LMS J. Comput. Math. 18 (1) (2015) 266–307 C© 2015 Author

doi:10.1112/S1461157015000054

Champ: a Cherednik algebra Magma package

U. Thiel

Abstract

We present a computer algebra package based on Magma for performing computations
in rational Cherednik algebras with arbitrary parameters and in Verma modules for restricted
rational Cherednik algebras. Part of this package is a new general Las Vegas algorithm for
computing the head and the constituents of a module with simple head in characteristic zero,
which we develop here theoretically. This algorithm is very successful when applied to Verma
modules for restricted rational Cherednik algebras and it allows us to answer several questions
posed by Gordon in some specific cases. We can determine the decomposition matrices of the
Verma modules, the graded G-module structure of the simple modules, and the Calogero–Moser
families of the generic restricted rational Cherednik algebra for around half of the exceptional
complex reflection groups. In this way we can also confirm Martino’s conjecture for several
exceptional complex reflection groups.

Supplementary materials are available with this article.

Contents

1. Computing in rational Cherednik algebras 268
2. Restricted rational Cherednik algebras 275
3. Computations with Verma modules 279
4. Finite field specializations 284
5. Reconstructing submodules from abstract structures 288
6. A Las Vegas algorithm for computing heads and constituents . 293
7. Summary of the results 295
8. Champ 297
9. Experimental aspects 304
References 306

Introduction

Based on the computer algebra system Magma [6] we developed a package, called Champ,
which provides an environment for performing computations in rational Cherednik algebras
as introduced by Etingof and Ginzburg [9] and in Verma modules for restricted rational
Cherednik algebras as introduced by Gordon [17]. It is freely available at http://thielul.github.
io/CHAMP/ and consists of around 16 000 lines of code at the moment. It is designed to be
highly flexible so that it is possible to work with arbitrary parameters (including indeterminates
of a rational function field and thus covering the generic setting), with arbitrary reflection
groups over arbitrary fields (including fields of positive characteristic as long as all reflections
are diagonalizable), and with arbitrary realizations of the irreducible representations of the
reflection groups (see § 8). The development of this package was motivated by questions posed

Received 8 July 2014; revised 12 December 2014.

2010 Mathematics Subject Classification 16Z05, 16G10, 16S38 (primary), 20B40, 20C40, 20F55 (secondary).

The author was partially supported by the DFG Schwerpunktprogramm Darstellungstheorie 1388.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://journals.cambridge.org/sup_S1461157015000054sup001
http://thielul.github.io/CHAMP/
http://thielul.github.io/CHAMP/
https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 267

by Gordon [17, § 7] (see § 2.4) and by Martino’s conjecture [25] (see § 2.6), which relates
Calogero–Moser families with Rouquier families coming from Hecke algebras (see [7, 24],
and [8]). For exceptional complex reflection groups almost nothing was known about this. Using
the theoretical methods developed here and their implementation in Champ, we can make
significant progress (see § 7 for a summary and the online supplementary material available
from the publisher’s website for all results).

In § 1, we introduce rational Cherednik algebras over general base rings and deduce the
Poincaré–Birkhoff–Witt (PBW) theorem in this generality by using properties of rewrite
systems. We discuss an efficient algorithm for performing computations in these algebras, that
is, for expressing products in the PBW basis. This has been implemented in Champ and allows
us for example to explicitly compute Poisson brackets, which have a variety of applications
(see [5]). In § 2, we discuss an efficient algorithm for computing Verma modules for restricted
rational Cherednik algebras. This allows us to construct and handle Verma modules even of
dimension around 3000 in Champ. As there is so far no algorithm capable of decomposing such
high-dimensional modules over a field of characteristic zero, it is one of the central advances
in this article that we theoretically develop a very general strategy for doing this (see §§ 4–6).
We say ‘strategy’ here, as our theory yields a so-called Las Vegas algorithm, meaning that
it does not have to be successful but if it is we get the correct result. We have implemented
this algorithm, with a lot of technical extensions, in Champ. Our idea is to use finite field
specializations (which are compositions of decomposition morphisms in the sense of Geck and
Rouquier [15]) to transport the modules to an algebra over a finite field (see § 4), then apply
the MeatAxe [20], and use a method for reconstructing the head of the original module:
the latter is the essential part of our approach (see § 5) and culminates in an algorithm we
call ModFinder. To apply this algorithm to Verma modules for restricted rational Cherednik
algebras we first have to ensure the existence of ‘integral structures’ of these algebras. This is an
interesting theoretical problem which has not been considered before. In § 4, we develop some
theory around this problem and present an algorithmic partial (but for us sufficient) solution.
Despite the uncertainty in the success of this algorithm, it turned out to be extremely efficient
and successful for Verma modules. Namely, we are able to compute for all the exceptional
complex reflection groups

G4,G5,G6,G7,G8,G9,G10,G12,G13,G14,G15,G16,G20,G22,G23 = H3,G24

the decomposition matrices of the Verma modules, the structure of the simple modules
as graded G-modules, and the Calogero–Moser families of the associated generic restricted
rational Cherednik algebra, and thus the answers to Gordon’s questions in these cases†. Nothing
was known about this before. Moreover, we confirm in this way the generic part of Martino’s
conjecture for these groups. As Champ was designed to handle arbitrary parameters (including
generic points of subschemes), we are also able to do the same for all parameters for the
groups G4, G12, G13, G20, G22, and G23 = H3, and confirm the complete form of Martino’s
conjecture in these cases. For the groups G4, G6, G8, G13, G14, and G20, we furthermore give
an explicit description of the ‘exceptional locus’, which could not be determined so far. It
coincides precisely with the union of Chlouveraki’s essential hyperplanes of cyclotomic Hecke
algebras [8], except for G8, where we surprisingly have one additional ‘exceptional’ hyperplane
(this was discovered before by Bonnafé using entirely different methods).

All results are listed explicitly in tabular form in the online supplementary material available
from the publisher’s website and are easily accessible from within Champ for future work (see
§ 8.5). In § 7 we summarize them along with some observations.

We hope that our package and our results will enable us to better understand problems about
rational Cherednik algebras, like the precise connection between Calogero–Moser families and

†The reader should check the web site http://thielul.github.io/CHAMP/ and [33] for further results obtained
after publication of this article.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

http://thielul.github.io/CHAMP/
https://doi.org/10.1112/S1461157015000054

268 u. thiel

Rouquier families, and the recent Calogero–Moser cell conjecture by Bonnafé and Rouquier [5].
We expect that our method for computing the heads and decomposition matrices of Verma
modules can be applied to many more examples outside of rational Cherednik algebras.

1. Computing in rational Cherednik algebras

We start by reviewing rational Cherednik algebras (see also [5, 9, 17], and [32]) in this section
and explain how they can be treated computationally. Instead of the complex numbers as base
rings, we consider a very general setup here to be able to treat generic parameters algebraically
and to introduce analogous problems with modular reflection groups. We argue that the PBW
theorem follows in this generality from the fact that there exists a terminating confluent
rewrite system for rational Cherednik algebras. As a by-product, this formalizes an algorithm
for computing in these algebras and proves its correctness.

1.1. Rational Cherednik algebras

Throughout, we fix a field K and a finite reflection group Γ := (G,V) over K. This means
that G is a non-trivial finite group, V is a finite-dimensional faithful KG-module, and G is
generated by the set RefΓ of elements s ∈ G which act as reflections on V , that is, those
elements whose fixed space Hs := Ker(idV −s) is of codimension one. We denote the action
of g ∈ G on v ∈ V by gv. For s ∈ RefΓ, we denote by α∨s a root of s, that is, a non-zero
element of Im(idV −s), and by αs we denote a coroot of s, that is, an element of V ∗ whose
kernel is equal to Hs. Both roots and coroots of reflections are unique up to scalars and our
constructions will not depend on their choice.

We assume that all reflections in G are diagonalizable. This is equivalent to 〈α∨s , αs〉 6= 0 for
all s ∈ RefΓ, where 〈· , ·〉 is the canonical pairing between V and V ∗. As all reflections in Γ
are of finite order, this is certainly satisfied if Γ is non-modular, that is, if the characteristic
of K is coprime to the order of G. In the modular case, the general orthogonal groups in their
natural representation in case K is of characteristic not equal to 2, the symmetric group Sn in
the representation attached to the partition (n−1, 1) in case K is of characteristic not equal to
2, and some modular reductions of exceptional complex reflection groups satisfy this property,
for example (see [32]).

In addition to Γ, we furthermore fix a commutative K-algebra R, an element t ∈ R, and a
map c : CΓ → R from the set CΓ of conjugacy classes of reflections of Γ to R. The rational
Cherednik algebra of Γ in (t, c) is defined as the quotient Ht,c of R〈V ⊕V ∗〉oRG by the ideal
It,c generated by the relations

[x, x′] = 0 for all x, x′ ∈ V ∗, (1.1)

[y, y′] = 0 for all y, y′ ∈ V, (1.2)

and
[y, x] = t〈y, x〉+

∑
s∈RefΓ

(y, x)sc(s)s for all x ∈ V ∗, y ∈ V, (1.3)

where

(y, x)s :=
〈y, αs〉〈α∨s , x〉
〈α∨s , αs〉

∈ K. (1.4)

Here, we denote by R〈V 〉 the tensor algebra of V ∗ over R and by R[V] we denote the symmetric
algebra of V ∗, that is, the quotient of R〈V 〉 by the ideal generated by the elements xx′ − x′x
for x, x′ ∈ V ∗. Furthermore, R〈V ⊕ V ∗〉 o RG denotes the semi-direct product of the tensor
algebra of V ∗ ⊕ V over R with the group algebra over R. As we assumed that all reflections
are diagonalizable, we have 〈α∨s , αs〉 6= 0, so that the last relation is always well defined. Note
that it is also independent of the choice of the roots and coroots.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 269

1.2. The PBW theorem

Let y := (yi)
n
i=1 be a basis of V with dual basis x := (xi)

n
i=1. We denote by Fn the set of

finite sequences α := (α1, . . . , αl) in [1, n] := {1, . . . , n} and define for such a sequence the

expression xα :=
∏l
i=1 xαi ∈ R〈V 〉. Then (xα)α∈Fn is an R-basis of R〈V 〉. An R-basis of R[V]

is formed by the elements xα :=
∏n
i=1 x

αi
i with α ∈ Nn. The choice of a basis provides us with

a natural R-linear section of the quotient morphism R〈V 〉� R[V] by mapping xα ∈ R[V] to∏n
i=1 x

αi
i ∈ R〈V 〉. In the same way, we have a natural R-linear section of R〈V ∗〉� R[V ∗]. As

an R-module, the semi-direct product R〈V ⊕ V ∗〉o RG is isomorphic to R〈V ⊕ V ∗〉 ⊗R RG.
The two sections above can thus be put together to yield an R-linear section sy of the quotient
morphism R〈V ⊕ V ∗〉oRG� R[V ⊕ V ∗]oRG. The image Ny of sy is the free R-submodule
of R〈V ⊕ V ∗〉oRG with basis xαyβg and we get a commutative diagram

Ny

R〈V ⊕ V ∗〉oRG

R[V ⊕ V ∗] oRG Ht,c

sy
∼=

π

where the dashed arrows are morphisms of R-modules only and π is the composition of sy
with the quotient morphism. This morphism is actually independent of the choice of y and is
called the PBW morphism. It is clear from the relations (1.1) and (1.2) that π is surjective, so
that the elements xαyβg generate Ht,c as an R-module. The essence of the PBW theorem for
rational Cherednik algebras is that π is in fact an isomorphism (equivalently, the restriction
of the quotient morphism R〈V ⊕ V ∗〉 o RG � Ht,c to Ny is injective for one, and then
any, basis y). Hence, the elements xαyβg with α, β ∈ Nn form an R-basis of Ht,c. We call such
a basis a PBW basis. One sometimes prefers to use that R[V ⊕ V ∗] o RG is as an R-module
isomorphic to R[V]⊗R RG⊗R R[V ∗], so that we have a triangular decomposition of Ht,c and
a basis of the form xαgyβ . This fact is used in § 2.3.

The PBW theorem was originally proven by Etingof and Ginzburg [9] in the caseK = R = C.
Their proof, however, seems to be not easily extendable to our general setting. Ram and
Shepler [28] instead gave a proof in the same case, which is formalized and extended in [32].
The advantage of this approach is not only that it can be adapted to give a proof of the PBW
theorem over general base rings but that it also provides the theoretical foundation of our
computational approach to rational Cherednik algebras. To explain this, let us first formalize
the role of Ny in the PBW theorem.

1.3. Normal forms and rewrite systems

Definition 1. Let A be an algebra over a commutative ring R and let I � A be an ideal.
A weak normal form of A/I is an R-submodule N ⊆ A such that any element of A is modulo
I equivalent to an element of N , that is, the restriction π|N of the quotient morphism π :
A � A/I to N is still surjective. For a ∈ A, we call the elements in NN (a) := π|−1

N (π(a)) =
π−1(π(a)) ∩ N the normal forms of a with respect to N , and similarly we define NN (a) :=
π|−1
N (a) = π−1(a) ∩ N for a ∈ A/I. If every element of A has a unique normal form with

respect to N , that is, π|N : N � A/I is an isomorphism of R-modules, we say that N is a
normal form of A/I.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

270 u. thiel

Finding a normal form for a quotient of a (commutative) polynomial ring by an ideal is
one of the central problems of computational commutative algebra and it can be solved via
Gröbner bases, as explained in the following example.

Example 1. Let A := K[X] be the polynomial ring over a field K in the variables X :=
(Xi)

n
i=1. Let ≺ be a monomial order on A. Let I � A be an ideal and let G := {g1, . . . , gs}

be a Gröbner basis of I with respect to ≺, that is, LT(I) = LT(G), where LT(−) denotes the
ideal generated by the leading terms. Let

C(I) := {Xα | α ∈ Nn and Xα is not divisible by some LT(g) for g ∈ G} ⊆ A.

Then NI := 〈C(I)〉K ⊆ A is a normal form of A/I (see [11, § 1.2]).

We can reformulate the PBW theorem as stating that the R-submodule Ny is a normal form
for Ht,c = (R〈V ⊕V ∗〉oRG)/It,c. We will show this by proving that there exists a terminating
confluent rewrite system having Ny as the set of normal forms. To this end, let us first recall
some basic notions about rewrite systems (see [4]).

Definition 2. A rewrite system is a pair A := (A,→) consisting of a set A and a binary
relation→ on A. We write a→ b if (a, b) ∈ →. This relation is called the rewrite relation of A .
The reflexive–transitive closure of → is denoted by �. An element a ∈ A is reducible if there
is some b ∈ A with a 6= b and a→ b. Otherwise it is called irreducible (or in normal form). A
normal form of an element a ∈ A is an irreducible element b ∈ A with a � b. We denote by
NA (a) the set of normal forms of a. The rewrite system A is (uniquely) normalizing if every
element a ∈ A has a (unique) normal form. It is called terminating if there does not exist an
infinite chain a1 → a2 → It is called locally confluent if

for all a, b, c ∈ A(c← a→ b⇒ ∃ d ∈ A(c� d� b)).

This condition is precisely the commutativity of the diagram

•

• •

•

where the vertices denote the corresponding elements of A and the dashed arrows indicate the
existence condition. Finally, A is called confluent if

for all a, b, c ∈ A(c� a� b⇒ ∃d ∈ A(c� d� b)).

Very helpful for proving confluence of a rewrite system is Newman’s lemma, which
states that a terminating rewrite system is confluent if and only if it is locally confluent
(see [4, Theorem 1.2.1]). Let us record some further elementary facts about rewrite systems.

Lemma 1.1. The following hold for a rewrite system A := (A,→):
(i) if A is terminating, then A is normalizing;
(ii) if A is confluent, then any element of A has at most one normal form;

(iii) A is uniquely normalizing if and only if it is normalizing and confluent.

Proof. Assertions (i) and (ii) are easy to see. If A is uniquely normalizing, it is normalizing
by definition. To see that A is confluent, let a, b, c ∈ A with c � a � b. Let c̃ be a normal

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 271

form of c and let b̃ be a normal form of b. We then have a � b � b̃ and a � c � c̃. Since
b̃ and c̃ are irreducible, they are both normal forms of a. But then b̃ = ã = c̃, where ã is the
unique normal form of a. This shows that A is confluent. The other direction is evident.

We want to establish a rewrite system on an algebra with respect to an ideal. Such a
rewrite system should satisfy some natural compatibility conditions. We propose the following
definition (there seems to be no established general theory yet).

Definition 3. Let A be an algebra over a commutative ring R and let I � A be an ideal.
A rewrite system for A/I is a rewrite system A := (A,→) on A satisfying the following
properties:

(i) if a→ b, then a ≡ b mod I for all a, b ∈ A;
(ii) if a ∈ A is irreducible, also ra is irreducible for all r ∈ R;
(iii) if a, b ∈ A are irreducible, also a+ b is irreducible.

We can now relate the two notions of normal forms in Definitions 1 and 2. The following
two lemmas are the key to the PBW theorem.

Lemma 1.2. Let A be an algebra over a commutative ring R, let I �A be an ideal, and let
A := (A,→) be a rewrite system for A/I. The following hold:

(i) if a� b, then a ≡ b mod I for all a, b ∈ A;
(ii) if A is normalizing, then

NA :=
⋃
a∈A

NA (a) ⊆ A

is a weak normal form of A/I with NA (a) ⊆ NNA (a) for all a ∈ A.

Proof. The first assertion follows immediately from Definition 3(i) and the fact that ≡ is
both reflexive and transitive. Furthermore, Definition 3(ii) and Definition 3(iii) imply that NA

is an R-submodule of A and it is then a weak normal form of A/I due to (i).

Lemma 1.3. Let A be an algebra over a commutative ring R, let I �A be an ideal, and let
A := (A,→) be a normalizing rewrite system for A/I. The following are equivalent:

(i) NA is a normal form of A/I;
(ii) a� 0 for all a ∈ I.

In this case A is uniquely normalizing and NA (a) = NNA (a) for all a ∈ A.

Proof. Suppose that NA is a normal form of A/I. Then NNA (a) is a singleton for all
a ∈ A. Since A is normalizing and NA (a) ⊆ NNA (a), this implies NA (a) = NNA (a) and
so NA (a) is also a singleton. Hence, A is uniquely normalizing. Moreover, if a ∈ I, then
NA (a) = NNA (a) = π−1(π(a)) ∩NA = π−1(0) ∩NA = I ∩NA = {0}. Hence, a � 0 for all
a ∈ I.

Now, suppose that (ii) holds. To show that NA is a normal form, we show that the restriction
π|NA of the quotient morphism π : A� A/I to NA is injective. If ã is an element of the kernel
of this morphism, then ã ∈ NA ∩ I and so ã is an irreducible element contained in I. But the
assumption that a � 0 for all a ∈ I implies that whenever a ∈ I is irreducible, then already
a = 0. Hence, ã = 0 and so NA is a normal form of A/I.

Remark 1. If A is normalizing and satisfies a � 0 for all a ∈ I, then it follows from
Lemmas 1.3 and 1.1(iii) that A is confluent. The condition a � 0 for all a ∈ I might,
however, be stronger than confluence. In other words, confluence of A alone might not be
sufficient for making NA into a normal form for A/I.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

272 u. thiel

1.4. Monomial rewrite systems

Defining rewrite relations for A/I is much more intricate than it seems at first; in particular,
when it comes to verifying confluence and the property a� 0 for all a ∈ I. Usually, one would
tend to define rewrite relations on symbolic monomials of A, which we understand as symbolic
concatenations of elements of A symbolizing a product, and then extend these relations to
symbolic expressions, that is, symbolic monomials involving parentheses and addition and
subtraction symbols. But this approach leads to the following major issue. Let a ∈ A be an
irreducible element and let b ∈ A be a reducible element. In A we have of course a = a+ b− b
but as symbolic expressions a and a+ b− b are distinct. Since b is reducible and we extended
the rewrite rules by linearity, also a + b − b is reducible. This is a contradiction, since in A
this symbolic term becomes equal to a, which is irreducible. Because of this, one has to be
very careful when defining rewrite relations for A/I. We can avoid this problem by defining
rewrite rules on basis elements of A and then extending these linearly. We formalize this in
the following definition.

Definition 4. Let a := (aλ)λ∈Λ be an R-basis of A. In this context we call the elements aλ
also monomials of A and by terms we understand multiples raλ with r ∈ R \ {0}. If a ∈ A, we
say that a term raλ is a term of a if it occurs in the basis representation of a. Now, suppose
that → is a subset of (aλ)λ∈Λ′ ×A for some subset Λ′ ⊆ Λ, that is, → relates some monomials
of A with elements of A. We extend → to a relation →′ as follows:

(i) if a ∈ A and raλ is a term of a with aλ → b, then a→′ a− raλ + rb;
(ii) if aλ → b and aµ = xaλy for some λ, µ ∈ Λ and x, y ∈ A, then aµ →′ xby.

The first extension rule should be understood as removing the term raλ from a and replacing
it by rb. The second extension rule means that we can apply rules to ‘submonomials’ of
monomials. We call the rules defined by→ the elementary rules of the resulting rewrite system
and call rewrite systems defined like this monomial rewrite systems.

It is easy to see that a monomial rewrite system on an algebra A satisfies Definitions 3(ii)
and (iii). So, what remains to be verified to establish it as a rewrite system for A/I is
Definition 3(i) on elementary rules (note that I is a two-sided ideal). Suppose that in this
case we can furthermore show that the resulting rewrite system A for A/I is terminating and
that a� 0 for all a ∈ I holds. Then we know from Lemma 1.1(i) that A is normalizing and so
it follows from Lemma 1.3 that A is already uniquely normalizing. Furthermore, the module
theoretic notion of normal forms in Definition 1 coincides with the rewrite system theoretic
one in Definition 2.

Theorem 1.4. Define the monomial rewrite system At,c,y on R〈V ⊗V ∗〉oRG with respect
to the R-basis xαyβg by the following elementary rules:

xjxi → xixj for j > i, (1.5)

yjyi → yiyj for j > i, (1.6)

yixj → xjyi + t〈yi, xj〉+
∑

s∈RefΓ

(y, x)sc(s)s for all i, j. (1.7)

This rewrite system is terminating and satisfies a � 0 for all a ∈ It,c. It is thus a uniquely
normalizing rewrite system for Ht,c.

Proof. This is a tedious but straightforward computation (see [32, § 16]).

It is obvious that NAt,c,y = Ny and, as Lemma 1.3 implies that Ny is a normal form for
Ht,c, this proves the PBW theorem.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 273

Remark 2. The proof of the PBW theorem is given in [32, § 16] by the same arguments
for the much more general Drinfeld–Hecke algebras (see also [28]). The class of such algebras
includes for example the symplectic reflection algebras by Etingof and Ginzburg [9]. With
the straightforward adaptations of the algorithms we discuss in the next section we can thus
compute in these algebras, too.

1.5. Computing in rational Cherednik algebras

Our approach to the PBW theorem using rewrite systems directly gives us a first algorithm for
computing in rational Cherednik algebras. As the semi-direct product is usually not supported
by computer algebra systems, we switch to a ‘cover’ which is supported, namely the tensor
algebra R〈x∪y∪g〉, where g := (gk)rk=1 is a system of generators of G. We equip this algebra
with the same rewrite rules as in Theorem 1.4 and the additional monomial rewrite rules

gkxi → gkxigk for all i and k, (1.8)

gkyi → gkyigk for all i and k. (1.9)

This yields a confluent terminating rewrite system on R〈x∪y∪g〉. It does not take care of the
relations in the group, so to get PBW basis expressions we have to rewrite the ‘group algebra
part’ of each monomial of the normal form of an element uniquely as a word in the generators
g. We can do this by choosing unique representations for every element of G.

Although straightforward, this algorithm is very inefficient as the elements in the tensor
algebra can become very large and as we apply just one rule at a time. There is a much
more efficient way to compute in rational Cherednik algebras†. Namely, the PBW theorem
implies that Ht,c is as an R-module isomorphic to the group algebra R[V ⊕ V ∗]G of G over
the commutative ring R[V ⊕V ∗], so that we can consider Ht,c as R[V ⊕V ∗]G with a modified
multiplication. Working in R[V ⊕ V ∗]G instead of R〈x ∪ y ∪ g〉 is much more efficient as the
commutativity of the x and the y is already inherent so that we do not need rewrite rules for
this, and we do not have to rewrite group elements. Moreover, Lemma 1.5 below provides an
explicit commutator formula which combines several rewrite rules and thus allows much faster
computation of products. The idea for computing a product ab in Ht,c

∼= R[V ⊕V ∗]G is then to
multiply each term of a with each term of b using the commutator formula in Lemma 1.5 and
sum up the result. This is made precise in Algorithm 1. Here, we denote by ag(x,y) ∈ R[V ⊕V ∗]
the coefficient of g of an element a ∈ R[V ⊕ V ∗]G, so a =

∑
g∈G ag(x,y)g. Although we have

six nested loops in this algorithm, it is still very efficient. In the implementation in Champ,
we also make use of a database of commutators which is updated during run time. This leads
to an additional speed-up. The most time-consuming part of the algorithm is the computation
of the action of elements of G on polynomials in R[V ⊕ V ∗].

Lemma 1.5. For any µ ∈ Nn, the following relation holds in Ht,c:

[yi, x
µ1

1 . . . xµnn] = [yi, x
µ1

1 . . . xµnn]0 + [yi, x
µ1

1 . . . xµnn]t, (1.10)

where
[yi, x

µ1

1 . . . xµnn]0 :=
∑

s∈RefΓ

[yi, x
µ1

1 . . . xµnn]ss (1.11)

with

[yi, x
µ1

1 . . . xµnn]s := c(s)

n∑
j=1

(yi, xj)sx
µ1

1 . . . x
µj−1

j−1

(µj−1∑
l=0

xlj
s(x

µj−l−1
j)

)
s(x

µj+1

j+1 . . . xµnn) (1.12)

†The use of the group algebra instead of the tensor algebra was suggested and already used by Bonnafé.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

274 u. thiel

and

[yi, x
µ1

1 . . . xµnn]t := t

n∑
j=1

µjx
µ1

1 . . . x
µj−1

j−1 x
µj−1
j x

µj+1

j+1 . . . xµnn 〈yi, xj〉. (1.13)

Proof. This is a straightforward proof by induction and we omit it here.

Algorithm 1: Computation of products in rational Cherednik algebras.

Data: Elements a =
∑
g∈G ag(x,y)g and b =

∑
h∈G bh(x,y)h of R[V ⊕ V ∗]G

Result: The product c := ab in Ht,c
∼= R[V ⊕ V ∗]G

1 c := 0;
2 for g ∈ G with ag(x,y) 6= 0 do
3 d := 0; //this will be (ag(x,y)g)b in the end
4 e :=

∑
h∈G

gbh(x,y)gh; //e = gb ∈ Ht,c

5 //now we compute ag(x,y)e = ag(x,y)gb
6 for t a term of ag(x,y) do
7 mt := the monomial of t, so mt = xαyν for some α, ν ∈ Nn;
8 kt := the coefficient of t;
9 E := e; //this will be yνe in the end

10 for i := 1 to n do
11 for j := 1 to νi do
12 l := 0; //this will be yiE
13 for h ∈ G with Eh(x,y) 6= 0 do
14 for u a term of Eh(x,y) do
15 mu := the monomial of u, so mu = xµyβ for some µ, β ∈ Nn;
16 ku := the coefficient of u;

17 l := l + ku(xµyiy
β + [yi,x

µ]ty
β +

∑
s∈RefΓ

[yi,x
µ]s

syβsh);

18 //the second summand above is simply the PBW expression

19 //for kuyix
µyβh = from Lemma 1.5

20 end

21 end
22 E := l;

23 end

24 end
25 d := d+ ktx

αE; //d := d+ te

26 end
27 c := c+ d; //c := c+ ag(x,y)gb

28 end
29 return c;

1.6. Poisson brackets

One of the motivations for devising and implementing algorithms for computing in rational
Cherednik algebras is that this allows us to explicitly compute Poisson brackets of central
elements of H0,c. We give a non-standard (but equivalent) definition of the Poisson bracket
here, as this is more efficient for computations (see [5, 5.4.A] for the usual definition). Let

R̃ := D ⊗K R, where D := K[ε]/〈ε2〉 is the ring of dual numbers. We denote the image of

ε in D again by ε. The map c : CΓ → R can of course also be considered as mapping to R̃

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 275

and so the R̃-algebra Hε,c is defined. By the PBW theorem, we have Hε,c
∼= D ⊗K H0,c as

R-modules and we have a canonical embedding ·̃ : H0,c ↪→ Hε,c of R-modules. There is a

canonical surjective R-module morphism R̃ → R sending ε ⊗ 1 to 1 and 1 ⊗ r to r. This
map induces a surjective R-module morphism q : Hε,c � H0,c. Now, the Poisson bracket of

a, b ∈ Z(H0,c) is defined as {a, b} := q([ã, b̃]). As the implementation of rational Cherednik
algebras in Champ supports general base rings and parameters, we are also able to compute
Poisson brackets in Champ.

2. Restricted rational Cherednik algebras

Besides the capability of performing computations in rational Cherednik algebras, it is one
aim of Champ to compute representation theoretic properties of restricted rational Cherednik
algebras. These algebras (which were first seriously studied by Gordon [17]) are finite-
dimensional quotients of H0,c by a centrally generated ideal and they possess (partially
established, partially conjectural) relations to Hecke algebras. These relations are one reason
for studying (restricted) rational Cherednik algebras. In this section, we will review the basic
properties of these algebras, explain what representation theoretic problems we are interested
in, and address some computational issues. We include a quick review of Martino’s conjecture
to be very precise about what we computed and to ensure that these computations yield proofs
of this conjecture in the cases under consideration.

2.1. Restricted rational Cherednik algebras

The N-graded ring
ZΓ := K[V]G ⊗K K[V ∗]G ⊆ K[V ⊕ V ∗]G

of bi-invariants maps under the PBW morphism into the center of H0,c and embeds the scalar
extension ZRΓ as a central subalgebra of H0,c. For K = R = C, this was proven by Etingof
and Ginzburg [9], and Gordon’s proof [17] in this case also works without modifications
in our general setting. We can thus view H0,c as a ZRΓ -algebra. Note that since R is a
flat K-module, the scalar extension ZRΓ is simply given by replacing K by R above. As
the extension K[V]G ⊆ K[V] is finite (see [18, 12.27]), the PBW theorem implies that
H0,c is a finite ZRΓ -module. The finiteness implies (see [32, §§ 6 and 17]) that we have a
decomposition

Simp(H0,c) =
∐

m∈Max(ZRΓ)

Simp(H0,c(m)) (2.1)

of the set of isomorphism classes of simple modules, where Max denotes the maximal ideal
spectrum and H0,c(m) := H0,c/mH0,c is the specialization of H0,c in m ∈ Max(ZRΓ). This
decomposition follows essentially from the fact that maximal ideals and left primitive ideals
coincide in H0,c, as it is a polynomial identity (PI) ring. The advantage is that on the right-hand
side we have finite-dimensional algebras over fields, which might be easier to study than H0,c

itself.
Let

aRΓ := (ZRΓ)+ = (R[V]G+ ⊗R R[V ∗]G) + (R[V]G ⊗R R[V ∗]G+)

be the augmentation ideal of ZRΓ . The quotient Hc := H0,c/a
R
Γ Hc is called the restricted rational

Cherednik algebra of Γ in c. Note that ZRΓ /a
R
Γ
∼= R, so aRΓ is maximal if and only if R is a field.

In this case, Hc is one of the specializations in the decomposition (2.1).
Recall that the coinvariant algebra K[V]G of Γ is the quotient of K[V] by the Hilbert ideal

hΓ, which is the ideal in K[V] generated by the augmentation ideal K[V]G+ of K[V]G. It follows

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

276 u. thiel

at once from the PBW theorem that the PBW morphism induces an R-module isomorphism

R[V]G ⊗R RG⊗R R[V ∗]G ∼= Hc, (2.2)

implying that Hc is a free R-module with

dimR Hc = dimRR[V]G · |G| · dimRR[V ∗]G.

In case both K[V]G and K[V ∗]G are polynomial (this holds for example in the non-modular
setting by a theorem by Bourbaki–Chevalley–Serre as Γ is a reflection group), the extensions
K[V]G ⊆ K[V] and K[V ∗]G ⊆ K[V ∗] are free of dimension equal to |G|. This implies that in
this case dimR Hc = |G|3 = dimZRΓ

H0,c.

2.2. Computing in restricted rational Cherednik algebras

Fix a Gröbner basis of the Hilbert ideal of Γ with respect to some monomial order. As in
Example 1, this allows us to compute a monomial basis (xλ)λ∈Λ of the coinvariant algebra
K[V]G, where Λ ⊆ Nn is some finite subset and x := (xi)

n
i=1 are the images of the xi ∈ K[V]

in K[V]G. Similarly, we obtain a monomial basis (yσ)σ∈Σ of K[V ∗]G. Then, by the above, Hc

is a free R-module with basis (xλyσg)λ∈Λ,σ∈Σ,g∈G and we call a basis of this form a PBW
basis of Hc. Algorithm 1 can easily be modified to compute PBW basis representations of
products in Hc: we just have to work in the group algebra (R[V]G⊗RR[V ∗]G)G. This is again
supported by Champ.

2.3. Representation theory

Now, we turn our attention to representation theoretic problems of Hc, which are originally due
to Gordon [17]. First of all, note that R〈V ⊕ V ∗〉oRG is naturally a Z-graded R-algebra by
putting V ∗ in degree 1, G in degree 0, and V in degree −1. The elements in (1.1)–(1.3) defining
the ideal I0,c are all homogeneous, so that H0,c inherits this Z-grading. Since the Hilbert ideals
are homogeneous, it follows moreover that the restricted rational Cherednik algebra Hc also
inherits this Z-grading.

Gordon [17] observed that the triangular decomposition (2.2) of Hc governs its representation
theory by employing a general theory of Holmes and Nakano [19]. First note that due to
the PBW theorem both the R-algebras Hc,m := RG and Hc,r := RG n R[V ∗]G naturally
embed as subalgebras in Hc. This is the ‘middle part’ and the ‘right Borel subalgebra’ of the
triangular decomposition (2.2), respectively. Mapping elements of V to zero yields a surjective
algebra morphism qc,r : Hc,r � Hc,m and by qc,r∗ we denote the induced inflation functor

Hc,m
(gr)mod→ Hc,r

(gr)mod. The key tool is now the Verma functor

∆c := Hc ⊗Hc,r
qc,r∗(−) : Hc,m

(gr)mod→ Hc
(gr)mod

between categories of finitely generated (graded) modules. It is not hard to see that

∆c(W) ∼= R[V]G ⊗RW (2.3)

as R-modules provided that W is free as an R-module (see [19] or [32, § 18]).
Now, suppose that R is a field and that KG splits (the latter holds for example if K is of

characteristic zero by a theorem by Benard [3]). Although Holmes and Nakano [19] assumed
for their theory an algebraically closed base field, their arguments also work when the algebra
is just split (see [32, § 18]) and show that for each simple KG-module λ the corresponding
Verma module ∆c(λ) := ∆c(λ

R) of Hc is an indecomposable module with simple head Lc(λ)
and that (Lc(λ))λ∈Simp(KG) is a system of representatives of the simple Hc-modules. The
Verma module ∆c(λ) is naturally graded and it has been proven in [19] that its radical is a

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 277

graded submodule. Hence, Lc(λ) is naturally graded, too. Arguments by Bonnafé and Rouquier
[5, Proposition 9.2.5] furthermore show that Hc itself splits. There is now a natural
correspondence between simple KG-modules and simple Hc-modules and so the distribution
of simple Hc-modules into the blocks of Hc yields a partition CMc of the set of simple
KG-modules whose members are called the Calogero–Moser c-families.

2.4. Gordon’s questions

Gordon formulated in [17, § 7] the following questions concerning the representation theory of
Hc for a parameter c with values in an extension field R of K.

(i) What is the graded G-character of the simple modules Lc(λ)? This includes knowing
their dimensions and their Poincaré series.

(ii) What are the composition factors of the Verma modules ∆c(λ)?
(iii) What are the Calogero–Moser c-families?

These questions are so far only studied for K = R = C and we cannot go into details about
what is already known in this case (see [9, 10, 16.2 and 16.4], [17, 6.4 and 7.3], [1, § 3.3],
[25, 26], and [32]). The point is that almost nothing is known for exceptional complex reflection
groups and this was one reason for the development of Champ.

2.5. The generic situation

The above problems are formulated for parameters c with values in an extension field R of
K, that is, for points of the affine K-scheme RΓ := A#CΓ

K . This infinite amount of parameters
would be a serious issue for a computational approach, but the following two facts allow us
to reduce this to finitely many problems. First of all, it is proven in [31] that decomposition
morphisms are generically trivial. This means essentially that once we know the solution to
§ 2.4(i) and § 2.4(ii) for the generic point c of RΓ, that is, c is the family of indeterminates of
the rational function field K((cs)s∈CΓ), then we know the solution for all c in a non-empty open
subset of RΓ. This generic situation is really the starting point of computational considerations
and is supported by Champ. Similarly, it is proven in [5] (see also [32, § 11]) that blocks show
the same behavior, meaning that once we know the generic Calogero–Moser families CMc, we
know them for all c in a non-empty open subset of RΓ. After the generic situation is understood,
we have to determine the locus of ‘exceptional parameters’ and continue the above process.
This is exactly how we proceed for the groups G4, G13, and G20 to compute the answers to
Gordon’s questions for all parameters.

2.6. Martino’s conjecture

Before we discuss our approach to the computational solution of Gordon’s questions, let us
first explain why the Calogero–Moser families are interesting. To this end, we need a different
type of parameters for rational Cherednik algebras due to Ginzburg et al. [16]. Let AΓ be
the set of G-orbits of reflection hyperplanes of Γ. For a reflection hyperplane H of Γ the
stabilizer subgroup GH is cyclic of some order eH prime to the characteristic of K. This order
is constant along the G-orbit Ω of H, so that we can denote it by eΩ. We denote by ΩΓ the
set of pairs (Ω, j) with Ω ∈ AΓ and 1 6 j 6 eΩ − 1, and denote by ΩΓ the set of pairs (Ω, j)

with 0 6 j 6 eΩ − 1. Let RΓ be the affine K-scheme A#ΩΓ

K . For k ∈ RΓ(R), we now define a
function ck : CΓ → R by

ck(s) :=

eΩs−1∑
j=0

det(s)j(kΩs,j+1 − kΩs,j), (2.4)

where Ωs is the G-orbit of the reflection hyperplane of s and we consider the index j always
modulo eΩs . We set H0,k := H0,ck . It is not hard to see that (2.4) yields a surjective

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

278 u. thiel

R-linear map ΦΓ(R) : RΓ(R)→ RΓ(R), and that this defines a surjective K-scheme morphism
ΦΓ : RΓ → RΓ. We can thus think of RΓ as an artificial extension of the parameter
space for restricted rational Cherednik algebras of Γ. On RΓ, we define an involution (·)]

by k] := (kΩ,−j). The closed subscheme R
0

Γ of RΓ consisting of all k with kΩ,0 = 0 is stable
under this involution and we call its points Cherednik parameters of GGOR type for Γ. Here,
GGOR stands for Ginzburg–Guay–Opdam–Rouquier who used these type of parameters [16].

Note that ΦΓ restricts to an isomorphism between R
0

Γ and RΓ, so that this can be considered
as a reparametrization of RΓ.

Now assume that K is of characteristic zero and that Γ is irreducible. Chlouveraki’s [8]
essential hyperplanes define a union E Γ of hyperplanes in RΓ defined by integral equations, and
attached to any point k ∈ RΓ is a partition Rouk of the simple KG-modules whose members
are called the Rouquier k-families. We cannot go into details about Rouquier families here
(see [7, 8, 24], and in particular [5] for the most general discussion) and just note how we can
define them for a general base field K of characteristic zero instead of just K = C. To this end,
we have to choose a realization Γ′ of Γ over the complex numbers, which is possible as Γ admits
a realization over its character field. When doing this, we have to keep track of the orbits of
hyperplanes of reflections to avoid changing the parameters. Then Chlouveraki’s theory defines
the essential hyperplanes in RΓ′ and the Rouquier k-families for any k ∈ RΓ′(C). These families
are already uniquely determined by the essential hyperplanes k lies on. This and the fact that
the essential hyperplanes are defined by integral equations allow us to transport the essential
hyperplanes to RΓ and to define Rouquier families for any point of RΓ. We remark that for the
definition of Rouquier families we tacitly assume the validity of some standard assumptions
about Hecke algebras (see [8, 4.2.3]), which are not known to hold for all exceptional complex
reflection groups. The interest in Calogero–Moser families is now justified by the following
conjecture.

Conjecture 1 [25]. Assume that K is of characteristic zero and that Γ is irreducible. The
following hold:

(i) Rouk] is a refinement of CMk := CMck for any k ∈ RΓ;
(ii) there is a non-empty open subset U of RΓ such that Rouk] = CMk for all k ∈ U .

We call the first part of the conjecture the special parameter conjecture and the second
part the generic parameter conjecture. Because restricted rational Cherednik algebras and
cyclotomic Hecke algebras always split, it is enough to consider some particular realization
of each type of complex reflection groups in the Shephard–Todd classification and then prove
the conjecture for K-points. Furthermore, we note that for k ∈ RΓ, the k-cyclotomic Hecke
algebra is naturally isomorphic to the k0-cyclotomic Hecke algebra, where k0 is obtained from
k by setting kΩ,0 to zero for all Ω (this follows from [5, 2.1.13]). Hence, we can equivalently

consider the conjecture just for points of R
0

Γ as originally formulated by Martino. Due to the
behavior of Calogero–Moser families explained in § 2.5 and due to the behavior of Rouquier
families explained in § 2.6, the generic parameter conjecture is equivalent to Rouk = CMk,

where k is the generic point of R
0

Γ.
Martino’s conjecture is known to be true for symmetric and imprimitive complex reflection

groups by [1, 25], and [26]. The generic parameter conjecture is known to be true for G4

by [1], and also for G5, G6, G8, G10, G23, G24, and G26 by [30]. It was shown in [30], however,
that the generic parameter conjecture fails for G25. In all cases where this conjecture is known
to hold, it was proven by determining the Calogero–Moser families and comparing them to
the Rouquier families, which have been determined by Chlouveraki [8]. So far, there is no
theoretical explanation for this connection, and the counter-example in case G25 makes it even
harder to understand the situation.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 279

2.7. Euler families

Bonnafé and Rouquier [5] have pointed out a neat argument as to why there could exist a
connection between Calogero–Moser families and Rouquier families at all. First of all, the
Euler element of H0,c, introduced in [16], is defined as

euc =

n∑
i=1

yixi +
∑

s∈RefΓ

1

εs − 1
c(s)s =

n∑
i=1

xiyi +
εs

εs − 1
c(s)s, (2.5)

where as usual (yi)
n
i=1 is a basis of V with dual basis (xi)

n
i=1 and where εs denotes the non-

trivial eigenvalue of s. The definition does not depend on the choice of a basis. This element
is known to be central and its image in Hc is again a non-trivial central element. Let Ωcλ
be the central character of the simple Hc-module Lc(λ). Then the values of these characters
on the Euler element yield a partition Euc of the simple KG-modules which is coarser than
CMc. We call its members the Euler c-families. It is proven in [5, 10.2.2] that for k ∈ RΓ the
equality Ωkλ(euk) = cλ(k]) holds, where cλ(k]) is a constant multiple of the ‘q-logarithm’ of
the value of the central character of the simple module belonging to λ of the k]-cyclotomic
Hecke algebra on the central element π coming from the center of the braid group of Γ (see
[5, § 2.2]). These values define similarly a partition Πk] of the simple KG-modules which is
coarser than Rouk] and equal to Euk. We thus have

CMk 6 Euk = Πk] > Rouk] , (2.6)

where 6 denotes refinement. Of course, this does not explain why CMk > Rouk] should hold.

2.8. Verma families

Next to the Euler families, there is another type of families giving a further approximation
of the Calogero–Moser families. Namely, for a fixed simple KG-module λ we collect all
constituents of ∆c(λ). For each of these constituents Sµ, we again collect all constituents
of ∆c(µ) etc. This process stabilizes and gives us a partition Verc of the simple KG-modules
whose members we call the Verma c-families. As Verma modules are indecomposable, these
are always contained in a family coming from a block of Hc, that is, each Verma family is
contained in a Calogero–Moser family, so Verc 6 CMc. We thus get a tower

Verc 6 CMc 6 Euc (2.7)

giving us approximations of CMc from two sides. The Euler families are easily computable
using the characters of the simple KG-modules (see [5] or [30]). The Verma families in turn
can be computed in many cases by the methods we discuss in the next sections. Usually, the
above tower collapsed, that is, the Verma families were equal to the Euler families and thus
equal to the Calogero–Moser families.

Remark 3. Recently, Bonnafé and Rouquier [5, § 13.4] haven proven that in case K is
of characteristic zero, the Verma families are in fact equal to the Calogero–Moser families
(we observed this property before in our explicit computations). This is now the theoretical
foundation showing that the key to determining the Calogero–Moser families are the Verma
families.

3. Computations with Verma modules

After we have discussed the main problems we are interested in, namely Gordon’s questions,
let us go back to computational issues. Clearly, we first have to find an explicit description of
the Verma modules for any computational approach to these problems. We discuss this here
along with some aspects about efficient computation of Verma modules. The main problem

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

280 u. thiel

to solve Gordon’s questions is then to be able to compute decomposition matrices of Verma
modules. We discuss an abstract strategy in § 3.3, which we will turn into a serious method in
the following three sections.

3.1. Computing Verma modules

Let ρ : G → EndK(W) be a finite-dimensional K-representation. Then the Verma module
∆c(ρ) is uniquely determined by the action of the generators x ∪ y ∪ g of Hc, where g is a
generating system of G and, as ∆c(ρ) is free and finitely generated as an R-module, these
actions are described by some matrices. In this way, a Verma module can be represented in the
computer once we have chosen bases and understood the action. To this end, we choose besides
a basis y := (yi)

n
i=1 of V with dual basis x := (xi)

n
i=1 and a generating system g := (gi)

r
i=1 of

G also a monomial basis xΛ := (xλ)λ∈Λ of K[V]G as described in § 2.2. Furthermore, we fix a
basis w := (wk)dk=1 of W . Then an R-basis of ∆c(ρ) ∼= R[V]G⊗RW is formed by the elements
xλ ⊗ wk and, with respect to this basis, we now describe the action of the generators.

First, let us consider the action of xi on ∆c(ρ). We have

xi.(x
µ ⊗ wk) = (xix

µ)⊗ wk.

Hence, if the basis representation of xix
µ ∈ K[V]G in the basis xΛ is

xix
µ =

∑
λ∈Λ

αi,µλ xλ,

then
xi.(x

µ ⊗ wk) =
∑
λ∈Λ

αi,µλ xλ ⊗ wk (3.1)

is the basis representation of xi.(x
µ ⊗ wk) ∈ ∆c(ρ) in the basis xΛ ⊗ w. So, we actually

just need to understand the action of the xi on the coinvariant algebra K[V]G and this can
computationally be solved using Gröbner bases.

Now, let us consider the action of gi on ∆c(ρ). We have

gi.(x
µ ⊗ wk) = (gix

µ)⊗ wk = (gixµgi)⊗ wk = gixµ ⊗ giwk.

Hence, if the basis representation of gixµ ∈ K[V]G in the basis xΛ is

gixµ =
∑
λ∈Λ

βi,µλ xλ

and the basis representation of giwk in the basis w is

giwk =

d∑
t=1

γi,kt wt,

then the basis representation of gi.(x
µ ⊗ wk) in the basis xΛ ⊗w is

gi.(x
µ ⊗ wk) =

(∑
λ∈Λ

βi,µλ xλ
)
⊗
(d∑
t=1

γi,kt wt

)
=
∑
λ∈Λ

d∑
t=1

βi,kλ γi,kt xλ ⊗ wt. (3.2)

So, to understand the action of gi in ∆c(ρ), we need to understand the action of gi on the
coinvariant algebra K[V]G and on the KG-module W . The first can again be computationally
achieved using Gröbner bases; the second is no problem when we have an explicit realization
of ρ.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 281

Now, we come to the hardest part, namely the action of yi on ∆c(ρ). This is the point
where the structure of the restricted rational Cherednik algebra enters the game. Namely, to
write the element yi(x

µ⊗wk) = (yix
µ)⊗wk in the basis xΛ⊗w, we first have to rewrite yix

µ

in the PBW basis of Hc. Recall from Lemma 1.5 that

[yi,x
µ] =

n∑
t=1

∑
s∈RefΓ

µt−1∑
l=0

c(s)(yi, xt)sx
µ1

1 . . . x
µt−1

i−1 x
l
t(
sxt)

µt−l−1(sxt+1)µt+1 . . . (sxn)µns. (3.3)

Using this formula, we get

yi(x
µ ⊗ wk)

= (yix
µ)⊗ wk

= (xµyi + [yi,x
µ])⊗ wk

= (xµyi)⊗ wk + [yi,x
µ]⊗ wk

=

n∑
t=1

∑
s∈RefΓ

µt−1∑
l=0

c(s)(yi, xt)sx
µ1

1 . . . x
µt−1

t−1 x
l
t(
sxt)

µt−l−1(sxt+1)µt+1 . . . (sxn)µns⊗ wk

=

n∑
t=1

∑
s∈RefΓ

µt−1∑
l=0

c(s)(yi, xt)sx
µ1

1 . . . x
µt−1

t−1 x
l
t(
sxt)

µt−l−1(sxt+1)µt+1 . . . (sxn)µn ⊗ swk

=
∑

s∈RefΓ

n∑
t=1

µt−1∑
l=0

c(s)(yi, xt)sx
µ1

1 . . . x
µt−1

t−1 x
l
t(
sxt)

µt−l−1(sxt+1)µt+1 . . . (sxn)µn ⊗ swk,

(3.4)

where we used that (xµyi) ⊗ wk = 0 by definition of ∆c(ρ). This expression is not yet a
basis expression in the basis xΛ ⊗ w but, by rewriting the elements on the left-hand side of
the tensor products in the basis xΛ as above using Gröbner bases and rewriting the elements
on the right-hand side in the basis w, immediately gives a basis expression. Hence, with the
formulas in (3.1), (3.2), and (3.4), we can explicitly compute the Verma module ∆c(ρ) and
represent it in this way in a computer. Note, however, that it still needs an explicit method, like
Gröbner bases, to rewrite elements in the coinvariant algebra in terms of a chosen (monomial)
basis.

3.2. X-tables

Some parts of formula (3.4) occur multiple times. In particular, if one wants to consecutively
compute Verma modules for different KG-representations, one can split off these parts to
increase efficiency. We propose the following approach. Fix i ∈ [1, n], s ∈ RefΓ, and µ ∈ Λ. Let

X
(i,s)
µ = (X

(i,s)
µ,η)η∈Λ be such that X

(i,s)
µ,η is the coefficient of xη in the basis representation of

n∑
t=1

µt−1∑
l=0

(yi, xt)sx
µ1

1 . . . x
µt−1

t−1 x
l
t(
sxt)

µt−l−1(sxt+1)µt+1 . . . (sxn)µn ∈ K[V]G

in the basis xΛ. We can consider X
(i,s)
µ as a row vector and, by varying µ, we get a matrix

X(i,s) ∈ MatΛ×Λ(K) satisfying

yi(x
µ ⊗ wk) =

∑
s∈RefΓ

c(s)
∑
η∈Λ

X(i,s)
µ,η xη ⊗ swk. (3.5)

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

282 u. thiel

Note that the matrix X(i,s) is independent of the representation ρ and even of c, so that it
can be used again for further computations. For the computation of X(i,s), we can define for
fixed µ ∈ Λ the following two expressions, indexed by t ∈ [1, n]:

pstart
µ (t) := xµ1

1 . . . x
µt−1

t−1 , (3.6)

pend
µ (t) := x

µt+1

t+1 . . . xµnn . (3.7)

Then, for s ∈ RefΓ, the row vector X
(i,s)
µ can be determined by computing the basis

representation of the element

∑
s∈RefΓ

n∑
t=1

(yi, xt)sp
start
µ (t)

(µt−1∑
l=0

xlt(
sxt)

µt−l−1

)
spend
µ (t). (3.8)

The above methods for computing ∆c(ρ) are implemented in exactly this way in Champ.
To use the grading of Verma modules, we implemented a new type ModGr allowing us to
handle graded modules in general. Moreover, we observed that Verma modules are usually
very sparse and so we use sparse matrices in our implementation. Even Verma modules of
dimension a few thousand can in this way be computed quite fast and with low memory
usage.

3.3. Decomposing Verma modules: the abstract idea

After this initial problem being solved, we turn to the actual questions in § 2.4, namely: how
can we compute the simple modules Lc(λ), that is, the heads of the Verma modules, and
how can we compute the constituents of the Verma modules? Over finite fields, this can be
achieved using the MeatAxe algorithm (see [20, 22, 27], [21, § 7.4], [23, § 1.3], [13, § 7.1.1]),
which is also implemented in Magma. In the generic situations (where the base ring is a
rational function field) and in case of base rings of characteristic zero, however, there does not
exist any practical algorithm capable of solving our problems. Although there are some recent
approaches to a ‘characteristic zero MeatAxe’, for example the general method developed by
Steel [29], which is also implemented in Magma, no existing algorithm was successful even in
smaller examples (see the experiments in § 9.2 proving this). We therefore conceived a method
aiming to solve this problem. Although our whole idea is based on necessary conditions so
that the resulting algorithm might not produce a result at all, it turned out to be extremely
successful and efficient for Verma modules of restricted rational Cherednik algebras and was
the key tool of our progress on Gordon’s questions for exceptional complex reflection groups
(see § 7).

Our approach is very general; so, it has nothing to do with Cherednik algebras and relies on
the fact that we can solve the problems over finite fields using the MeatAxe. As we do not
have a finite field at hand, we first need a way to transfer the situation to a finite field and
then we have to figure out what the situation over the finite field tells us about our original
situation. The following proposition, formulated abstractly, is the main ingredient for our
approach.

Definition 5. If A and B are two essentially small abelian categories, then a group
morphism d : K0(A) → K0(B) of the zeroth K-groups is called positive if d(K+

0 (A)) ⊆
K+

0 (B), where K+
0 is the submonoid represented by objects, and is called strongly positive if

it is positive and d([X]) = 0 implies [X] = 0 for all [X] ∈ K+
0 (A).

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 283

Proposition 3.1. Let A and B be two abelian categories of finite length and let d :
K0(A)→ K0(B) be a strongly positive morphism. Let X ∈ A . The following hold:

(i) if d([X]) is simple, then X itself is simple;
(ii) let (Si)i∈I be a set of representatives of the simple objects of A and let (Tj)j∈J be a set

of representatives of the simple B-objects. Let X ∈ A and let JdX := {j ∈ J | [d([X]) :
Tj] 6= 0}. Suppose that there exists a subset IdX ⊆ I such that [X : Si] = 0 for all
i ∈ I \ IdX and such that there exists a bijection λdX : JdX → IdX with d([SλdX(j)]) = Tj for

all j ∈ JdX . Then

[X] =
∑
j∈JdX

[d([X]) : Tj][SλdX(j)]

and in this case we say that d is X-generic.

Proof. (i) Suppose that X is not simple. Then we can write [X] = [X1] + [X2] with
[X1], [X2] 6= 0 and we get the relation [T] = d([X]) = d([X1]) + d([X2]) in K+

0 (B) with T ∈ B
simple. Since d is strongly positive, we have d([X1]), d([X2]) 6= 0. But then the above relation
in K+

0 (B) is impossible. Hence, X must be simple.
(ii) The basis representation of [X] is

[X] =
∑
i∈I

[X : Si][Si] =
∑
i∈IdX

[X : Si][Si].

Using the fact that λdX is a bijection, we get

d([X]) =
∑
i∈IdX

[X : Si]d([Si]) =
∑
j∈JdX

[X : SλdX(j)]d([SλdX(j)]) =
∑
j∈JdX

[X : SλdX(j)][Tj].

Since the basis representation of d([X]) is

d([X]) =
∑
j∈J

[d([X]) : Tj][Tj] =
∑
j∈JdX

[d([X]) : Tj][Tj],

the claim is proven.

For a finite-dimensional algebra A over a field, we denote by G0(A) := K0(A-mod) the
Grothendieck group of A, where A-mod is the category of finite-dimensional left A-modules.
Applying Proposition 3.1 to the Grothendieck groups of finite-dimensional algebras A and B
over fields shows us that if we have a strongly positive morphism d : G0(A) → G0(B) and
we can compute decompositions in G0(B), for example if the base field of B is finite using
the MeatAxe, then we can computationally prove that an A-module is simple and we have
a chance of computing decompositions of A-modules in G0(A). The morphism d is really the
link between a computationally manageable ring B and the ring A. Our proposition leads us
to the following two strategies.

Strategy 1. For computing the head of a finite-dimensional module V with simple head
over a finite-dimensional algebra A over a field, we propose the following method.

(i) Find a strongly positive morphism d : G0(A) → G0(B) with B a finite-dimensional
algebra over a finite field.

(ii) Create a submodule J of V , which is to be considered as a candidate for the radical,
compute the quotient V/J , and check using the MeatAxe if d(V/J) is irreducible. If it is,
then we know that V/J is simple and is therefore the head of V .

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

284 u. thiel

Strategy 2. Let A be a finite-dimensional algebra over a field. Suppose that we have
a family (Vλ)λ∈Λ of finite-dimensional A-modules with simple heads (Sλ)λ∈Λ. Suppose
furthermore that this family is constituent-closed, meaning that every constituent of a member
Vλ of this family is the head Sµ of some Vµ. We then have

[Vλ] =
∑
µ∈Λ

mλ,µ[Sµ] ∈ G0(A)

for some mλ,µ ∈ N and we propose the following method for computing these decomposition
numbers.

(1) Find a strongly positive morphism d : G0(A) → G0(B) with B a finite-dimensional
algebra over a finite field such that d(Sλ) is simple for all λ ∈ Λ.

(2) For each λ ∈ Λ, compute using the MeatAxe the constituents (Tλ,θ)θ∈Θλ and their
multiplicities mλ,θ. Now, check if there exists an injection ιλ : Θλ ↪→ Λ such that d(Sµ) ∼= Tλ,θ
for some µ ∈ Λ and θ ∈ Θλ if and only if µ = ιλ(θ). In this case

[Vλ] =
∑
µ∈Λ

mλ,µ[Sµ] ∈ G0(A),

where mλ,ιλ(θ) := mλ,θ for θ ∈ Θλ and mλ,µ := 0 for all µ /∈ Im ιλ.

While decomposition morphisms (more precisely, compositions of decomposition morphisms
which do not necessarily have to be decomposition morphisms themselves, whence the
formulation using strongly positive morphisms) will certainly play a central role for finding
appropriate strongly positive morphisms to algebras over finite fields, it is completely unclear
at this stage what we should do in Strategy 1(ii) to produce a candidate for the radical of a
module with simple head. In the following two sections, we will discuss methods to solve these
two problems. Our final algorithm is presented in § 6.

4. Finite field specializations

In this section, we discuss a quite general method to produce for an algebra A (satisfying some
assumptions) a strongly positive morphism d : G0(A) → G0(B) into the Grothendieck group
of a finite-dimensional algebra over a finite field: this is the first step in the strategies outlined
in § 3.3. In § 4.2, we discuss when this works for restricted rational Cherednik algebras, and
this leads us to the notion of integral structures of these algebras.

4.1. Finite field specializations in general

Let us fix a Dedekind domain O with quotient field K, a normal commutative K-algebra R,
and an R-algebra A which is free and finitely generated as an R-module.

Definition 6. A finite field specialization of A is a pair (m, u) such that:
(1) m is a maximal ideal of O with finite residue field;
(2) u is a K-point of the K-scheme Spec(R) such that the K-algebra A(u) := u∗A splits and

has an Om-free Om-structure Ã(u), that is, the scalar extension Ã(u)K of Ã(u) to K is
isomorphic to A(u).

Since A(u) splits, the theory of decomposition morphisms by Geck and Rouquier [15] and
Geck and Pfeiffer [14, § 7] implies that the decomposition morphism

duA : G0(A(u))→ G0(A(u))

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 285

exists, where u is the generic point of Spec(R), that is, A(u) = AQ(R), where Q(R) is the

quotient field of R. Now, by assumption A(u) has an Om-free Om-structure Ã(u). Since Om is
a valuation ring, the decomposition morphism

dmm

Ã(u)
: G0(A(u))→ G0(Ã(u)(mm))

exists, where Ã(u)(mm) is the scalar extension of Ã(u) to the residue field of mm. As
decomposition morphisms are strongly positive, we obtain a strongly positive morphism

G0(A(u)) G0(A(u)) G0(Ã(u)(mm))
duA

dm,u
A

dm
Ã(u)

(4.1)

We have omitted the choice of the Om-free Om-structure of A(u) in the notation dm,u
A as

this will not be important, although the knowledge about the existence of such a structure is
of course crucial. We call dm,u

A the decomposition morphism of A in (m, u) but note that this
does not have to be a decomposition morphism itself.

Remark 4. The notion of finite field specializations can of course be generalized to arbitrary
finite chains of decomposition morphisms ending in the Grothendieck group of an algebra over
a finite field. One only has to make sure in each step that the decomposition morphism exists
with the main problem being the existence of integral structures.

Remark 5. In [31], it is proven that decomposition morphisms are generically trivial for
finite free algebras with split generic fiber over noetherian normal rings. Hence, assuming that
R is noetherian and that A has split fibers, the morphism dm,u

A is trivial for generic u and
for generic m, meaning that it induces a bijection between simple modules. Hence, finite field
specializations can be used to employ Proposition 3.1(3.1) generically. This already indicates
that it makes sense to choose finite field specializations randomly, as the probability is quite
high to stay in the generic region.

Remark 6. If (m, u) is a finite field specialization of A and V is a finite-dimensional
A(u)-module, it will be important to explicitly compute a representative of dm,u

A ([V]). To
this end, suppose that the image of u is contained in Om and that we have an Rp-free

Ap-structure Ṽ of V for some p ∈ Spec(R). Let Ṽ be an Rp-basis of Ṽ and let A be an
R-algebra generating system of A. If we apply the map u to the entries of the matrices
describing the action of a ∈ A on V in terms of the basis V , we obtain a representative of
duA([V]). As the image of u is contained in Om by assumption, the entries of the matrices just
obtained are contained in Om and so we can reduce them modulo mm, and this a representative
of dm

Ã(u)
◦ duA([V]) = dm,u

A ([V]). In this situation, we do not even see the chosen O-free

O-structure Ã(u) of A(u).
Although formally a bit complicated, this whole process is actually quite straightforward in

explicit situations and is automatically performed by the command Specialize in Champ.
That a pair (m, u) is indeed a finite field specialization has to be checked manually, however.

4.2. Integral structures of restricted rational Cherednik algebras

Let us now turn to the problem of finding finite field specializations of restricted rational
Cherednik algebras.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

286 u. thiel

Assumption 1. By Γ := (G,V), we denote a finite reflection group over a field K containing
a Dedekind domain O with quotient field K. We assume as usual that all reflections are
diagonalizable. Furthermore, we assume that the action of G on V and on V ∗ has no non-
zero fixed points, that is, the G-modules V and V ∗ are essential. This certainly holds if Γ is
irreducible.

Definition 7. We say that a Cherednik parameter c ∈ RΓ(K) is O-integral if the K-algebra
Hc has an O-free O-structure. We call any such structure an O-integral structure.

It seems that the existence of integral structures of restricted rational Cherednik algebras
has never been considered before. Before we give a sufficient condition for their existence, note
that for any s ∈ RefΓ the set

CheΓ(s) := {(yj , xi)s | i, j ∈ [1, n]} ⊆ K

for a K-basis (yi)
n
i=1 of V with dual basis (xi)

n
i=1 is independent of the chosen basis.

Definition 8. We say that c ∈ RΓ(K) is potentially O-integral if c(s)CheΓ(s) ⊆ O for all
s ∈ RefΓ.

Theorem 4.1. If there exists a datum (y,A ,B,G) consisting of a basis y of V with dual
basis x, a basis A of K[V]G, a basis B of K[V ∗]G, and a generating system G of G satisfying
all of the following properties, then any potentially O-integral parameter c ∈ RΓ(K) is already
O-integral.

(i) A contains the images of the elements of x in K[V]G and every element of A is an
O-linear polynomial in these images. The basis B satisfies the analogous conditions.

(ii) The structure constants of K[V]G with respect to A are contained in O. The structure
constants of K[V ∗]G with respect to B satisfy the analogous conditions.
(iii) For all g ∈ G , the action of g on V in the basis y and the action of g on V ∗ in the basis

x are described by matrices with entries in O ⊆ K.

Proof. Let x = (xi)
n
i=1 and y = (yi)

n
i=1. Let xi and yi denote the images of xi and yi in

K[V]G and K[V ∗]G, respectively. A K-basis of Hc is given by (abg)a∈A ,b∈B,g∈G and it suffices
to show that the structure constants of Hc with respect to this basis are contained in O.
Due to (ii), products of the form aa′ and bb′ with a, a′ ∈ A and b, b′ ∈ B are O-linear
combinations of elements of A and B, respectively. Let g ∈ G . Then, by (iii), we have
gxi =

∑n
j=1 αijxj with αij ∈ O. Since the xi are contained in A by (i), it follows

that gxi =
∑n
j=1 αijxj is the basis expansion of gxi in the basis A . Hence, the structure

constants of the action of G on the elements of x := (xi)
n
i=1 are contained in O. If λ ∈ Nn,

then

gxλ = g

(n∏
i=1

xλii

)
=

n∏
i=1

gxλii .

By what we have just said, the elements gxi are O-linear combinations of the elements of
x. It now follows from (ii) that gxλ is an O-linear combination of the elements of A . This
extends to the action of G on all elements of K[V]G and therefore the structure constants of
the multiplication of elements of K[V]G ⊆ Hc with group elements are also contained in O.
Analogously, this holds for the action of G on K[V ∗]G. The only products of basis elements
not already covered are those of the form ba for b ∈ B and a ∈ A . We have

yjxi = xiyj +
∑

s∈RefΓ

(yj , xi)c(s)s

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 287

and this is an O-linear combination of basis elements. By a recursive application of this and the
fact that all other basis elements of A and B are polynomials in the xi and the yi, respectively,
we see that all the products ba are O-linear combinations of basis elements. This shows that
Hc has an O-free O-structure.

Proposition 4.2. For any basis y of V , there are a basis A of K[V]G and a basis B of
K[V ∗]G satisfying Theorem 4.1(i).

Proof. Let x = (xi)
n
i=1. We can then write K[V] = K[x1, . . . , xn]. Let f be a system of

fundamental invariants of Γ. Note that the degrees of the elements of f are strictly greater
than 1, since if f ∈ f were of degree equal to 1, then it would be an element of V ∗ fixed by G
and thus equal to zero as Γ∗ is essential by assumption. Since the Hilbert ideal hΓ of Γ is the
homogeneous ideal generated by f , it follows that hΓ does not contain linear polynomials. Now,
extend f to a Gröbner basis f̃ of the Hilbert ideal hΓ of Γ with respect to the lexicographical
order. A monomial basis A of K[V]G is then given by the images of the elements

{xα | α ∈ Nn and xα is not divisible by some LT(f) for f ∈ F}

in K[V]G (see Example 1). Now, suppose that the image of xi in K[V]G were not contained in

A . Then by definition there exists f ∈ f̃ such that LT(f) divides xi. But this means that f is
a linear polynomial and we just argued that no linear polynomial is contained in the Hilbert
ideal, so this is not possible. We can apply the same arguments to K[V ∗]G and this proves the
claim.

Proposition 4.3. For all but finitely many maximal ideals m of O, any potentially
Om-integral parameter c ∈ RΓ(K) is Om-integral. We call those m for which this is true
good for the restricted rational Cherednik algebras of Γ.

Proof. Let y be a basis of V . We know from Proposition 4.2 that we can find A and B
satisfying Theorem 4.1(i). Since everything is finite dimensional, the set S of the structure
constants occurring in Theorems 4.1(ii) and (iii) is finite. Since O is a Dedekind domain, we
have S ⊆ Om for all but finitely many maximal ideals m of O and so the assumptions in
Theorem 4.1 are satisfied for the bases A and B, and the ring Om.

The proof of Propositions 4.2 and 4.3 gives us an explicit way to find good maximal ideals
of O. This is summarized in Algorithm 2.

Algorithm 2: Find good maximal ideals.

1 Choose an explicit realization G ⊆ GLn(K) of G. This amounts to choosing a basis y of
V . Let x be the dual basis.

2 Compute fundamental invariants f of G and f∗ of the dual group G∗.
3 Compute Gröbner bases of hG = 〈f〉 and hG∗ = 〈f∗〉.
4 Compute monomial bases A of the coinvariant algebra K[x]/hG and B of K[y]/hG∗

using the Gröbner bases.
5 Compute using the Gröbner bases the structure constants of the coinvariant algebras

with respect to the bases A and B, respectively.
6 Let S be the set of all denominators occurring in these structure constants.
7 Choose a generating system G of G and extend S by the denominators occurring in the

corresponding matrices and their inverses.
8 Then all m not containing any element of S are good.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

288 u. thiel

Precisely this method is performed by the command BadPrimesForRRCA in Champ.
In [32, § 22], we computed sets of primes which contain all bad primes (for explicit choices of the
bases) for the exceptional complex reflection groups G4 up to G28 to ensure correctness of our
computations. We remark that some of these primes are surprisingly large and we do not yet
have a theoretical explanation for them.

4.3. The generic situation for restricted rational Cherednik algebras

The primary case we are considering is the following. Let K be a number field with ring
of integers O and let R be the polynomial ring over K with indeterminates (cs)s∈CΓ . Let
c : CΓ → R be the obvious map and let c be the composition of this map with the embedding
into the quotient field of R. Let H := Hc be the generic restricted rational Cherednik algebra
for Γ. Let m ∈ Max(O) be a good maximal ideal. Then, for any u ∈ Che−1

Γ OCΓ , the pair (m, u)
is a finite field specialization and we have the morphism

G0(Hc) G0(Hu) G0(H̃u(mm))
du
H

dm,u

H

dm
H̃u

where H̃u is some Om-integral structure of Hu. As explained in Remark 5, the probability of
this morphism being trivial in the sense that it induces a bijection between the simple modules
is quite high. Thus, a random choice of u will bring us in position of employing Proposition 3.1.
It remains to understand how we can lift back the results from the right to the left in this
diagram and this is the topic of the next section.

Before we go there, we point out that the same idea works of course if instead of a
parameter c yielding the generic point of the whole parameter space RΓ as above we take
a parameter yielding the generic point of some closed subscheme of RΓ, for example some
hyperplane. To have this possibility at hand was one of the reasons why we chose a general
commutative K-algebra as base ring everywhere and why we put emphasis on Champ being
able to handle general base rings. In exactly this way, starting with the generic situation and
then considering restrictions to hyperplanes, we approach the cases G4, G13, and G20.

5. Reconstructing submodules from abstract structures

Now that we have found a way of transporting modules to an algebra over a finite field, we
have to figure out how we can lift back the results obtained there to the initial setting. The
idea is the following: if the morphism d induced by a finite field specialization as in (4.1)
satisfies the condition in Proposition 3.1(3.1), then we can think of it as not destroying the
structure of modules. Hence, the ‘abstract structure’ of the radical of the image of a module
V with simple head under this morphism should be the same as the one of V itself. From this
‘abstract structure’ we might be able to compute a candidate for the radical of V and, using
the morphism d, we can check if this candidate was the correct one. Let us now make precise
what we mean by ‘abstract structure’ and how the candidate production works.

5.1. Abstract structures

Let V be an n-dimensional vector space over a field K with basis v and let U be an
m-dimensional subspace. For a basis u of U , let Mv

u ∈ Matn×m(K) be the matrix of
the embedding U ↪→ V with respect to the chosen bases. The class M v

U of Mv
u in

Matn×m(K)/GLm(K) consists precisely of the matrices Mv
u′ for bases u′ of U . It is an

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 289

elementary fact that inside M v
U there exists precisely one matrix in reduced column echelon

form, which we denote by Mv
U . Hence, once we fixed a basis of V , the subspaces of V are in

bijection with n×m matrices in reduced column echelon form. We will now define the notion
of the abstract structure of U with respect to v by using the matrix Mv

U .
Let M ∈ Matn×m(K). If E (M) denotes the set of entries of M and if θ : E (M) → S is a

map into a set S, then we denote by θ∗(M) ∈ Matn×m(S) the matrix defined by (θ∗(M))ij :=
θ(Mij). We denote by Mi,• the ith row of M and by M•,j the jth column of M . We define
Supp(Mi,•) := {j ∈ [1,m] |Mij 6= 0}. Analogously, we define Supp(M•,j) and Supp(M).

Now, suppose that M is in reduced column echelon form. We define two matrices cM, fM ∈
Matn×m(N>0) as follows. First, decompose M as M = cM + f′M , where each column of cM
just consists of the leading entry 1 of the corresponding column of M (if there is one) and

f′M is the matrix M − cM . We call cM the coarse structure of M . Let E be the set of entries
of f′M and, for x ∈ E , let Ex := {(i, j) ∈ [1, n] × [1,m] | Mij = x}. We equip each Ex with
the lexicographical order, which is a total order so that Ex has a unique minimum, and define
an order 6 on E by x 6 y if and only if min Ex 6 min Ey. This is a total order on the
finite set E , so that assigning to each x ∈ E its position in E relative to 6 defines a function
e : E → N>0. We now define fM := e∗(f′M) and call this the fine structure of M . We call the
pair Abs(M) := (cM, fM), which we also write as cM + fM , the abstract structure of M and
call #E the complexity of M . By Absn×m, we denote the set of abstract structures of n×m
matrices in reduced column echelon form.

Example 2. Let

M :=

1 0
0 1
2 1
1 4

 =

1 0
0 1
0 0
0 0

︸ ︷︷ ︸

cM

+

0 0
0 0
2 1
1 4

︸ ︷︷ ︸

f′M

∈ Mat3×2(Q).

Then

Abs(M) =

1 0
0 1
1 2
2 3

 =

1 0
0 1
0 0
0 0

︸ ︷︷ ︸

cM

+

0 0
0 0
1 2
2 3

︸ ︷︷ ︸

fM

∈ Mat3×2(N>0).

In this example, we have E = {2, 1, 4} and e : E → [1, 3] is defined by e(2) = 1, e(1) = 2,
e(4) = 3. The complexity of M is equal to 3.

Definition 9. If V is a finite-dimensional vector space over a field K with basis v, then
the abstract structure Absv

U with respect to v of a subspace U of V is the abstract structure
of the matrix Mv

U .

Definition 10. If an abstract structure M := (cM, fM) ∈ Absn×m with m 6 n is given,
then, for any map θ : E (fM)→ K× with θ(i) 6= θ(j) for i 6= j, we get a matrix cM + θ∗fM ∈
Matn×m(K) in reduced column echelon form describing a unique subspace Uv

M,θ of V with
respect to the basis v. We call this subspace the concretization of M with respect to θ and v.

Note that an abstract structure itself is independent of a base field: this is precisely the point
of abstract structures.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

290 u. thiel

5.2. Existence of submodules with prescribed abstract structure

We can now formulate the primary aim of this section and we do this in a graded setting as
the efficiency of Champ also relies on the fact that we make use of gradings throughout.

Question 1. Let A be a finite-dimensional Z-graded algebra over a field K, let V be a
Z-graded n-dimensional A-module, and let v := (vi)

n
i=1 be a homogeneous basis of V . The

question this whole section is about is formulated as follows.

Given an abstract structure M := (cM, fM) ∈ Absn×m with m 6 n, is there
a graded submodule U of V with Absv

U = M? In other words, is there a map
θ : E (fM)→ K× with θ(i) 6= θ(j) for i 6= j such that the concretization Uv

M,θ is a
graded submodule of V ?

To analyze this question, we choose a set a := (ak)rk=1 of homogeneous K-algebra generators
of A and denote for each k ∈ [1, r] by X(k) ∈ Matn(K) the matrix describing the action of ak
on V in the basis v, that is,

akvi =

n∑
l=1

X
(k)
li vl =

∑
l∈Dr

ki

X
(k)
li vl (5.1)

for all j ∈ [1, n], where

Dr
ki := {l ∈ [1, n] | deg(ak) + deg(vi) = deg(vl)}.

Theorem 5.1. The answer to Question 1 is positive if and only if the following conditions
are satisfied:

(i) for each j ∈ [1,m], the degree of vi is constant for all i ∈ Supp(M•,j). We define dc
M (j)

to be this degree;
(ii) there exist pairwise different θ1, . . . , θs ∈ K×, where s is the complexity of M , and a

family

(Y
(k,j)
l)k∈[1,r],j∈[1,m]

l∈Dc
kj

⊆ K,

where
Dc
kj := (dc

M)−1(deg(ak) + dc
M (j))

such that the equations

E1
i,j,k :

∑
l∈Iijk

cMljX
(k)
li +

∑
l∈Iijk

θ
fMlj

X
(k)
il = 0 (5.2)

hold for all j ∈ [1,m], k ∈ [1, r], and i ∈ Supp(M•,j) and such that the equations

E2
ijk :

∑
l∈Iijk

cMljX
(k)
il +

∑
l∈Iijk

θ
fMlj

X
(k)
il =

∑
l∈Dc

kj

Y
(k,j)
l cMil +

∑
l∈Dc

kj

Y
(k,j)
l θ

fMil
(5.3)

hold for all j ∈ [1,m], k ∈ [1, r], and i ∈ [1, n] \ Supp(M•,j), where

Iijk := {l ∈ Supp(M•,j) | i ∈ Dr
kl}.

Proof. Suppose that the conditions are satisfied. Let θ : [1, s] → K× be the map with
θ(i) := θi. Then the concretization U := Uv

M,θ defines a unique subspace of V . Let

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 291

N•,j := cM•,j + (θ∗fM)•,j be the ‘specialization’ of the jth column of M in θ. Define

uj :=

n∑
i=1

Ni,jvi =
∑

i∈Supp(M•,j)

Ni,jvi =
∑

i∈Supp(M•,j)

cMijvi + θ
fMijvi. (5.4)

Then (uj)
m
j=1 is a basis of U and because of (i) this is a graded subspace. It remains to show

that U is A-invariant. This holds if and only if akU ⊆ U for all k ∈ [1, r], and this in turn
holds if and only if akuj ∈ U for all k and j, so akuj ∈ 〈u1, . . . , um〉K . As uj is homogeneous
of degree deg(ak) + dc

M (j), this is equivalent to akuj ∈ 〈ul | l ∈ Dc
kj〉. This is equivalent to the

existence of elements Y
(k,j)
l ∈ K such that

akuj =
∑
l∈Dc

kj

Y
(k,j)
l ul. (5.5)

Combining equations (5.1), (5.4), and (5.5) implies that this is equivalent to the following
equality for each j ∈ [1,m] and k ∈ [1, r]:

ak

(∑
i∈Supp(M•,j)

cMijvi + θ
fMij

vi

)

=
∑
l∈Dc

kj

Y
(k,j)
l

(∑
i∈Supp(M•,j)

cMilvi + θ
fMil

vi

)
⇔

∑
i∈Supp(M•,j)

∑
l∈Dr

ki

cMijX
(k)
li vl +

∑
i∈Supp(M•,j)

∑
l∈Dr

ki

θ
fMij

X
(k)
li vl

=
∑

i∈Supp(M•,j)

∑
l∈Dc

kj

Y
(k,j)
l cMilvi +

∑
i∈Supp(M•,j)

∑
l∈Dc

kj

Y
(k,j)
l θ

fMil
vi

⇔
n∑
i=1

∑
l∈Iijk

cMljX
(k)
il vi +

n∑
i=1

∑
l∈Iijk

θ
fMlj

X
(k)
il vi

=
∑

i∈Supp(M•,j)

∑
l∈Dc

kj

Y
(k,j)
l cMilvi +

∑
i∈Supp(M•,j)

∑
l∈Dc

kj

Y
(k,j)
l θ

fMil
vi.

As v is a basis of V , each of these equations holds if and only if the coefficients of vi for each
i ∈ [1, n] are the same. If i /∈ Supp(M•,j), the coefficient equation is∑

l∈Iijk
cMljX

(k)
il +

∑
l∈Iijk

θ
fMlj

X
(k)
il = 0.

If i ∈ [1, n] \ Supp(M•,j), the coefficient equation is∑
l∈Iijk

cMljX
(k)
il +

∑
l∈Iijk

θ
fMlj

X
(k)
il =

∑
l∈Dc

kj

Y
(k,j)
l cMil +

∑
l∈Dc

kj

Y
(k,j)
l θ

fMil
.

These are the two asserted types of equations. It is evident from the discussion that these
equations are also necessary for the existence of a graded submodule.

5.3. Finding submodules with prescribed abstract structure (ModFinder)

Let E1
M,v := (E1

i,j,k) be the system of equations defined by (5.2), let E2
M,v := (E2

i,j,k) be the
system of equations defined by (5.3), and let EM,v be the whole system. For finding a graded

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

292 u. thiel

submodule of V with abstract structureM , we have to solve the system EM,v for the θ-variables

θ1, . . . , θs and the auxiliary variables Y
(k,j)
l . If there is a unique submodule with this abstract

structure, for example if M is the abstract structure of the unique maximal submodule when
V has simple head, this system will have a unique solution we are searching for.

While E1
M,v is an inhomogeneous linear system for the θ-variables, the system E2

M,v is

quadratic because of the products Y
(k,j)
l θfMil

occurring in the equations. Hence, it will be very
difficult in general to solve this system. But we can still try to consecutively solve linear parts
of this system. Namely, we can start solving E1

M,v, which is easy as it is a linear system. The
point is now that this system might already pin down one of the θ-variables. When inserting
the determined θ-variables into the system E2

M,v, we might get further linear equations just
involving the auxiliary variables. If we can determine some of the auxiliary variables, then
inserting them into E2

M,v might yield new linear equations for the θ-variables, which might pin
down further θ-variables etc. This means that we consecutively solve the ‘specialized systems’
LM,v(θ′, Y ′) given by the linear equations of the system EM,v when inserting a family θ′ of
θ-variables and a family Y ′ of auxiliary variables. If this process leads to a (unique) solution
of EM,v, we say that this system is (uniquely) linearly solvable. It might happen, however,
that at some stage we cannot determine any new variables: then the system is not linearly
solvable.

As we will work with modules of dimension up to 3000, we need a very efficient strategy for
determining the θ-variables by linear equations of EM,v (if this is possible at all). To this end,
we define for any q ∈ [1, s] a subsystem of LqM,v(θ′, Y ′) just consisting of the linear equations
of EM,v(θ′, Y ′) involving θq and all dependent variables. To make this precise, denote for
a subsystem E of EM,v by Θ(E) the set of non-determined θ-variables occurring in these

equations. For q ∈ [1, s], let L̃qM,v(θ′, Y ′) just consist of the equations of LM,v(θ′, Y ′) involving
the variable θq, that is,

L̃qM,v(θ′, Y ′) := {L ∈ LM,v(θ′, Y ′) | θq ∈ Θ(L)}.

Now, define LqM,v(θ′, Y ′) inductively as follows. First, LqM,v(θ′, Y ′) := L̃qM,v(θ′, Y ′). For each

θp ∈ Θ(LqM,v(θ′, Y ′)), we add to LqM,v(θ′, Y ′) the equations of L̃pM,v(θ′, Y ′). We repeat this

process until LqM,v(θ′, Y ′) stabilizes.

We will split the system EM,v once more by defining Lq,gM,v(θ′, Y ′) for a subset g ⊆ [1, r]

as the subsystem of LqM,v(θ′, Y ′) just involving equations E1
ijk or E2

ijk with k ∈ g. The idea
behind this is that we do not want to consider all algebra generators at once: perhaps a few
algebra generators will be sufficient to determine all θ-variables and this means that we have
to consider fewer equations. This idea turned out to be very efficient in experiments (see § 9).

Our idea of solving EM,v is now summarized in Algorithm 3. This algorithm, which we call
the ModFinder algorithm, has been implemented in this way (and with several additional
ideas we cannot discuss here) in Champ in the subpackage ModFinder. In line 22, we have to
check whether the concretization Uv

M,θ is indeed a submodule as we are just solving subsystems
of EM,v and just verifying necessary conditions up to this point. This can efficiently be checked
using the graded spinning algorithm: a graded adaptation of the standard spinning algorithm
explained for example in [23, § 1.3]. All this is provided by the new type ModGr for graded
modules we have implemented in Champ.

Remark 7. Obviously, there is no reason why we can solve EM,v just by consecutively
solving specialized linear subsystems. For the radicals of Verma modules for restricted rational
Cherednik algebras, however, this surprisingly turned out to be almost always the case and our
algorithm was amazingly efficient; we cannot yet give theoretical arguments in favor of this.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 293

Algorithm 3: Finding submodules with prescribed abstract structure (ModFinder).

Data: Data as in Question 1 and Theorem 5.1 satisfying Theorem 5.1(i), and a subset
g ⊆ [1, r].

Result: Decides if the system EM,v is uniquely linearly solvable. If so, returns a
graded submodule U of V with Absv

U = M .
1 θ′ := ∅; Y := ∅;
2 while #θ′ 6= s do
3 progress := false;
4 for q ∈ Θ(EM,v(θ′, Y ′)) do
5 if Lq,gM,v(θ′, Y ′) is not consistent then

6 return There is no graded submodule with abstract structure M ;
7 end
8 Let θ′′ and Y ′′ be the θ-variables and auxiliary variables, respectively, determined

by Lq,gM,v(θ′, Y ′);

9 if θ′′ or Y ′′ contains a variable not in θ′ or Y ′, respectively, then
10 θ′ := θ′ ∪ θ′′; Y ′ := Y ′ ∪ Y ′′;
11 progress := true;

12 end

13 end
14 if progress = false then
15 if g = [1, r] then
16 return EM,v is not uniquely linearly solvable;
17 else
18 Repeat the above algorithm with g = [1, r];
19 end

20 end

21 end
22 Check if Uv

M,θ is indeed a submodule of V ;

23 if this is true then
24 return Uv

M,θ;

25 else
26 return EM,v is not uniquely linearly solvable;
27 end

Remark 8. In experiments, we observed that the choice of g and the order in which we try
to determine θ-variables (line 4 in Algorithm 3) can have a serious impact on the run time
of the algorithm (see § 9). We do not know yet how to determine an optimal choice of g and
the sequence of θ-variables to solve for. The interaction between the subsystems Lq,gM,v(θ′, Y ′)
seems to be very hard to understand. In Champ we have implemented a selection process for
the systems, which performs quite well in experiments.

6. A Las Vegas algorithm for computing heads and constituents

With the theory of finite field specializations and the ModFinder algorithm, we can now
turn our idea explained abstractly in Strategy 2 into an algorithm. The result is Algorithm 4.
Remember that we are considering a finite-dimensional algebra A over a field and a family
(Vλ)λ∈Λ of finite-dimensional A-modules with simple heads (Sλ)λ∈Λ such that this family is
constituent-closed, meaning that every constituent of a member Vλ of this family is the head

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

294 u. thiel

Algorithm 4: Computing heads and decomposition matrices.

Data: Data as explained in § 6
Result: If successful, returns the simple modules Sλ and the multiplicity mλ,µ of Sµ

in Vλ.
1 Randomly choose a strongly positive morphism d : G0(A)→ G0(B) with B

a finite-dimensional algebra over a finite field;
2 for λ ∈ Λ do
3 Compute a representative V λ of d([V]) ;

4 Compute using the MeatAxe the radical Jλ of V λ;

5 Determine the abstract structure J
abs

λ of J in V λ;

6 Using Algorithm 3, try to find a submodule Jλ of Vλ with abstract structure J
abs

λ ;
7 if Jλ could not be determined then
8 return No success;
9 else

10 Qλ := Vλ/Jλ;

11 Compute a representative Qλ of d([Qλ]);

12 Check using the MeatAxe if Qλ is irreducible;
13 if this is not true then
14 return No success;
15 end

16 end

17 end
18 for λ ∈ Λ do
19 Compute using the MeatAxe the constituents (Uλ,θ)θ∈Θλ and their multiplicities

mλ,θ of V λ;

20 Find using the MeatAxe an injection ιλ : Θλ ↪→ Λ such that Uλ,θ ∼= Qµ for µ ∈ Λ

and θ ∈ Θλ if and only if µ = ιλ(θ);
21 if no such injection exists then
22 return No success;
23 end
24 mλ, ιλ(θ) := mλ,θ for all θ ∈ Θλ and mλ,µ := 0 for all µ /∈ Im ιλ;

25 end
26 return (Qλ)λ∈Λ, (mλ,µ)λ,µ∈Λ;

Sµ of some Vµ. Algorithm 4 attempts to compute the simple modules Sλ and the multiplicities
of Sµ in Vλ.

We see that there are three branches in our algorithm whose result will be that the algorithm
is not successful. On the other hand, if the algorithm is successful, it follows from our discussion
that the result returned is the correct result. This means that our algorithm is a so-called Las
Vegas algorithm, like the MeatAxe itself. Because of this, it is not easy to provide a complexity
analysis of our approach. Note that whenever the algorithm is unsuccessful, it makes sense to
run it again with a different finite field specialization.

Remark 9. In Champ we have implemented an extension of the above algorithm motivated
by the few cases where it was not successful. Namely, in this case, we randomly pick a vector
v ∈ Vλ and compute (using the graded spinning algorithm) the submodule U of Vλ it generates.
In case it is a proper submodule, we compute the quotient Q := Vλ/U and apply our algorithm

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 295

to Q. If it is again not successful, we repeat this process. With this simple extension we could
indeed obtain all results for restricted rational Cherednik algebras we could compute so far.

6.1. Application to Gordon’s questions

Let us discuss how we apply our algorithm to Gordon’s questions § 2.4 in case of generic
restricted rational Cherednik algebras (see § 4.3) for irreducible complex reflection groups.
First, we choose a realization Γ of the reflection group over a number field K with ring of
integers O (this is always possible). Then we compute which maximal ideals of O are certainly
good using Algorithm 2. Next, we compute the generic Euler families Euc (see § 2.7). For each
Euler family Λ, the Verma modules (∆c(λ))λ∈Λ form a constituent-closed family of modules
with simple head to which we apply our algorithm.

The random finite field specialization (line 1 of Algorithm 4) is chosen as dm,u

H
by randomly

choosing a good maximal ideal m and a point u ∈ Che−1
Γ OCΓ as explained in § 4.3.

All this is automatically performed in Champ by the commands HeadOfLocalModule and
HeadsOfLocalModules contained in the subpackage RadicalLift. This command is in general
applicable to any constituent-closed family of modules with simple head over an algebra over
a rational function field over a number field. Note, however, that one has to ensure by theory
that the chosen data (m, u) is indeed a finite field specialization in the sense of § 4.

If successful, our algorithm computes the generic Verma families (see § 2.8) and, due to the
result by Bonnafé and Rouquier (see § 2.8), we also know the Calogero–Moser families. Note
that in case of success we have also explicitly computed the simple modules so that we know
their dimension, their Poincaré series, and using character theory we can also compute their
structure as graded G-modules. In this way we can answer all of Gordon’s questions.

The same idea is of course applicable if we do not start with the generic algebra H but with
its restriction to a hyperplane, say. This is exactly what we did to get the results for G4, G13,
and G22.

Remark 10. If we work with a generic restricted rational Cherednik algebra H for a
reflection group Γ over a finite field K which splits over K, the choice of the morphism d
in line 1 of the algorithm is actually simpler. As restricted rational Cherednik algebras split,
we have a decomposition morphism dp

H
: G0(H(0)) → G0(H(p)) for any prime ideal p of the

base ring of H and we can choose for p any K-point of RΓ. This approach is also covered by
Champ and it applies in particular to Verma modules for rational Cherednik algebras at t = 1
in positive characteristic (see [2]).

7. Summary of the results

We summarize here as theorems the results we have obtained so far using Champ. All results
are listed explicitly in tabular form in the online supplementary material available from the
publisher’s website. We also comment on some observations in the hope that some general
theorem lies behind them. The reader should check the web site http://thielul.github.io/
CHAMP/ and [33] for further results obtained after publication of this article.

Theorem 7.1. For generic parameters for the groups

G4,G5,G6,G7,G8,G9,G10,G12,G13,G14,G15,G16,G20,G22,G23 = H3,G24

the following hold:
(i) we have the explicit answers to all of Gordon’s questions;

(ii) Martino’s generic parameter conjecture holds;

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

http://thielul.github.io/CHAMP/
http://thielul.github.io/CHAMP/
https://doi.org/10.1112/S1461157015000054

296 u. thiel

(iii) the Calogero–Moser families are equal to the Euler families. This implies that the locus
of ‘exceptional’ parameters, that is, those parameters for which the Calogero–Moser
families become coarser than the generic Calogero–Moser families, is contained in the
Euler variety and is thus a union of hyperplanes;

(iv) the Poincaré series of the simple modules are palindromic, that is, their list of coefficients
can be reversed without changing the polynomial.

Theorem 7.2. For all parameters for the groups

G4,G12,G13,G20,G22,G23 = H3,G24

the following hold†:
(i) we have the explicit answers to all of Gordon’s questions;
(ii) Martino’s conjecture holds in its complete form, that is, the Rouquier k]-families refine

the Calogero–Moser k-families for all parameters k.

Theorem 7.3. In all the cases covered by Theorems 7.1 and 7.2, the following property
holds: if λ is a character of minimal degree d in a Calogero–Moser family F , then the
multiplicity of L(µ) in ∆(λ) for µ ∈ F is a positive multiple of d.

Theorem 7.4. For the groups

G4,G6,G8,G12,G13,G14,G20,G22,G23 = H3,G24

we explicitly know the locus of ‘exceptional’ parameters. Except for the group G8, it
coincides precisely with the union of Chlouveraki’s essential hyperplanes for cyclotomic Hecke
algebras [8]. For G8, however, the Euler hyperplane k1,1 − k1,2 + k1,3 is one additional
‘exceptional’ non-essential hyperplane‡.

Theorem 7.5. Also for G6, G8, and G14 we have the answers to all of Gordon’s questions
for the generic points of all Euler hyperplanes.

Remark 11. Theorem 7.5 does not yet imply that we know the results for all parameters
for G6, G8, and G14, as the parameter space for these groups is three dimensional and there
is no theory of ‘semi-continuity’ of the representation theory of restricted rational Cherednik
algebras so far. To this end, we would also have to consider all intersections of the Euler
hyperplanes, but this would be way too much to compute and document. So, to solve these
cases we need new theory.

Question 2. Our results suggest the following questions.
(i) Are the Poincaré series of simple modules for generic parameters always palindromic? If

not, what lies behind this property?
(ii) Is the property about the decomposition matrices of the Verma modules in Theorem 7.3

always true?
(iii) Is the locus of ‘exceptional parameters’ always a union of hyperplanes (this was already

asked by Bonnafé and Rouquier [5])? Does it always contain the union of Chlouveraki’s
essential hyperplanes?

†Note that there is just one parameter for G12, G22, G23, and G24, so these results are just the generic
ones. But for G4, G13, and G20 there are two parameters and here much more work has to be done.

‡This was first discovered by Bonnafé using different methods.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 297

Remark 12. For special parameters it is no longer true that the Poincaré series of simple
modules is palindromic. For G4 on the hyperplane k1,1 − 2k1,2 = 0 we find a simple module
with Poincaré series 1 + 2t, which is not palindromic. There are many more counter-examples.

Remark 13. The first examples we found where the Rouquier families are strictly finer
than the Calogero–Moser families are for G20 and the hyperplanes k1,1 = 0, k1,2 = 0, and
k1,1 − k1,2 = 0.

Remark 14. So far we have no idea about general properties of the (graded) G-module
structures of the simple modules. We hope that our explicit results help to reveal them.

Remark 15. We discussed rational Cherednik algebras for reflection groups over arbitrary
fields as long as all reflections are diagonalizable and designed Champ to work in this
generality. In [32], we computed for example the representation theory of the restricted
rational Cherednik algebra attached to the general orthogonal group GO3(3) and to
modular reflection representations of some symmetric groups. These cases are not yet
understood theoretically and we hope that such examples will help to develop a general
theory.

8. Champ

Now, we pass to the experimental part of this article. Everything we discussed so far has been
implemented in Champ. The source code and documentation (including a Wiki) of Champ are
freely available at http://thielul.github.io/CHAMP/. All parts are licensed under the GPL.
Due to some operating system functions used in Champ, it will not work on Windows systems,
just on Linux and Mac OS X systems. Moreover, a Magma version of at least 2.19 (released
in December 2012) is necessary as we make use of user-defined types which did not exist in
earlier versions.

8.1. Running Champ

Once the downloaded package is unpacked, one has to configure Champ by running

$./ configure

in a terminal and inside the directory of Champ. This sets several variables to the absolute
path of Champ and is necessary for working with it. Champ is now started by running

$./ champ

Loading file "/CHAMP/CHAMP.m"

CHAMP (CHerednik Algebra Magma Package)

Version v1.5

Copyright (C) 2013, 2014 Ulrich Thiel

Licensed under GNU GPLv3 , see LICENSE.txt

thiel@mathematik.uni -stuttgart.de

http :// thielul.github.io/CHAMP/

>

Before we give a rough description of the capabilities of Champ, we point out the following
important aspect.

All actions in Magma are right actions. This means that whenever we start with
a reflection group acting from the left and we consider left modules over rational
Cherednik algebras, we have to transpose all matrices in Magma. Moreover, the

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

http://thielul.github.io/CHAMP/
https://doi.org/10.1112/S1461157015000054

298 u. thiel

rational Cherednik algebra implemented in Champ is the opposite algebra of
the one we are describing here theoretically. Hence, we have to reverse all products
when passing between theory and Champ.

This reversion process between theory and Champ might be confusing at first, but we found
it much more confusing when artificially working with left actions in Magma.

8.2. Reflection groups

As one aim of Champ was to verify Martino’s conjecture, we had to make sure that we use
the same labelings of irreducible characters of complex reflection groups as the one used by
Chlouveraki [8] for the computation of Rouquier families. This is why we imported all relevant
data from Chevie (see [12]) and implemented basic database support in Champ to deal with
this data. This is illustrated by the following example.

> G:= ExceptionalComplexReflectionGroup (4);

> CharacterTable (~G);

> G‘CharacterNames;

[\phi_{1,0}, \phi_{1,4}, \phi_{1,8}, \phi_{2,5}, \phi_{2,3}, \phi_{2,1},

\phi_ {3,2}]

In this example, we loaded the exceptional complex reflection group G4. The realization is
the same as in Chevie, but note that all matrices are transposed. Then we attached the
character table to this group. When doing this, the names of the characters used in Chevie
are automatically loaded and stored in the attribute CharacterNames of the group. We see
in this example that one philosophy of Champ is to work with procedures taking a reference
to an object as input and storing their result in the corresponding attribute of the object.
The reason for this is that we want to have easy access to all data already computed and
to handle the large amount of data necessary to work with rational Cherednik algebras. The
absolutely irreducible characteristic zero representations are now attached using the procedure
Representations(~G,0) and can be accessed via G‘Representations[0]. Again we use
the exact same realizations of these representations as in Chevie. Absolutely irreducible
representations in characteristic p can be attached by calling the above command with p
instead of 0.

Next to the characters and representations, the reflections are important. A structured
collection of the reflections is attached by the command ReflectionLibrary, which gathers
all the reflections of a reflection group Γ in a nested list of the form

(((s)Hs=H)H∈Ω)Ω∈AΓ .

Hence, for each orbit Ω of reflection hyperplanes of Γ, we have for each H ∈ Ω a list consisting
of the reflections with hyperplane H. This allows us to label a reflection of Γ by a triple (i, j, k),
where i refers to the ith reflection hyperplane orbit, j refers to the jth hyperplane in the orbit
labeled by i, and k refers to the kth reflection with hyperplane j. This is precisely the triple
we get when passing a reflection to the function ReflectionID. From the reflection library
we automatically store representatives of the conjugacy classes of reflections in the attribute
ReflectionClasses.

8.3. Cherednik algebras

A generic Cherednik parameter can be obtained as follows.

> G:= ExceptionalComplexReflectionGroup (4);

> c:= CherednikParameter(G : Type :=" GGOR "); c;

Mapping from: { 1 .. 2 } to Multivariate rational function field of rank 2

over Cyclotomic Field of order 3 and degree 2

<1, (-zeta_3 + 1)*k_{1,1} + (2* zeta_3 + 1)*k_{1,2}>

<2, (zeta_3 + 2)*k_{1,1} + (-2* zeta_3 - 1)*k_{1,2}>

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 299

This will be a map c : [1, N] → L, where N is the number of conjugacy classes of reflections
and L is the appropriate rational function field (the residue field in the generic point of RΓ).
The numbers 1 to N of the domain of c refer to the numbers in ReflectionClasses. So, if s
is a reflection of Γ and i is its reflection class number, then c(i) = c(s).

The command CherednikParameter has the additional option Type, which allows
specification of different types of parameters. In the above, we selected the GGOR type
(see § 2.6). We can instead also pass EG as type, which are the parameters used in [9], or
we can pass BR, which are the parameters used in [5]. There is a further option Rational,
which, when set to false, returns the parameter with values in the polynomial ring instead of
the rational function field. Instead of using generic parameters, the user can define any map
c : [1, N]→ L as above, which can be used for a Cherednik parameter.

Rational Cherednik algebras can be created as follows.

> G:= ExceptionalComplexReflectionGroup (4);

> c:= CherednikParameter(G : Type :="EG");

> H:= RationalCherednikAlgebra(G,<1,c>); H;

Rational Cherednik algebra

Generators:

g1, g2 , y1 , y2, x1, x2

Generator degrees:

0, 0, -1, -1, 1, 1

Base ring:

Multivariate rational function field of rank 2 over Cyclotomic Field of

order 3 and degree 2

Variables: k_{1,1}, k_{1,2}

Group:

MatrixGroup (2, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3

Generators:

[1 0]

[0 zeta_3]

[1/3*(2* zeta_3 + 1) 1/3*(2* zeta_3 - 2)]

[1/3*(zeta_3 - 1) 1/3*(zeta_3 + 2)]

t-parameter:

1

c-parameter:

Mapping from: { 1 .. 2 } to Multivariate rational function field of rank 2

over Cyclotomic Field of order 3 and degree 2

<1, (-zeta_3 + 1)*k_{1,1} + (2* zeta_3 + 1)*k_{1,2}>

<2, (zeta_3 + 2)*k_{1,1} + (-2* zeta_3 - 1)*k_{1,2}>

> H.3*H.5;

[1 0]

[0 1]*(y1*x1)

> H.5*H.3;

[1/3*(-2* zeta_3 - 1) 1/3*(-2* zeta_3 - 4)]

[1/3*(- zeta_3 - 2) 1/3*(- zeta_3 + 1)]*(1/3*(2* zeta_3 + 4)*k_{1,1} +

1/3*(-4* zeta_3 - 2)*k_{1,2})

+

[1/3*(-2* zeta_3 - 1) 1/3*(-2* zeta_3 + 2)]

[1/3*(2* zeta_3 + 1) 1/3*(- zeta_3 + 1)]*(1/3*(2* zeta_3 + 4)*k_{1,1} +

1/3*(-4* zeta_3 - 2)*k_{1,2})

+

[1/3*(-2* zeta_3 - 1) 1/3*(4* zeta_3 + 2)]

[1/3*(- zeta_3 + 1) 1/3*(- zeta_3 + 1)]*(1/3*(2* zeta_3 + 4)*k_{1,1} +

1/3*(-4* zeta_3 - 2)*k_{1,2})

+

[1 0]

[0 1]*(y1*x1 + 1)

+

[1/3*(2* zeta_3 + 1) 1/3*(2* zeta_3 + 4)]

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

300 u. thiel

[1/3*(-2* zeta_3 - 1) 1/3*(zeta_3 + 2)]*(1/3*(-2* zeta_3 + 2)*k_{1,1} +

1/3*(4* zeta_3 + 2)*k_{1 ,2})

+

[1/3*(2* zeta_3 + 1) 1/3*(-4* zeta_3 - 2)]

[1/3*(zeta_3 + 2) 1/3*(zeta_3 + 2)]*(1/3*(-2* zeta_3 + 2)*k_{1,1} +

1/3*(4* zeta_3 + 2)*k_{1 ,2})

+

[1/3*(2* zeta_3 + 1) 1/3*(2* zeta_3 - 2)]

[1/3*(zeta_3 - 1) 1/3*(zeta_3 + 2)]*(1/3*(-2* zeta_3 + 2)*k_{1,1} +

1/3*(4* zeta_3 + 2)*k_{1 ,2})

In the above example, we created the opposite rational Cherednik algebra Hop := Hop
1,c for

G4 and the rational point c of RΓ. The generators of H can be accessed via H.i, where i lies
between 1 and 2d+e, where d is the dimension of Γ and e is the number of generators of Γ. We
see in the above output that the generators are ordered as g1, g2, y1, y2, x1, x2. In PBW basis
expressions, group algebra elements are always on the left and in matrix form. In the example,
we computed the products y1x1 and x1y1. Keep in mind that H as created is the opposite
algebra to what we treated theoretically before. This is why x1y1 is not in PBW form: it is
actually the product y1x1, and this has to be rewritten.

Example 3. The following very elaborate example from Bonnafé and Rouquier [5, § 19] can
be treated easily in Champ. The Weyl group of type B2 can be realized as the matrix group
Γ in GL2(Q) generated by the reflections

s := g1 :=

(
0 1
1 0

)
, t := g2 :=

(
−1 0
0 1

)
.

Let y1, y2 be the standard basis of V := Q2 and let x1, x2 be the dual basis. Let {A,B}
be algebraically independent over Q and define cs := −2A, ct := −2B. As s and t are
representatives of the conjugacy classes of reflections of Γ, this yields a map c : CΓ → Q(A,B)
giving the generic point of RΓ. Now, define the following elements of H0,c:

σ := y2
1 + y2

2 , π := y2
1y

2
2 , Σ := x2

1 + x2
2, Π := x2

1x
2
2.

In [5, 19.4.5], it is now proven that the Euler element euc ∈ H0,c is a zero of the polynomial

t8− 2(σΣ + 4A2+ 4B2)t6+ (σ2Σ2 + 2(σ2Π + Σ2π − 8πΠ) + 8(A2 +B2)σΣ + 16(A2 −B2)2)t4

− 2((σΣ + 4A2 − 4B2)(σ2Π + Σ2π)− 8σΣπΠ + 2B2σ2Σ2)t2 + (σ2Π− Σ2π)2.

This fact was one essential part in determining the Calogero–Moser cells and to prove the
Calogero–Moser cell conjecture for B2. In [5], this is proven by an argument based on
the undeformed situation in H0,0. As the computation is quite elaborate and one does not
want to write down all its details, let us see if we can verify this fact with Champ.

> G:= CHAMP_GetFromDB (" GrpMat/B2_BR","GrpMat "); // loads B2 as above

> C:= CherednikParameter(G:Type :="BR");

> H:= RationalCherednikAlgebra(G,C);

> eu:= EulerElement(H); eu;

[1 0]

[0 1]*(y1*x1 + y2*x2)

+

[0 1]

[1 0]*(-C1)

+

[-1 0]

[0 1]*(-C2)

+

[1 0]

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 301

[0 -1]*(-C2)

+

[0 -1]

[-1 0]*(-C1)

> A:=C(1)*(-1/2); B:=C(2)*(-1/2);

> y2:=H.4; y1:=H.3; g2:=H.2; g1:=H.1; x2:=H.6; x1:=H.5;

> sigma :=y1^2+y2^2; pi:=y2^2*y1^2; Sigma:=x1^2+x2^2; Pi:=x2^2*x1^2;

> time eu^8 - 2*eu^6*(Sigma*sigma + 4*A^2 + 4*B^2) +

eu^4*(Sigma ^2* sigma^2 + 2*(Pi*sigma^2 + pi*Sigma^2 - 8*Pi*pi) +

8*Sigma*sigma *(A^2+B^2) + 16*(A^2-B^2)^2) -

2*eu^2*((Pi*sigma^2 + pi*Sigma ^2)*(Sigma*sigma +

4*A^2 - 4*B^2) - 8*Pi*pi*Sigma*sigma + Sigma ^2* sigma ^2*B^2*2) +

(Pi*sigma ^2 - pi*Sigma ^2)^2;

0

Time: 2.360

Hence, we could indeed verify (within only 2 s) that the Euler element is a zero of the
polynomial above. Note again that we reversed all products, as Champ works in the opposite
algebra.

8.4. Verma modules

Let us now see how we can compute in Champ with Verma modules for restricted rational
Cherednik algebras and how we can answer Gordon’s questions.

> G:= ExceptionalComplexReflectionGroup (4); Representations (~G,0);

> c:= CherednikParameter(G:Rational := false); c;

Mapping from: { 1 .. 2 } to Polynomial ring of rank 2 over Cyclotomic

Field of order 3 and degree 2

<1, (-zeta_3 + 1)*k_{1,1} + (2* zeta_3 + 1)*k_{1,2}>

<2, (zeta_3 + 2)*k_{1,1} + (-2* zeta_3 - 1)*k_{1,2}>

> R:= Codomain(c); R;

Polynomial ring of rank 2 over Cyclotomic Field of order 3 and degree 2

Order: Lexicographical

Variables: k_{1,1}, k_{1,2}

> cH:= SpecializeCherednikParameterInHyperplane(c, R.1-R.2); c;

Mapping from: { 1 .. 2 } to Multivariate rational function field of

rank 1 over Cyclotomic Field of order 3 and degree 2

<1, (zeta_3 + 2)*k_{1,2}>

<2, (-zeta_3 + 1)*k_{1,2}>

> EulerFamilies(G,cH);

{@

<{@ 5, 6 @}, 2*k_{1,2}>,

<{@ 7 @}, 0>,

<{@ 2, 3, 4 @}, -4*k_{1,2}>,

<{@ 1 @}, 8*k_{1,2}>

@}

> V:= VermaModule(G,cH,G‘Representations [0][2]); V;

Graded module of dimension 24 over an algebra with generator degrees

[-1, -1, 0, 0, 1, 1] over Multivariate rational function field of

rank 1 over Cyclotomic Field of order 3 and degree 2.

> res , P, dims , Pseries , D, Gstruct , L := Gordon(G,cH, [2,3,4] :

GeneratorSets :=[{1 ,2 ,3}], pExclude :={2 ,3 ,5});

> P;

<[735], Prime Ideal

Two element generators:

[1873, 0]

[115, 1]>

> dims;

[9, 1, 7]

> Pseries;

[

1 + 2*t + 3*t^2 + 2*t^3 + t^4,

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

302 u. thiel

1,

2 + 3*t + 2*t^2

]

> D;

[1 1 2]

[1 1 2]

[2 2 4]

> Gstruct;

[*

(t^4 1 0 0 0 t^3 + t t^2),

(0 0 1 0 0 0 0),

(0 0 0 1 t^2 0 t)

*]

> L;

[*

Graded module of dimension 9 over an algebra with generator degrees

[-1, -1, 0, 0, 1, 1] over Multivariate rational function field of

rank 1 over Cyclotomic Field of order 3 and degree 2.,

Graded module of dimension 1 over an algebra with generator degrees

[-1, -1, 0, 0, 1, 1] over Multivariate rational function field of

rank 1 over Cyclotomic Field of order 3 and degree 2.,

Graded module of dimension 7 over an algebra with generator degrees

[-1, -1, 0, 0, 1, 1] over Multivariate rational function field of

rank 1 over Cyclotomic Field of order 3 and degree 2.

*]

> IsModuleForRRCA(G,cH,L[1]);

true

In this example, we are considering the group G4. At the beginning we create the (non-rational)
generic Cherednik parameter of GGOR type. We specialize this parameter in the hyperplane
H defined by k1,1 − k1,2 of RΓ in GGOR parameters and get in this way the generic point cH
of this hyperplane. We then compute the Verma module ∆cH (φ1,4), which is a graded module
of type ModGr. The central command is now Gordon, which takes as input a reflection group G,
a Cherednik parameter, and a list of integers referring to the irreducible representations of G as
in the attribute G‘Representations. In the above example, we apply it to the Euler cH -family
{φ1,4, φ1,8, φ2,5}. This command computes the corresponding Verma modules and applies our
algorithms (encapsulated in the command HeadsOfLocalModules) to compute their heads and
their decompositions. The additional option GeneratorSets controls which generators are used
for the ModFinder algorithm (we chose in this case y1, y2, g2 as generators) and the option
pExclude describes the primes to be excluded when picking a finite field specialization (in
this case we chose 2, 5, and 7, as they are bad). We remark that many additional techniques
on which we cannot comment here are ‘secretly’ applied while running this command (see
also § 9). If successful, the output consists of the parameters and the prime ideal chosen for
the finite field specialization, the dimensions of the simple modules, their Poincaré series, the
decomposition matrix of the Verma modules (the entry (i, j) in this matrix is the multiplicity
of the head of the jth Verma module in the ith Verma module in the list passed to
Gordon), the graded G-module structure of the simple modules, and the simple modules
themselves. Using the command IsModuleForRRCA, we can check if a family of matrices indeed
defines a module for the restricted rational Cherednik algebra: all necessary relations are
checked.

This example is the prototype showing how we can answer all of Gordon’s questions by
simply applying the command Gordon to Euler families.

8.5. Database

All results we could compute so far are contained in an easily accessible database, as illustrated
by the following example.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 303

> G:= ExceptionalComplexReflectionGroup (4);

> answers := Gordon(G);

> answers;

Associative Array with index universe Polynomial ring of rank 2 over

Cyclotomic Field of order 3 and degree 2

> Keys(answers);

{

k_{1,2},

k_{1,1} - 2*k_{1,2},

k_{1,1},

2*k_{1,1} - k_{1,2},

1,

k_{1,1} + k_{1,2},

k_{1,1} - k_{1,2}

}

> P:= Universe(Keys(answers)); answers[P.1-P.2];

rec <recformat <Hyperplane , EulerFamilies , SimpleDims , SimplePSeries ,

SimpleGModStruct , SimpleGradedGModStruct , VermaDecomposition ,

CMFamilies > |

Hyperplane := k_{1,1} - k_{1,2},

EulerFamilies := {

{ 1 },

{ 2, 3, 4 },

{ 7 },

{ 5, 6 }

},

SimpleDims := [24, 9, 1, 7, 8, 16, 24],

SimplePSeries := [

1 + 2*t + 3*t^2 + 4*t^3 + 4*t^4 + 4*t^5 + 3*t^6 + 2*t^7 + t^8,

1 + 2*t + 3*t^2 + 2*t^3 + t^4,

1,

2 + 3*t + 2*t^2,

2 + 4*t + 2*t^2,

2 + 4*t + 4*t^2 + 4*t^3 + 2*t^4,

3 + 6*t + 6*t^2 + 6*t^3 + 3*t^4

],

SimpleGModStruct := [

(1 1 1 2 2 2 3),

(1 1 0 0 0 2 1),

(0 0 1 0 0 0 0),

(0 0 0 1 1 0 1),

(0 0 1 1 1 0 1),

(1 1 0 1 1 2 2),

(1 1 1 2 2 2 3)

],

SimpleGradedGModStruct := [

(1 t^8 t^4

t^5 + t^7 t + t^3 t^3 + t^5 t^2 + t^4 + t^6),

(t^4 1 0 0 0 t + t^3 t^2),

(0 0 1 0 0 0 0),

(0 0 0 1 t^2 0 t),

(0 0 t t^2 1 0 t),

(t t^3 0 t^2 t^2 1 + t^4 t + t^3),

(t^2 t^2 t^2 t + t^3

t + t^3 t + t^3 1 + t^2 + t^4)

],

VermaDecomposition := [

(1 0 0 0 0 0 0),

(0 1 1 2 0 0 0),

(0 1 1 2 0 0 0),

(0 2 2 4 0 0 0),

(0 0 0 0 2 2 0),

(0 0 0 0 2 2 0),

(0 0 0 0 0 0 3)

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

304 u. thiel

],

CMFamilies := {

{ 1 },

{ 2, 3, 4 },

{ 7 },

{ 5, 6 }

}>

> RouquierFamilies(G)[P.1-P.2];

{

{ 1 },

{ 2, 3, 4 },

{ 7 },

{ 5, 6 }

}

In this example, we fetched all the results for the example discussed in § 8.4 from the
database. This is done by calling the command Gordon for an exceptional complex reflection
group created with ExceptionalComplexReflectionGroup. The result is an associative array
indexed by normalized equations for the hyperplanes of the Euler variety, and by 1 signifying
generic parameters. It is now easy to test conjectures on these results without performing any
additional computations.

Remark 16. As we want to ensure verifiability of our results, we have included in the
directory Experiments/GordonQuestions in Champ scripts which allow a recomputation from
scratch of all our results and show how exactly we computed them.

9. Experimental aspects

The run time and success of the ModFinder algorithm can depend heavily on the input data
and on the choices made. We therefore point out some issues we observed in experiments with
the hope that future developments will clarify these aspects and lead to further improvements.

9.1. The effect of the choice of generators and realizations

In Table 1, we list some data concerning the computation of the Verma modules and the heads
of Verma modules using our algorithm. All computations and time measurements have been
performed on an Intel Core i7-3930K at 3.2 GHz running the AVX version of Magma 2.19-8.
We always work with generic GGOR parameters and use the realizations of the exceptional
complex reflection groups and their representations as obtained from Chevie (these are also
the ones used in Champ by default).

The columns denoted by t∆ give the time needed for computing the X-table explained in
§ 3.2 and the time it then takes to compute the corresponding Verma module. The column Vars
lists the number of variables in the abstract structure of the Jacobson radical of the Verma
module (note that our algorithm has to be successful to determine this number). The column
g lists the generators we have selected for the ModFinder algorithm. In the last columns,
denoted by tHd ∆, we list the time the MeatAxe needed to determine the Jacobson radical of
the finite field specialization of the Verma module, the time the ModFinder needed, and the
total time (this includes for example the graded spinning algorithm to ensure that we found a
submodule). This table shows us immediately how sensitive our approach is to the choices we
make throughout. Let us discuss this in more detail.

First of all, we can see that we usually work with very small g. We almost never had to
consider all algebra generators for the ModFinder algorithm. For the computation of the head
of the Verma module ∆k(φ3,6) for G5, however, we see that the selection of g can be important.
It this situation, the choice g = {y2, x2} is more than twice as fast as {y2}. Unfortunately, we

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 305

cannot say yet what makes one choice better than the other; we just found efficient choices by
experimenting and it seems best to start with the basis (yi)

n
i=1 of V .

Next, we observed that when modifying our explicit realizations of the group and the
irreducible representations of the group in such a way that one generator of the group
is diagonal and acts diagonally on all representations the ModFinder algorithm usually
performs much faster. We denote in this table by λ(i) the representation obtained from λ
by changing the basis so that the generator i of the chosen realization of the group acts

diagonally. Comparing the computations for φ3,6 and φ
(1)
3,6 for G5, we see that we obtained the

solution for φ
(1)
3,6 around 20 times faster than for φ3,6. We see that the number of variables in

the Jacobson radical drops from 70 to only 24, which is probably the reason for the speedup.
Because of this, the command Gordon always automatically performs such a diagonalization,
respecting the fact that the realizations of the exceptional complex reflection groups in Chevie
are usually chosen such that one generator is already diagonal.

In the example φ
(1)
3,8 for G24, we see that even a very large number of variables (3888 in

this case) do not necessarily have to be a problem. We are able to compute the head of the
corresponding 1008-dimensional Verma module in just around 15 min. Even more fascinating is

the example φ
(1)
3,10 for G24. Here, we finish the determination of the 1002-dimensional Jacobson

radical in just 50 s (the ModFinder algorithm just needs 0.13 s).
We see from these examples that our algorithm can be surprisingly powerful but that it is

very hard to control theoretically.

Table 1. Experimental data about the computation of the heads of Verma modules.

G λ dim ∆ t∆ dim Hd ∆ Vars g tHd ∆

G4 φ3,2 72 0.19 0.21 24 52 {y2} 0.01 0.73 1.98
G5 φ3,6 216 2.19 1.78 24 70 {y2} 0.12 52.61 74.58
G5 φ3,6 {y2, x2} . 12.06 33.94

G5 φ
(1)
3,6 . . 2.4 . 24 {y2} 0.12 0.67 1.83

G7 φ2,15 288 10.39 5.73 72 208 {y2, y1} 0.22 735.70 860.56
G7 φ2,15 {y2, g1} . 205.01 329.81
G23 φ4,4 480 12.15 10.27 60 759 {y3, y2} 3.74 40.49 72.04
G9 φ3,4 576 23.56 11.16 192 491 {y2} ? ? ?

G9 φ
(2)
3,4 . . 36.72 . 90 {y2} 1.13 4.65 11.83

G9 φ
(1)
3,4 . . 12.66 . 630 {y2} ? ? ?

G24 φ
(1)
3,8 1008 206.43 91.85 156 3888 {y3, y2} 24.22 595.72 849.51

G24 φ
(1)
3,10 1008 . 99.50 6 14 {y3, y2} 28.47 0.13 50.17

Table 2. Comparison of Magma’s algorithm (left) with ours (right).

G λ Tests Magma Avg. Magma α Champ Avg. Champ α

S4 (2, 1, 1) 82 0.65 0.13 0.23 1.0

G4 φ
(1)
3,7 84 0.76 0.15 0.7 1.0

G4 φ3,7 82 – 0.0 5.2 1.0

G12 φ
(3)
4,3 84 3.29 0.14 0.38 1.0

G6 (φ′
2,5)(2) 77 – 0.0 0.25 1.0

G6 (φ′′
2,3)(2) 79 – 0.0 0.25 1.0

G5 φ
(1)
3,6 81 – 0.0 5.1 1.0

G7 (φ′
2,11)(1) 78 – 0.0 42.0 1.0

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000054

306 u. thiel

9.2. Comparison with the algorithm in Magma

So far, we did not comment on other already existing algorithms to compute the heads of
the Verma modules in characteristic zero. The MeatAxe might actually solve this problem
in special situations. In his PhD thesis, Steel [29] has developed a general characteristic zero
MeatAxe which is in theory capable of computing the radical of a module over an algebra
over a field of characteristic zero. This algorithm is implemented in Magma since 2012 and
it is (to our knowledge) the only algorithm which could also be used to compute the head
of Verma modules for restricted rational Cherednik algebras†. We therefore have to compare
our methods with this algorithm. As it is also a Las Vegas algorithm, we cannot simply
test it once for a specific problem and record the run time because it might always be the
case that the randomly chosen parameters were bad. We thus have to run several tests and
determine the average run time. We run each attempt with a time out τ of 900 s (15 min)
for each attempt, as the run time of our algorithm is always much lower. We then record the
average run time of all successful approaches, and record the success rate α within the time
window τ for specific problems. The results are listed in Table 2.

We see that our success rate is always 100% while Magma’s success rate is below 15% (if
there is success at all). For all problems where Magma’s algorithm did not return a result
within the time window τ , we also did not get a result in sporadic attempts after a couple of
days. Although this does not mean that Magma’s algorithm would not eventually solve the
problem, it should be quite clear from the table that without our algorithm we would not have
been able to obtain most results in § 7; in particular, since the modules we have to work with
are much bigger than those listed in the table.

Remark 17. As our algorithm for determining the head of a module with simple head
in characteristic zero is completely general (despite non-trivial theoretical assumptions, which
have to be checked in each case), it is in principle applicable to many more situations. We hope
that future developments and improvements to this method will enable us to solve problems
in other contexts.

Acknowledgements. I would like to thank Claus Fieker for showing me some tricks in
Magma, which led to improvements of Champ. Furthermore, I would like to thank Gunter
Malle for several comments on a preliminary version of this article. I am also thankful to the
referee for several remarks.

References

1. G. Bellamy, ‘On singular Calogero–Moser spaces’, Bull. Lond. Math. Soc. 41 (2009) no. 2, 315–326.
2. G. Bellamy and M. Martino, ‘On the smoothness of centres of rational Cherednik algebras in positive

characteristic’, Glasg. Math. J. 55 (2011) no. A, 27–54.
3. M. Benard, ‘Schur indices and splitting fields of the unitary reflection groups’, J. Algebra 38 (1976) no. 2,

318–342.
4. M. Bezem, J. W. Klop and R. de Vrijer, Term rewriting systems (Cambridge University Press, 2003).
5. C. Bonnafé and R. Rouquier, ‘Cellules de Calogero–Moser’, Preprint, 2013, arXiv:1302.2720.
6. W. Bosma, J. Cannon and C. Playoust, ‘The Magma algebra system. I. The user language’, J. Symbolic

Comput. 24 (1997) no. 3–4, 235–265.
7. M. Broué and S. Kim, ‘Familles de caractères des algèbres de Hecke cyclotomiques’, Adv. Math. 172

(2002) no. 1, 53–136.
8. M. Chlouveraki, Blocks and families for cyclotomic Hecke algebras, Lecture Notes in Mathematics 1981

(Springer, 2009).
9. P. Etingof and V. Ginzburg, ‘Symplectic reflection algebras, Calogero–Moser space, and deformed

Harish-Chandra homomorphism’, Invent. Math. 147 (2002) no. 2, 243–348.

†Unfortunately, it seems that there is no publication describing these methods in detail. Nevertheless, we
argue here that in our case at least we have more significant reasons for not using it.

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

http://www.arxiv.org/abs/1302.2720
http://www.arxiv.org/abs/1302.2720
http://www.arxiv.org/abs/1302.2720
http://www.arxiv.org/abs/1302.2720
http://www.arxiv.org/abs/1302.2720
http://www.arxiv.org/abs/1302.2720
http://www.arxiv.org/abs/1302.2720
http://www.arxiv.org/abs/1302.2720
http://www.arxiv.org/abs/1302.2720
http://www.arxiv.org/abs/1302.2720
http://www.arxiv.org/abs/1302.2720
http://www.arxiv.org/abs/1302.2720
http://www.arxiv.org/abs/1302.2720
http://www.arxiv.org/abs/1302.2720
http://www.arxiv.org/abs/1302.2720
https://doi.org/10.1112/S1461157015000054

champ: a cherednik algebra magma package 307

10. M. Finkelberg and V. Ginzburg, ‘Calogero–Moser space and Kostka polynomials’, Adv. Math. 172
(2002) no. 1, 137–150.

11. M. Geck, An introduction to algebraic geometry and algebraic groups, Oxford Graduate Texts in
Mathematics 10 (Oxford University Press, 2003).

12. M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, ‘CHEVIE — a system for computing and
processing generic character tables’, Appl. Algebra Engrg. Comm. Comput. 7 (1996) no. 3, 175–210; Pre-
packaged GAP3 version by J. Michel (version from March 2012).

13. M. Geck and N. Jacon, Representations of Hecke algebras at roots of unity, Algebra and Applications
15 (Springer, London, 2011).

14. M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori–Hecke algebras, London
Mathematical Society Monographs. New Series 21 (Oxford University Press, 2000).

15. M. Geck and R. Rouquier, ‘Centers and simple modules for Iwahori–Hecke algebras’, Finite reductive
groups (Luminy, 1994), Progress in Mathematics 141 (Birkhäuser, Boston, MA, 1997) 251–272.

16. V. Ginzburg, N. Guay, E. Opdam and R. Rouquier, ‘On the category O for rational Cherednik algebras’,
Invent. Math. 154 (2003) no. 3, 617–651.

17. I. Gordon, ‘Baby Verma modules for rational Cherednik algebras’, Bull. Lond. Math. Soc. 35 (2003)
321–336.

18. U. Görtz and T. Wedhorn, Algebraic geometry I: schemes with examples and exercises, Advanced
Lectures in Mathematics (Vieweg-Teubner, Wiesbaden, 2010).

19. R. R. Holmes and D. K. Nakano, ‘Brauer-type reciprocity for a class of graded associative algebras’,
J. Algebra 144 (1991) no. 1, 117–126.

20. D. F. Holt, ‘The Meataxe as a tool in computational group theory’, The atlas of finite groups: ten years
on (Birmingham, 1995), London Mathematical Society Lecture Note Series 249 (Cambridge University
Press, 1998) 74–81.

21. D. F. Holt, B. Eick and E. A. O’Brien, Handbook of computational group theory, Discrete Mathematics
and its Applications (Chapman & Hall/CRC, Boca Raton, FL, 2005).

22. D. F. Holt and S. Rees, ‘Testing modules for irreducibility’, J. Aust. Math. Soc. Ser. A 57 (1994) no. 1,
1–16.

23. K. Lux and H. Pahlings, Representations of groups: a computational approach, Cambridge Studies in
Advanced Mathematics 124 (Cambridge University Press, Cambridge, 2010).

24. G. Malle and R. Rouquier, ‘Familles de caractères de groupes de réflexions complexes’, Represent.
Theory 7 (2003) 610–640 (electronic).

25. M. Martino, ‘The Calogero–Moser partition and Rouquier families for complex reflection groups’,
J. Algebra 323 (2010) no. 1, 193–205.

26. M. Martino, ‘Blocks of restricted rational Cherednik algebras for G(m, d, n)’, J. Algebra 397 (2014)
209–224.

27. R. A. Parker, ‘The computer calculation of modular characters (the Meat-Axe)’, Computational group
theory (Durham, 1982) (Academic Press, 1984) 267–274.

28. A. Ram and A. Shepler, ‘Classification of graded Hecke algebras for complex reflection groups’, Comment.
Math. Helv. 78 (2003) no. 2, 308–334.

29. A. Steel, ‘Construction of ordinary irreducible representations of finite groups’, PhD Thesis, University
of Sydney, 2012.

30. U. Thiel, ‘A counter-example to Martino’s conjecture about generic Calogero–Moser families’, Algebr.
Represent. Theory 17 (2014) no. 5, 1323–1348.

31. U. Thiel, ‘Decomposition matrices are generically trivial’, Preprint, 2014, arXiv:1402.5122.
32. U. Thiel, ‘On restricted rational Cherednik algebras’, Dissertation, TU Kaiserslautern, 2014.
33. U. Thiel, ‘CHAMP: a Cherednik algebra Magma package’, Preprint, 2015, arXiv:1403.6686.

U. Thiel
Universität Stuttgart
Fachbereich Mathematik
Pfaffenwaldring 57
70569 Stuttgart
Germany

thiel@mathematik.uni-stuttgart.de

https://doi.org/10.1112/S1461157015000054 Published online by Cambridge University Press

http://www.arxiv.org/abs/1402.5122
http://www.arxiv.org/abs/1402.5122
http://www.arxiv.org/abs/1402.5122
http://www.arxiv.org/abs/1402.5122
http://www.arxiv.org/abs/1402.5122
http://www.arxiv.org/abs/1402.5122
http://www.arxiv.org/abs/1402.5122
http://www.arxiv.org/abs/1402.5122
http://www.arxiv.org/abs/1402.5122
http://www.arxiv.org/abs/1402.5122
http://www.arxiv.org/abs/1402.5122
http://www.arxiv.org/abs/1402.5122
http://www.arxiv.org/abs/1402.5122
http://www.arxiv.org/abs/1402.5122
http://www.arxiv.org/abs/1402.5122
http://www.arxiv.org/abs/1403.6686
http://www.arxiv.org/abs/1403.6686
http://www.arxiv.org/abs/1403.6686
http://www.arxiv.org/abs/1403.6686
http://www.arxiv.org/abs/1403.6686
http://www.arxiv.org/abs/1403.6686
http://www.arxiv.org/abs/1403.6686
http://www.arxiv.org/abs/1403.6686
http://www.arxiv.org/abs/1403.6686
http://www.arxiv.org/abs/1403.6686
http://www.arxiv.org/abs/1403.6686
http://www.arxiv.org/abs/1403.6686
http://www.arxiv.org/abs/1403.6686
http://www.arxiv.org/abs/1403.6686
http://www.arxiv.org/abs/1403.6686
https://doi.org/10.1112/S1461157015000054

	1 Computing in rational Cherednik algebras
	1.1 Rational Cherednik algebras
	1.2 The PBW theorem
	1.3 Normal forms and rewrite systems
	1.4 Monomial rewrite systems
	1.5 Computing in rational Cherednik algebras
	1.6 Poisson brackets

	2 Restricted rational Cherednik algebras
	2.1 Restricted rational Cherednik algebras
	2.2 Computing in restricted rational Cherednik algebras
	2.3 Representation theory
	2.4 Gordon's questions
	2.5 The generic situation
	2.6 Martino's conjecture
	2.7 Euler families
	2.8 Verma families

	3 Computations with Verma modules
	3.1 Computing Verma modules
	3.2 X-tables
	3.3 Decomposing Verma modules: the abstract idea

	4 Finite field specializations
	4.1 Finite field specializations in general
	4.2 Integral structures of restricted rational Cherednik algebras
	4.3 The generic situation for restricted rational Cherednik algebras

	5 Reconstructing submodules from abstract structures
	5.1 Abstract structures
	5.2 Existence of submodules with prescribed abstract structure
	5.3 Finding submodules with prescribed abstract structure (ModFinder)

	6 A Las Vegas algorithm for computing heads and constituents
	6.1 Application to Gordon's questions

	7 Summary of the results
	8 Champ
	8.1 Running Champ
	8.2 Reflection groups
	8.3 Cherednik algebras
	8.4 Verma modules
	8.5 Database

	9 Experimental aspects
	9.1 The effect of the choice of generators and realizations
	9.2 Comparison with the algorithm in Magma

	References

