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Abstract

The interplay between genetic and environmental factors plays a significant role in inter-
individual variation in immune and inflammatory responses. The availability of high-
throughput low-cost genotyping and next-generation sequencing has revolutionized our
ability to identify human genetic variation and understand how this varies within and between
populations, and the relationship with disease. In this review, we explore the potential of
genomics for patient benefit, specifically in the diagnosis, prognosis and treatment of inflam-
matory and immune-related diseases. We summarize the knowledge arising from genetic and
functional genomic approaches, and the opportunity for personalized medicine. The review
covers applications in infectious diseases, rare immunodeficiencies and autoimmune diseases,
illustrating advances in diagnosis and understanding risk including use of polygenic risk
scores. We further explore the application for patient stratification and drug target priori-
tization. The review highlights a key challenge to the field arising from the lack of sufficient
representation of genetically diverse populations in genomic studies. This currently limits the
clinical utility of genetic-based diagnostic and risk-based applications in non-Caucasian
populations. We highlight current genome projects, initiatives and biobanks from diverse
populations and how this is being used to improve healthcare globally by improving our
understanding of genetic susceptibility to diseases and regional pathogens such as malaria and
tuberculosis. Future directions and opportunities for personalized medicine and wider appli-
cation of genomics in health care are described, for the benefit of individual patients and
populations worldwide.

Impact statement

This review provides a comprehensive overview of advances in genomics within the context of
immune-related diseases. It critically examines the interplay between genetic and environmental
factors in determining the risk of susceptibility to immune diseases, and emphasizes the
importance of considering genetic variation across diverse populations to enhance our under-
standing of disease etiology and allow for global application of personalized medicine. The
review highlights the potential applications of genetics and wider functional genomic
approaches in enhancing diagnosis, disease risk prediction, patient stratification and prioritizing
drug targets, using a wide range of inflammatory and immune-related diseases as examples. It
further addresses specific challenges associated with current genomic-based approaches for
personalized medicine. It discusses the opportunity and limitations of polygenic risk scores,
emphasizing the need for comprehensive research that encompasses genetic variation across
different ethnicities and geographical regions. By critically evaluating current translational
applications of genomics, the review identifies future priorities for utilizing genomic medicine
for patient benefit and sheds light on ways to foster a more comprehensive and diverse scientific
approach that can enable future clinical application to individuals from all ethnic backgrounds
and geographical locations.

Introduction

Heritable factors play a significant role in interindividual variation in immune and inflamma-
tory responses. These contribute to susceptibility to disease, from very rare highly penetrant
germline sequence variants causing monogenic primary immunodeficiencies (PIDs), to more
common variants contributing to polygenic traits such as seen in autoimmunity or infectious
diseases (Figure 1). Malaria and other pathogens have been a major selective pressure on
human genetic architecture, with specific alleles driven to high frequency or fixation in some
populations (Kwiatkowski, 2005; Kwok et al., 2021).While this may serve to protect individuals
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in high exposure environments, there may be a cost in terms
of autoimmune risk such as seen with some human leukocyte
antigen (HLA) alleles (Dendrou et al., 2018). The availability of
high-throughput low-cost genotyping, and more recently next-
generation sequencing (NGS), has revolutionized our ability to
catalog such human genetic variation and understand the rela-
tionship with disease risk (Lappalainen et al., 2019). Genotyping
more common single nucleotide variants has enabled genome-
wide association studies (GWASs) with the identification of dis-
ease risk loci providing the opportunity for new insights into
disease mechanisms, validation of drug targets and generation
of polygenic risk scores (PRSs) (Sudlow et al., 2015; Tam et al.,
2019; Kurki et al., 2023). NGS has significantly increased the
number of known PID genes and substantially reduced the diag-
nostic odyssey for individual patients, while long-read technolo-
gies are allowing HLA typing at unprecedented resolution (Zhang
et al., 2021; Redmond et al., 2022).

To date, our knowledge of disease genetics primarily arises
from European populations (Phillips et al., 2021). High costs in
establishing lab and computational infrastructure, coupled with
limited expertise and training opportunities in genomics analysis,
contribute to this disparity in developing countries. Budget pri-
orities in many regions typically favor primary healthcare over
research. Nevertheless, the paucity of genetic analysis in other

populations, particularly those with a higher burden of infectious
disease, may lead to failure to identify risk loci and their under-
lying disease mechanisms, or appropriately interpret previously
reported risk variants in different populations or geographical
contexts, and contribute to regional inequality in the potential for
genomic medicine (Figure 2). There is a global imperative to
increase the representation of ethnically diverse populations in
genetic studies to address knowledge disparities, reveal new
disease mechanisms and ensure that genomic knowledge can be
applied in an equitable and applicable way for all (Stuart et al.,
2022). Mapping genetic associations in diverse populations with
different genetic architectures addresses the constraints of link-
age disequilibrium, which may limit the ability to fine-map
specific causal alleles due to the coinheritance of variants. This
allows the full spectrum of disease alleles to be defined, including
where these may only be at a detectable frequency in specific
populations, and enabling the identification of population-
specific risk alleles, ensuring that diagnostic NGS panels and
PRSs can be meaningfully applied.

Here, we will explore the potential for genomics and personal-
ized medicine in the diagnosis, prognosis and treatment of inflam-
matory and immune-related diseases. We summarize the
knowledge accumulated from genetic and multi-omic studies of a
broad range of diseases, including immune-mediated traits and

Figure 1.Progression of immune-related disease gene discovery over time, showing the increased power to discover variants of lower effect size with the use of larger cohorts. Black
triangles refer to variants described in this review.
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infectious diseases across diverse populations, and how this is being
exploited to improve healthcare globally.

Genome variation

Large-scale population biobanks, including clinical, pathological,
molecular and radiological records, have been valuable for the
dissection of immune-mediated diseases, which often show overlap
of clinical features and genetic pleiotropy. Globally, over 120 bio-
banks and population-scale datasets have now been assembled,
including UK Biobank (UKB, n = 500,000) (Sudlow et al., 2015),
Genomics England (n = 100,000) in the United Kingdom, Finn-
Genn (n = 400,000+) in Finland (Kurki et al., 2023), deCODE
genetics (n = 500,000) in Iceland (Gulcher & Stefansson, 1999),
China Kadoorie Biobank (n= >510,000) (Chen et al., 2005) and
Biobank Japan (n = 260,000) (Kubo, 2017). In addition to common
variant association, the large size of these cohorts has allowed the
identification of rarer, higher impact variants, such as the identifi-
cation of an association between a rare splice in IL33 and asthma in
UKB exome data (Backman et al., 2021).

Isolated populations that experienced recent bottlenecks, like
the Finnish population, provide the opportunity to identify dele-
terious variants, too rare to be detected in other populations. Using
FinnGen data (http://www.finngen.fi/en), for 15 common diseases,
30 new disease associations were identified that were mostly low-
frequency variants enriched in the Finnish population (Kurki et al.,
2023). Of these, immune trait-associated variants were found near
TNCR18, associated with inflammatory bowel disease (IBD) and
ankylosing spondylitis (AS), IL4R associated with psoriasis (PSO)
and asthma and TNCR1 associated with PSO. This demonstrates
the power of bottlenecked populations to uncover previously
unknown biology of immune diseases.

Disease-specific biobanks that include tissue banking provide
opportunities to generate functional genomic data at high reso-
lution to complement genetic mapping efforts. For example, the

COVID-19 autopsy biobank (Delorey et al., 2021) has been used to
study the effect of severe SARS-CoV-2 infection on COVID-19
pathogenesis in different organs using multi-omic information.
Here, 420 autopsy tissue samples from 11 organs were used to
generate a single-cell atlas of heart, liver, kidney and lung from
donors who died of COVID-19. This atlas along with lung spatial
atlases presented in other studies (Melms et al., 2021; Wang et al.,
2021) revealed changes in the transcriptional landscapes and cell
type proportions throughout the course of infection, providing
information about severe disease pathogenesis.

Capturing global population genetic variation is critical to
understanding genetic susceptibility to pathogens such as malaria
and tuberculosis where the burden of disease is greatest in low- and
middle-income countries. Established in 2002, the International
HapMap project was one of the first endeavors to catalog human
genetic variation (The International HapMap Project, 2003). The
aim was to map the most prevalent patterns of DNA variation
(haplotypes) across the human genome by genotyping 1.3 million
SNPs in 270 individuals from Africa, Europe and Asia. Subse-
quently, the 1,000 Genome Project (1000G), which whole-genome
sequenced 2,504 individuals from worldwide populations has
become a key reference resource for global human genetic variation
(1000 Genomes Project Consortium, 2010). Many other
population-specific genome projects have now been established
including Qatar (Zayed, 2016; Mbarek et al., 2022), Saudi Arabia
(Team, 2015), Iceland (Gudbjartsson et al., 2015), Uganda
(Gurdasani et al., 2019), Singapore (Wu et al., 2019), Brazil
(Naslavsky et al., 2022) and Japan (Okada et al., 2018).

Widely recognized as the origin of modern humans, Africans
represent the most genetically diverse of human populations, as
well as carrying the greatest burden of infectious disease mortality.
The Human Heredity and Health in Africa (H3Africa) consortium
(https://h3africa.org) (Rotimi et al., 2014) is facilitating African-led
research specifically studying African genome architecture to pro-
vide insights into causal mutations for monogenic diseases and
genetic and environmental risk contributions for multifactorial

Figure 2. Ancestry composition of GWAS studies for 16 autoimmune traits according to GWAS catalog, per year since 2007. Disparities in the representation of global populations
in GWAS show the focus on populations of European descent, with studies of other populations significantly under-represented until relatively recently. The lower panel zooms in on
the y-axis scale to show the disproportionally low number of ethnically diverse GWAS studies. Figure adapted from Khunsriraksakul et al. (2022) licensed under CC BY 4.0.
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diseases and traits. H3ABioNet (Mulder et al., 2016), an initiative
arising from H3Africa, is addressing bioinformatics challenges in
African genomics research. By promoting access and research into
genetic susceptibility to prevalent infectious diseases in Africa, such
initiatives are key to addressing healthcare disparities and inform-
ing global disease knowledge (Pereira et al., 2021) (Fatumo et al.,
2022).

The increasing numbers of studies of common disease genetics
in non-European populations has identified new loci predisposing
to disease. Disease alleles of moderate or low effect size that are rare
in Europeans can be detected if they exist at greater frequencies in
other populations. An example is a large meta-analysis GWAS of
type 1 diabetes (T1D) adding Finnish, African and East Asian
samples to European samples, identifying 36 new loci (Robertson
et al., 2021). In another example, in a transethnic meta-analysis, the
addition of South Asian samples to European samples identified
two novel psoriasis loci (Stuart et al., 2022). Inclusion of African
ancestry individuals, in general, provides better opportunities for
finemapping of genetic associations as coinherited blocks of genetic
variants are typically shorter with greater genetic diversity, by
contrast to European haplotypes (Ge et al., 2022; Mahajan et al.,
2022; Ruan et al., 2022). Such studies have the potential to identify
new disease mechanisms and provide a greater understanding of
disease etiology which can be used for drug development with a
greater global scope.

In summary, utilizing large-scale biobanks, dedicated popula-
tion genome projects and founding more regional genomics con-
sortia remains crucial in the ongoing identification of both
common and rare highly penetrant variants across diverse popu-
lations. Region-specific capacity building is therefore crucial.
H3Africa and the Malaria Genomic Epidemiology Network
(MalariaGEN) exemplified effective capacity building through aid-
ing malaria-endemic countries in designing and implementing
ethical research, establishing standardized methods and conduct-
ing genetic data analysis (Wonkam & Mayosi, 2014). More initia-
tives like this are essential to advance genomic research and impact
clinical medicine.

Infectious disease

Infectious diseases have been a strong evolutionary selective pres-
sure on observed human genetic variation, which in some instances
also modulates other immune-mediated inflammatory disease
(IMID) risk. An example of this is the ERAP2 gene where protective
alleles for the Black Death caused by the bacteria Yersinia pestis
(Klunk et al., 2022) have been found in addition to risk variants for
IMIDs including AS (International Genetics of Ankylosing Spon-
dylitis Consortium, 2013), IBD (Liu et al., 2015) and psoriasis (Tsoi
et al., 2012). The Black Death is the most lethal pandemic recorded
in human history and killed 75–200million people, up to 30–50%of
populations in Afro-Eurasia. Recently, susceptibility variants have
been identified in DNA extracted from 516 samples from ancient
burial sites in London and Denmark, genotyped at targeted
immune genes. Comparison of allele frequencies before and after
the Black Death identified multiple variants under selection. The
most significant change was seen at an SNP, rs2549794, modulating
full-length vs. truncated transcription of the ERAP2 gene. Individ-
uals homozygous for the protective allele were 40% more likely to
survive the Black Death than those homozygous for the deleterious
allele (Klunk et al., 2022). It was also demonstrated that the pro-
tective allele is associated with increased expression and production

of full-length ERAP2 protein, and macrophages harvested from
individuals carrying the selected allele inhibit Y. pestis replication,
providing a possible mechanism of resistance to the Black Death.

The sickle hemoglobin mutation (HbS), encoded by rs334, and
variation in Plasmodium falciparum that causes malaria, also
exhibit a complex balance of selective pressures between host and
parasite. Homozygosity of HbS causes sickle cell anemia, whereas
heterozygosity confers tolerance to P. falciparum infection (Kariuki
&Williams, 2020; Band et al., 2022). Recently, Band et al. identified
that protection against malaria conferred by HbS is dependent on
parasite genotype. In an analysis of host and parasite variation in
Gambian and Kenyan children with severe malaria, variation at
3 loci (Ferreira et al., 2011) in the parasite genome was found to be
associated with HbS (Band et al., 2022). These HbS-associated loci
include the chr2: 631,190 T > A variant within PfACS8, the chr2:
814,288 C > T variant within Pf3D7_0220300, and the chr11:
1,058,035 T >A variant within Pf3D7_1127000, referred to as Pfsa1,
Pfsa2 and Pfsa3, respectively. The frequency of these parasitic
variants was found to correlate with HbS frequency across popu-
lations, being most frequent in Africa, where HbS is the most
prevalent. This demonstrates that genetic differences between
human populations can lead to different advantageous interactions
with infectious parasites.

A further example involving selection is recent work which
identified immune genes involved in positive and negative selection
in post-Neolithic Europe, demonstrating that the historical resist-
ance to infection and adaptation to pathogens has increased
present-day inflammatory disease risk (Kerner et al., 2023). Gen-
omic analysis has also shown how rare variants can contribute to
extreme phenotypes. For example, Zhang et al. demonstrated how
highly penetrant monogenic inborn errors of TLR3 and IRF7 are
associated with severe life-threatening COVID-19 (Zhang et al.,
2020). This study compared genomic sequencing data from
patients diagnosed with life-threatening COVID-19 pneumonia
(n = 659) and those with asymptomatic/ benign infection
(n = 534). The analysis identified enrichment for rare variants in
13 gene loci involved inTLR3- and IRF7-dependent immunity, with
experimental validation including evidence for a role for autosomal
recessive AR deficiencies of IRF7 and IFNAR1 in severe COVID-19
(Zhang et al., 2020).

Genomic evidence suggests that pathogen-driven selection tar-
geted immune-related genes contributes to inflammatory disorders
(Barreiro et al., 2008; Barreiro & Quintana-Murci, 2010; Matzaraki
et al., 2017; Pankratov et al., 2022). This selective pressure has led to
the advantageous evolution of host defense genes, contributing to
the heightened polymorphism observed in themajor histocompati-
bility complex (MHC) (Leslie et al., 2010). In HIV-1 infection,
heterozygosity at MHC class I loci confers an advantage, resulting
in a slower progression to AIDS (Carrington et al., 1999). Similarly,
in hepatitis B virus (HBV) infection, heterozygotes at MHC class II
loci show an increased likelihood of clearing the infection (Thursz
et al., 1997).

Overall, the interplay between evolutionary pressures and
immune responses underscores the ongoing impact of infectious
diseases on genetic landscapes shaping disease susceptibility today.

Application of genomics for immune disease diagnosis and
risk

Genomics has proven to be a powerful tool in the diagnosis of rare
and complex diseases that pose diagnostic challenges. The use of
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genomic sequencing for diagnosis and direct management has been
used in many diseases including musculoskeletal, neurological,
metabolic and complex syndromes affecting multiple tissues and
processes (Ko et al., 2018; Symonds et al., 2021). Some, such as
mutations in the CFTR gene underlying cystic fibrosis, may be
tested for prenatally.

PIDs, typically resulting from highly penetrant rare mutations,
are characterized by recurrent potentially life-threatening infec-
tions. To date, over 300 monogenic mutations have been identified
to cause PID (GEL PanelApp) (Thaventhiran et al., 2020). Pheno-
typic heterogeneity in PID can make genetic diagnosis challenging
(Pan-Hammarström et al., 2007; Lenardo et al., 2016; Thaventhiran
et al., 2020), with only 29% of PID patients having a genetic cause of
disease identified (Edgar et al., 2014). Sporadic (nonfamilial) PID
presenting during adulthood can be particularly difficult to diag-
nose since they tend to be less severe. Suspected cases will typically
undergo whole exome (WES) or genome sequencing (WGS). Non-
coding variants in regulatory regions can also contribute to disease
phenotypes, with, for example, colocalized novel high-penetrance
monogenic variants and common variants (at the PTPN2 and
SOCS1 loci) reported (Thaventhiran et al., 2020).

Common variable immunodeficiency disorders (CVIDs) are a
heterogeneous group of PIDs. Genetic causes have been identified
in 5% of CVID patients, with genotypic and phenotypic overlap
between CVID and other immunological conditions reflecting the
pathophysiological diversity of this disease (Peng et al., 2023).
Genomic studies have shown that the majority of CVID cases are
polygenic with multiple common low-penetrant variants, while a
small subset of CVID patients including early onset monogenic
antibody or immune deficiency, are caused by rare highly penetrant
monogenic variants (Kienzler et al., 2017). NFKB1 haploinsuffi-
ciency has been reported as the most common monogenic cause of
CVID (Tuijnenburg et al., 2018), which was confirmed by Tha-
venthiran et al. (2020).

In terms of IMID risk, GWAS has successfully identified mul-
tiple predisposing risk variants and demonstrated a complex poly-
genetic architecture (Lewis & Vassos, 2020). By aggregating these
genetic variants, a cumulative PRS can predict disease susceptibility
and progression (Khunsriraksakul et al., 2022). PRS is calculated by
summing the odds ratios of each risk allele in an individual (Lewis &
Vassos, 2020; Khunsriraksakul et al., 2022) assuming an additive
genetic architecture and independence between variants, which
might not always be precise (Lewis & Vassos, 2020). The increasing
number of studies presenting a highly significant association
between PRS and disease status supports the potential for utilizing
PRS as a clinical instrument, but this clinical function is still not yet
robustly established.

For example, AS is a debilitating chronic inflammatory spinal
arthritis affecting 20,000 people in the United Kingdom, usually
presenting in young adults (Mauro et al., 2021). A hallmark of AS is
the involvement of the sacroiliac joints and 85%of cases carryHLA-
B27. It is one of the most heritable IMIDs (sibling relative risk ~60),
of which HLA-B27 contributes ~30% of genetic risk
(Khunsriraksakul et al., 2022). To date >100 loci harboring com-
mon variants have been implicated in AS risk, such as in the ERAP1
gene (Brown et al., 2016). GWAS in AS are now sufficiently
powered that PRS can be calculated that can be used to predict
individual disease risk. With 78.2% positive and 100% negative
predictive power, PRS has been reported to have a higher diagnostic
capacity for AS than the traditional diagnostic tools, including
clinical features, sacroiliac imaging, and HLA-B27 (Li et al.,
2021). PRSs have also been developed for Systemic Lupus

Erythematosus (SLE), a multi-organ autoimmune disease
(Rönnblom & Leonard, 2019). PRS has been used to predict late-
onset SLE using renal disease as a proxy for severity in both
European and Chinese populations (Chen et al., 2020). Another
study showed that a high genetics-based risk score is associatedwith
an increased risk of organ damage, renal dysfunction and all-cause
mortality, indicating the utility of using such scores to predict
disease complications, patient deterioration, and mortality (Reid
et al., 2020).

While the use of genetic information to predict risk of disease or
potential drug effects can be very beneficial for personalized medi-
cine, the lack of sufficient representation of genetically diverse
populations in genomic literature limits the clinical utility of
genetic-based prediction approaches like PRS in non-Caucasian
populations. The predictive performance of the current PRS is
lower in non-European populations. Analysis of PRS studies
2008–2017 showed that the majority of PRS studies (67%) involved
European ancestry participants, with only 19% and 3.8% targeting
East Asian and African/Hispanic/Indigenous populations, respect-
ively (Duncan et al., 2019). Predictive performance was found to be
lower for PRS derived from European ancestry individuals when
tested in people of non-European ancestry (Duncan et al., 2019).
Consistent with this, PRS derived from African American individ-
uals greatly enhanced the predictive performance of PRS in African
populations compared to European ancestry (Kamiza et al., 2022).
However, the heterogeneity of African populations revealed some
subpopulations performed better than others, for example, African
American-derived PRS for lipid traits had amuch greater predictive
value in South African Zulus compared to Ugandans (Kamiza et al.,
2022). The recognition of the value of data from other ethnicities is
leading to an increase in data generation that will in turn improve
the transferability of PRS globally.

Genetic heterogeneity within the same population can also limit
PRS predictive power if the fine-scale structure within this popu-
lation is not well documented at high resolution. In a Japanese
cohort, phenome-wide PRS analyses on 67 complex traits were
performed. Differences in PRS between the subpopulations within
this Japanese cohort did not agree with the observed phenotypes for
each subpopulation, suggesting that PRS differences reflect biases
due to the uncorrected structure causing prediction biases in a trait-
dependent manner and limiting clinical utility in non-Caucasians
(Sakaue et al., 2020). Some studies also found individual-level
uncertainty in PRS estimates in addition to cohort-level biases
(Ding et al., 2022). A recent study by Hingorani et al. (2023)
calculated the informative performancemetrics for 926 PRSs across
310 diseases from the Polygenic Score Catalog. The analysis
reported that PRS has a poor screening performance for individual
risk prediction and population risk stratification, and indicated that
the high expectations surrounding the potential of PRS for person-
alized medicine may be overstated.

To address the shortcomings of PRS in diverse populations,
Weissbrod et al. proposed a method called PolyPred that improves
PRS accuracy across populations by accounting for differences in
linkage disequilibrium (Weissbrod et al., 2022). This method
improved accuracy for 49 diseases/traits in some UKB populations
including South Asians and Africans (Weissbrod et al., 2022). To
further improve the transferability of tools like PRS, ethnically
diverse genomic datasets need to be used in the development and
optimization processes.

Overall, genomics stands as a robust diagnostic tool for PIDs
and other rare immune- and inflammation-related diseases. While
GWAS studies reveal polygenic influences on more common traits
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involving such processes, the predictive potential of PRS is hindered
by underrepresentation in non-Caucasian populations. Ongoing
efforts are needed to generate comprehensive genomic datasets and
optimizedmethodologies to enhance PRS clinical translation across
diverse populations.

Patient stratification and drug target prioritization

Within IMIDs, significant disease heterogeneity is recognized with
the opportunity for better stratification using genetics and func-
tional genomics. For example, multiple sclerosis (MS) is a debili-
tating chronic inflammatory disease affecting the central nervous
system leading to irreversible neurological damage including long-
term functional impairment (Pinto et al., 2020). Prediction of
disease progression is currently difficult. Recent work by the Inter-
national MS Genetics Consortium and MultipleMS Consortium
have identified rs10191329 in the DYSF-ZNF638 locus (which
includes genes involved in damage repair and control of viral
infections) as associated with disease severity and specifically short-
ening of time to requiring a walking aid together with brain stem
and cortical changes (International Multiple Sclerosis Genetics
Consortium & MultipleMS Consortium, 2023).

Psoriatic arthritis (PsA) is a chronic inflammatorymusculoskel-
etal condition that arises in about 30% of psoriasis patients (Ogdie,
2017). PsA is known to significantly reduce the patient’s quality of
life and increase mortality, it has various clinical presentations and
often goes undiagnosed in psoriasis patients. Single-cell transcrip-
tomics and cell-surface protein expression have been used to com-
pare immune cell populations between PsA and PsC patients, and
expression differences were successfully used as markers for psor-
iasis subtyping through amachine-learningmodel (Liu et al., 2022).
Such studies demonstrate the potential utility of omics techniques
in the implementation of personalized medicine.

Functional genomics can be used to stratify patients based on
the nature of immune response to infection and the extent to
which this is maladaptive. For example, sepsis is a highly hetero-
geneous clinical syndrome defined as life-threatening organ dys-
function caused by a dysregulated host response to infection
(Singer et al., 2016). Transcriptomic profiling of white blood cells
has revealed distinct sepsis response signatures (SRSs) that stratify
a poor outcome immune-suppressed group of patients that have
underlying differences in neutrophil function and emergency
granulopoiesis (Davenport et al., 2016; Kwok et al., 2023). There
is initial evidence that SRS is informative to define differential
response to steroids (Antcliffe et al., 2019) and is applicable as a
quantitative likelihood score across different infectious etiologies
(Cano-Gamez et al., 2022) with the opportunity for future point-
of-care testing.

Improving the efficiency of drug target selection for develop-
ment is critical, given the time and cost ($2b+) of taking a drug
through to approval. Attrition is high due to safety concerns or
lack of efficacy (DiMasi et al., 2016), but it is recognized that
genetic support increases the likelihood of success at least twofold
(Nelson et al., 2015). For rare highly penetrant mutations, the
modulated gene can be identified with confidence while for
GWAS, typically noncoding variants are implicated, and the
modulated gene may not be the nearest gene to the associated
variant given the complex three-dimensional conformation of the
human genome and processes of gene regulation and other mech-
anisms whereby a variant may exert a functional effect. The Open
Targets Initiative (http://genetics.opentargets.org) integrates

GWAS data, including from UKB and FinnGen, with transcrip-
tomic, proteomic and epigenetic data from multiple tissues and
cell types using fine mapping (Mountjoy et al., 2021). Out of
133,441 published GWAS loci, this pipeline successfully identified
729 loci fine-mapped to a single-coding causal variant, and further
drug target prioritization, performed by training a machine-
learning model using functional validation data, improved preci-
sion and resulted in a 58% reduction in the number of false
positives detected in the prioritized loci (Mountjoy et al., 2021).
A study contributing data to Open Targets (Soskic et al., 2022)
investigated T cell regulation during immune disease by perform-
ing single-cell transcriptomic profiling of 655,349 CD4+ T cells in
healthy and activated states. Out of 6,407 genes whose expression
was correlated with genetic variation between T cell states, 2,265
genes (35%) were dynamically regulated during T cell activation
in immune disease providing evidence of the key genes and
mechanisms underlying genetic susceptibility (Soskic et al.,
2022). Other studies out of the open target initiative include
single-cell genomics in asthma (Vieira Braga et al., 2019) and
epigenomics identifying changes in T-cell states in immune dis-
eases (Soskic et al., 2019).

Priority Index is a further approach to drug target prioritiza-
tion for IMIDs from GWAS that provides weighting based on
functional genomic evidence such as chromosomal conformation
and expression quantitative trait loci in immune cells, and takes
account of network connectivity based on high confidence pro-
tein–protein interactions with genetically prioritized genes to
produce a predictor matrix, with prioritization scores calculated
for a given gene for a particular disease where GWAS data have
been inputted (Fang et al., 2019). Pathway crosstalk maximizing
numbers of highly prioritized genes further identifies potential
nodal genes for intervention. The ability to identify currently
approved drug targets is enhanced with disease-specific func-
tional genomic annotators, as recently demonstrated for AS
(Brown et al., 2023).

Genomics plays a pivotal role in navigating the complexities of
IMIDs especially through utilizing functional genomics for
nuanced patient stratification. Additionally, it can support efficient
drug target selection by integrating GWAS data and fine mapping.
Genomics can also play an important role in vaccinology by iden-
tifying potential protective antigens and characterizing the inter-
action between the host, vector and pathogen (de la Fuente &
Contreras, 2021). Historically, analysis of well-studied vaccines
including HBV (Desombere et al., 1998), rubella (Lambert et al.,
2015) and measles (Jacobson et al., 2011) vaccines have presented
evidence showing genetic associations between increased antibody
responses and theMHC, specifically different alleles involvingHLA
(Kwok et al., 2021). Genetic factors, specifically HLA type, contrib-
ute to interindividual variation in COVID-19 vaccine response and
to the risk of breakthrough infection (Mentzer et al., 2023). Higher
levels of antibodies against the SARS-CoV-2 spike receptor-binding
domain were associated with the carriage of HLA-DQB1*06. Indi-
viduals with HLA-DQB1*06 alleles were also less likely to experi-
ence PCR-confirmed breakthrough infection (Mentzer et al., 2022).
Such information may inform targeting booster vaccinations to the
most vulnerable and vaccine design. Similar genetic factors may
contribute to such a response in other infectious diseases, providing
an opportunity to stratify individuals into groups based on their
genetic information to effectively allocate vaccine distribution.

Following the identification of genetic variants, determining
their pathogenicity poses challenges, especially for novel variants
in disease-associated genes. To address this, computational tools
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like REVEL (Ioannidis et al., 2016), AlphaMissense (Cheng et al.,
2023), spliceAI (Jaganathan et al., 2019) and LoFTK (Alasiri et al.,
2023) predict pathogenicity for missense, splice and loss-of-
function variants while tools like DDMut (Zhou et al., 2023)
predict variant effects on protein stability. With the increase in
data availability and the development of machine learning and
AI-based approaches, the assessment of pathogenicity for novel
and known variants will improve. In addressing the challenge of
clinical translation in genomics, the NHS Genomic Medicine
Service, leveraging the 100,000 Genomes Project (1000 Genomes
Project Consortium, 2010), stands as an exemplar to deliver
genetic testing for inherited rare diseases and cancer through a
National genomic test directory, supra-regional Genomic Labora-
tory Hubs and associated service alliances in the United Kingdom
(NHS England, 2021). This infrastructure enhances the transla-
tion of genomic insights into clinical decisions for improved
patient outcomes.

Concluding remarks

Over the past few decades, advances in genotyping and sequencing
technologies have allowed genomics to become an increasingly
important tool in clinical medicine (Figure 3). This has expanded
from the genomic diagnosis of rare diseases to the opportunity to
apply PRS in predicting disease risk and outcome. However, the
relative paucity of genetic studies in non-European populations
limits wide applicability, including PRS. Additionally, cost and

infrastructure in many low-income countries remains a barrier to
the development of genomic medicine. Advances in genomics are
shaping the future ofmedicine, particularly contributing to the shift
from reactive to proactive medicine that focuses on preventing
disease rather than treating it. We need to ensure that equitable
application to benefit all underpins both discovery and transla-
tional genomics with study designs involving diverse population
groups worldwide, paired with appropriate knowledge sharing and
capacity building.
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