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Abstract

This paper establishes some maximum and comparison principles relative to lower
and upper solutions of nonlinear parabolic partial differential equations with im-
pulsive effects. These principles are applied to obtain some sufficient conditions
for the global asymptotic stability of a unique positive equilibrium in a reaction-
diffusion equation modeling the growth of a single-species population subject to
abrupt changes of certain important system parameters.

1. Introduction

The growth of a population diffusing throughout its habitat is often modeled
by a reaction-diffusion equation. Much has been done under the assumption
that the system parameters, including those parameters related to the popu-
lation environment, either are constant or change continuously (see, e.g, [1],
[2], [8], [11], [12], [13], [14] and [24]). However, one may easily visualise
situations in nature where abrupt changes such as harvesting, disasters and
instantaneous stocking may occur. Consequently, we wish to consider such
a reaction-diffusion model with impulses.

The qualitative study of impulsive differential equations is rather diffi-
cult because of the special features possessed by these systems such as pulse
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[2] Parabolic equations in single species growth 383

phenomena, confluence and the loss of autonomy. Nevertheless, it should be
mentioned that the theory of impulsive ordinary differential equations has
been considerably developed (see, e.g., [3], [18], [19], [21], [22] and [26]).
However, to the best of our knowledge, the corresponding theory for partial
differential equations with impulses has not been investigated.

In this paper, we hope to make a start in the study of the dynamics of
second-order parabolic equations with impulses. Such equations seem to
provide a natural framework for the mathematical modeling of population
growth in the case where the population of a given species diffuses in its
habitat and is regulated by some impulse factors at certain moments.

One of the objectives of this paper is to establish several maximum and
comparison principles for scalar impulsive parabolic partial differential equa-
tions in which impulses occur at fixed moments. Our investigation indicates
that if the impulses are not too drastic, or if both the reaction rate and the
impulse satisfy a global Lipschitz condition, then the classical maximum and
comparison principles for parabolic equations without impulses (see, e.g. [15],
[16], [17], [23] and [25]) still hold for impulsive parabolic partial differential
equations.

The established comparison principle provides a spatially homogeneous es-
timate of the solution by a maximal and minimal ordinary differential equa-
tion subject to impulsive effects. We shall apply this spatially homogeneous
estimate and the Liapunov function method to obtain some sufficient condi-
tions for global asymptotic stability of the positive equilibrium of a single-
species population growth model, where the impulses describe instantaneous
harvesting, immigration or disasters. It is shown that increasing the length
of time between successive impulses tends to stabilise the system.

This paper is organised as follows. In Section 2, we prove several max-
imum and comparison principles for general second-order parabolic partial
differential equations. In Section 3, we use these results in a model of single-
species population growth to obtain some global asymptotic stability results
of the unique positive equilibrium state.

2. Maximum principles and comparison techniques

Let fi be a smooth bounded domain in R1, QT = (0, T] x Q, and F r =
(0, T) x d£l where T > 0 . Given a partition 0 < tl < t2 < • • • < tp < T of
[0, T], we introduce the following notations

Pk{(tk,x);xeCl}, P=(jPk,
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384 L. H. Erbe et al. [3]

P

\ = {('*. x); x e any, A = |J Afe
fe=i

and define Cl'2(QT, P) as the set of all functions u: [0, T] x U -» R sat-
isfying the following conditions:

(i) u(t, x) is continuously differentiable for (t, x) e Q r \ (P U A);
(ii) uxx(t, x) exists and is continuous for (t, x) € QT \ P;
(iii) for v = (u,ut,ux,uxx), lim(,>yHj< j t ( r t#Jc )t;(s,y) = v(tk,x) and

limr_ „. ,, . v(s, y) exists for k = 1 , . . . , p and x e £1

where ux = {%,... , ̂ ) , «xx = ( § , ^ , ... , g ) and ut = ft .
i i2

A function / 6 C[QT x Rx R x R , R] is said to be elliptic at a point

(t, x) if, for any u e R, v GR , y = (yik), s = (sik) e R , the quadratic

form J2'i,k=i(ytk ~5/fc)^A - 0 for an arbitrary vector A = ( A j , . . . , A,) 6 Rl

implies f(t, x, u, v , y) < f(t, x, u, v, s). The differential equation ut =
f(t,x, u, ux, uxx) is called a parabolic equation, if / is elliptic at each
point (t, x) e QT.

We consider the following parabolic equation

ut = f(t,x,u,ux,uxx), {t,x)eQT\P (2.1)

subject to the initial condition

u(O,x) = uo(x) onQ, (2.2)

the boundary condition

Bu(t, x) = <p(t,x) o n r r \ A (2.3)

and the impulse at fixed time tk , 1 <k < p ,

u(tk,x)-u(tk,x) = gk(u(tk,x)), \<k<p, xeU (2.4)

where
(i) gk: R —• R, 1 < k < p, is continuous and the mapping x + gk(x) is

increasing for x e R;
(ii) B: C1 ' 2{QT, P) - • C(TT \ A, R) is a boundary operator defined by

Bu(t, x) = p{t, x)u(t, x) + q(t, x)—u{t, x) on TT \ A

for any u e Cl'2(QT, P) where n is an outnormal vector at (t, x) 6 r r ,
and p and q are nonnegative continuous functions with p(t, x)+q(t, x) > 0
on F r .

A function u e C1>2(QT, P) satisfying (2.1)-(2.4) is called a solution of
the initial-boundary-value problem (IBVP for short) (2.1)-(2.4). A function

https://doi.org/10.1017/S033427000000850X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000850X


[4] Parabolic equations in single species growth 385

u 6 Cl'2(QT, P) is called an upper solution of IBVP (2.1) and (2.4) if it
satisfies

ut>f(t,x,u,ux,uxx) onQT\P, (2.5)

Bu(t,x) > <p{t, x) on r r \A , (2.6)

u(tk,x)-u(tk,x)>gk(u(tk,x)), \<k<p, xeU. (2.7)

Lower solutions can be defined analogously by reversing the above inequali-
ties.

We start with a strong version of the classical maximum-value principle.

THEOREM 2.1. Assume that v , w e Cl'2(QT, P) are given such that

sup{vt-f(t,x,v,vx,vxx)}<0, (2.8)
QT\P

v(tk,x)-v(tk,x)<gk(v{tk,x)), l<k<p,xeU, (2.9)

infp{wt -f(t,x,w,wx, wxx)} > 0, (2.10)

w(tk,x)-w{tk,x)>gk(w(tk,x)), \<k<p, xeG, (2.11)

v{0,x) <w{0,x), x e Q , (2.12)

sup{Bv(t, x)-Bw(t, x)} <0. (2.13)
rr\A

Then v(t, x) < w(t, x) on QT, if one of the inequalities (2.8) and (2.10) is
strict.

PROOF. Let m{t, x) = w(t, x) — v(t, x). If the conclusion is not true, then
there exists a T > 0 and y e£l, such that one of the following three cases
holds: _

Case I: r^tk, 1 < k <p, m(t, x) > 0 on (0, T)XQ and m{r, y) = 0;
Case 2: r = tk for some k , 1 < k < p, m(t, x) > 0 on [0, tk)x£l and

m(tk,y) = 0; _
Case 3: x = tk for some k, 1 <k <p, m(t, x) > 0 on [0, tk] x Q and

m{t+
k,y)<0. _

In the first case, m(t, x)>0 on [0, T] x Q by continuity. Therefore, if
( t , j ; ) e r r ) t h e n

—m(x, y) = Alim+ j[m{x, y) -m(x,y- hn)] < 0,

which leads to the following contradiction

0 < Bm(x, y) = q{x, y)-^rn(x ,y)<0.
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Hence {r,y) e QT. Evidently, m(x, x) attains its minimum at {x,y).
This implies mr (x, y) = 0 for 1 < / < / and the quadratic form

i,k=\

for arbitrary vector A e Rl. This implies that v{x, y) = w(x, y), vx(x , y) =
wx(r,y) and Z,li<k=l(d

2/dxidxk)[v(T, y) - w(x, y)]X(Xk < 0. From the
ellipticity of / , it follows that

fix, y, w{x, y), wx{x, y), wxx{x, y))

>f(r,y,v{x,y), vx(x, y), vxx{x, y)).

Therefore if one of the inequalities (2.8) and (2.10) is strict, then

mt{x,y)> f{x,y,w{x,y), wx(x, y), wxx(x, y))

-f{r,y,v(x,y),vx(x>y),vxx(x,y))>0. (2.14)

However, (x — h, y) e QT for sufficiently small h > 0. This implies
m(x - h,y)> m{x, y) = 0, and thus mt(x, y) < 0 which is a contradiction
of (2.14).

In Case 2, we have mt(tk, y) = l im^, mt{s, y) < 0, for otherwise there

exists ^ > 0 such that mt(tk,y) > 5 and consequently w,(ffc - h, >>) > f
for sufficiently small h > 0. Thus for // > 0 small enough,

m(tk - h , y ) - m(tk -h-t],y)> dri/2.

Letting h —* 0 in the above inequality, we get -m(tk — rj, y) > dr\/2 >
0, which is contrary to the assumption that m(t, x) > 0 on [0, tk) x Q.
Therefore mt(tk, y) < 0. We can employ the same argument as for Case 1
to prove that

From (2.13) and the left continuity of m(t, x), we get

Bm(tk,x) = Bw(tk,x)-Bv(tk, x) >0, x GU. (2.15)

Therefore by using the same argument as for Case 1, we can show y e£l.
Moreover, by (2.8) and (2.10), we get

vt(tk ,y)<f{t,y, v(tk, y), vx(tk, y), vxx(tk, y)), (2.16)

wt{tk ,y)>f(t,y, w(tk, y), wx(tk, y), wxx(tk, y)), (2.17)

and one of the inequalities (2.16) and (2.17) is strict. We can now use the
same argument as for Case 1 to derive mt(tk, y) > 0 which is a contradiction
of our earlier conclusion that mt(tk, y) <0.
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In Case 3, we have 0 > m(tk, x) > w(tk , y) + gk(w(tk, y)) - v(tk, y) -
gk{v{tk, y)) which implies w(tk, y) < v(tk , y) since / + gk is increasing.
This is contrary to the assumption that m(t, x) > 0 on [0, tk] x £1. The
proof is then complete.

To dispense with the strict inequalities required in the above theorem, we
introduce the following assumption:
(HI) there exists a function z e Cl'2(QT, P) such that

inf z(t, x) >0 , inf -^-z{t, x) >0
QT\P rT\\dn

and for sufficiently small e > 0 and any given u e Cl'2(QT, P), we have

inf {ezt-f(t ,x,u + e z , u x + e z x , u x x + ezxx) + f(t,x,u,ux> uxx)} > 0 ,
2rN (2.18)

gk(u(tk, x)+ez(tk, x))- gk(u(tk, x)) < e[z(tk , x) - z(tk, x)],

1 < k<p.
(2.19)

THEOREM 2.2. Suppose that (HI) holds and v and w are lower and upper
solutions of IBVP (2.1), (2.2), (2.4), respectively. Then the relations

v(0,x)<w(0,x) forxeU, (2.20)

Bv(t,x)<Bw(t,x) onTT\A (2.21)

imply v(t, x) < w(t, x) on ~QT.

PROOF. We consider w = w + ez . Clearly weC1 '2(QT, P). By (2.18), we
have

Mp{wt-f(t,x,w,wx>wxx)}

ezx, wxx + ezxx)}

-f(t,x,w + ez,wx + ezx, wxx + ezxx) + ez,}

+ f(t,x,w,wx,wxx)}

> 0. (2.22)
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388 L. H. Erbe et al. [7]

Evidently, v(0, x) < w(0, x) < w(0, x) on H, and
sup {Bv(t, x)-Bw(t, x)} = sup {Bv(t, x) - Bw(t, x) - eBz(t, x)}
rr\A r>\A

< - e inf'{p(t, x)z(t,x) + q(t, x)—z{t, x)}
rj.\A on

< 0. (2.23)

Moreover, by (2.19) we have

> w(tk, x) + gk(w{tk, x)) + ez(tk , x)
> w{tk, x) + gk(w(tk, x) + ez{tk, x))

+ gk(w(tk, x) + ez{tk, x)) - gk(w(tk, x))
= w(tk,x)+gk(w(tk,x)).

Therefore v and w satisfies all assumptions of Theorem 2.1. This implies
v(t, x) < w{t, x) = w(t, x)+ez(t, x). Hence v(t, x) < w(t, x) follows by
taking the limit as e —• 0. A similar argument also leads to v(t, x) < w(t, x)
if (2.20) and (2.21) hold. The proof is then complete.

Employing a similar argument, we obtain the following comparison prin-
ciple.

THEOREM 2.3. Assume that u, v eCl'2{QT, P) satisfy (2.8)-(2.13). More-
over, suppose that there exist functions G: ~QT x [0, oo) x [0, oo) x [0, oo) -> R,
and z e Cl'2(QT, P) such that

(i) infQ7.vz{t, x)>0, infrrVA^z(r, x) > 0,
(ii) whenever u, we C1>2{QT, P) and u<u;

f(t,x,u, ux,uxx) - f(t,x,u, ux,uxx)
<G(t,x,u-u, I M ^ - M J , \UXX-UXX\)

(iii) infQ ^p{ezt-G(t, x, ez, ezx, ezxx)} > 0 for sufficiently small e > 0.
Then for any solution u{t,x) o/(2.1)-(2.4) with

v{0,x)<uQ(x)<w(0,x) onU

and
Bv<Bu<Bw onTT\A,

we have
v(t, x) < u{t, x) < w(t, x) on ~QT.

REMARK 2.1. If gk , 1 < k <p , satisfies the one-sided Lipschitz condition

gk(u)-gk(v)<a{u-v) foru>v, 1 <k<p, (2.24)
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[8] Parabolic equations in single species growth 389

where a € [0, 1) is a constant, and B is the Riemann boundary operator
(that is, q(t, x) = 0), then the assumption (HI) in Theorem 2.2 can be
replaced by a weaker hypothesis, namely, a one-sided Lipschitz condition of
the form

f(t,x,u,r,s)-f(t,x,v,r,s)<L(u-v) (2.25)
. .2

f o r a l l ( t , x ) e Q T , u , v G R , r e R , s e R a n d u > v .
PROOF. Define w e Cl'2{QT, P) by

w{t, x) = w{t, x) + eG(k)e2Lt

for (t, x) e [0, T] x H and tlc_l < t < tk, \ <k <p+\ where t0 = 0 ,
tp+i = T and

G(0) = l, G(k) = l-—r for 1 <*:</>+1.
( l -o)*

Then by (2.10) and (2.21), in the interval (tlc_l, tk) we have

wt-f(t,x,w,wx, wxx)

= wt + 2LeG(k)e2Lt -f(t,x,w,wx, wxx)

>f{t,x,w,wx, wxx) + 2LeG(k)e2Lt - f{t, x, w , wx, wxx)

> LeG(k)e2Lt

>Le,

that is,
inf {wt -f{t,x,w,wx, wxx)} > 0.

Moreover, for 1 < k < p, we have

w(tk,x)-w(tk,x)

= w{t+
k , x) - w(tk, x) + e[G(k + 1) - G(k)]e2Llk

= gk(w(tk, x)) + e[G(k + 1) - G(k)]e2Lt"

= gk(w(tk, x)) + gk(w(tk, x)) - gk(w(tk, x)) + e[G(k + 1) - G(k))e2L'k

> gk(w(tk , x)) - a[w(tk, x) - w(tk, x)} + e[G(k + 1) - G(k)]e2Ll*

> gk{w(tk, x)) - aeG(k + l)e2Ll" + e[G(k + 1) - G(k)]e2L'k

>gk(w(tk,x)),

since
-aG(k + 1) + G(k + 1) - G(k) = 0

by definition of G(k). Therefore our conclusion follows from Theorem 2.1.
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REMARK 2.2. Suppose that / and gk, 1 < k < p, satisfy the Lipschitz
condition
(H2): there exist positive constants L{, 1 < i < 4, such that

gk{u)-gk{u) < L , ( u - S ) , \<k<p,

f(t,x,u,r,s)-f(t,x,u,7,s)< L2(u - u) + L3|r - r\ + L4\s - s\

— — - / — i 2

for any u, ueR, with u > u, r, r e R and s, s e R .
Moreover, assume that the boundary FT is regular, that is, there exists a

function h e C2(Q) such that h(x) > 0, rfch(x) > 1 on TT. Then (HI)
holds.

In fact, denning H(x) = eL> (Jc), we can then choose a constant iV > 0 so
that

N>2L2(l+Ll)" + L3\Hx\ + L4\Hxx\ on Qt

and

z(t, x) = eNTH{x) + (1 + Lx)
k + [(1 + L,)* - l ]^ 7 " / /*

for ffc_, < t < tk, I < k <p + I, x eU, where <0 = 0, rp+1 = T and
/?* = sup^gjjH(x). Then for any u e Cl'2(QT, P), we have

'* . x) + ez( f̂c , x)) - gk{u{tk, x))
<eLlz(tk,x)

< eL^e^H* + (l + L,)* + [(1 + L,)fc - \]eNTH*}

= eLi(\+eNTHt)(l+Li)
k,

z{tk , x) - z{tk , x)

- \]eNTH*

= L,(l + L,)fc + (1 + Ly)
kLxe

NTlt

= Ll(l+Ll)
k(l+eNTlT).

Therefore

'* > Jf) + e^'fc > x)) - gk(u(tk, x) < e[z(tk , x) - z{tk, x)].
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Moreover, for tk_{ < t < tk , we have

f(t,x, u + ez, ux + ezx, uxx +ezxx) -f{t, x, u,ux, uxx)

<[L4\zxx\ + L3\zx\ + L2z]e

< {L4e
NT\Hxx\ + L3e

NT\Hx\ + L/T\H\

+ L2(\ + Lx)
k + L2[(l + L,)fc - \]eNTH*}e

< {L4\HXX\ + L3\HX\ + L2\H\ + L2(l+ Ly)
p

+ L2[(l+Ll)"-l]H*}eNTe

< [L4\HXX\ + L3\HX\ + 2L2(1 + Lx)
p)eNTe.

Hence, by the choice of N, we get

J n f {ezt -f(t,x, u + ez,ux + ezx, uxx + ezxx) + f(t, x, u,ux, uxx)}
QT\P

> inf{N - [2L2(1 + £ , ) " + L3\HX\ + L4\Hxx\]}eNTe > 0.

Therefore (2.18) holds. This verifies (HI).
As an immediate consequence of Theorem 2.2, we get the following in-

variance result.

THEOREM 2.4. Assume (HI) holds. Moreover, assume that f(t, x, a, 0, 0) >
0 (or f(t,_x, 6 , 0 , 0 ) < 0) and gk(a) > 0, k = 1 ,2, . . . ,p. Then the
closed set V = {u e R; u > a} (or V = {u e R; u < b}, is positively
invariant relative to IBVP (2.1)-(2.4). That is, uo(x) > a (uo(x) < b) on
H and Bu(t,x) > p(t,x)a (or Bu(t,x) < p(t,x)b) on TT \ A imply
u(t, x) > a (or u(t, x) < b) on <2^, where u(t, x) is a solution of IBVP

An important application of invariance results is the following result about
upper bounds and lower bounds obtained by using dominating ordinary dif-
ferential equations.

THEOREM 2.5. Assume that
(i) (HI) holds,
(ii) / , , /2 e C ( [ 0 , T ] x R , R ) such that

f2(t, u) < f(t,x, u, 0 , 0) < / , ( / , M) for all (t, x, u) eQT xR,

(iii) y(t) and p(t) are solutions of
y), t?o,tk,T, \<k<P,

= y0
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and
p = f2it,p), t^O,tk,T, \<k<p,

Pit+
k) - Pih) = 8kiPitk)), l<k<p

PiO) = PQ,

(iv) p0 < uoix) <y0 on U

Pit, x)pit) < Buit, x) < pit, x)yit) on TT \ A.

Then pit) < uit, x) < yit) on ~Q~T, where uit, x) is the solution oflBVP

PROOF. Letting
m(f, x) = uit, x) - yit)

we have

mt= Fit, x, m, mx, mxx) (2.26)

m(0, x) = uoix) - y(0) = uoix) -yo<O on H

Bmit,x) = Buit, x) - pit, x)yit) <0 o n r r \ A

mit~£, x) - mitk, x) = Gkimitk, x)), 1 < k <p

where

Fit, x, m, mx, mxx) = fit, x, m + y,mx, mxx)-fxit, y)

and
Gk(m) = gkim + yitk)) - gkiyitk)).

According to (ii), we have

Fit, x , 0,0,0) = fit, x,y,0,0)-fiit,y)<0

and by (2.10) we obtain

infjez, + F(t, x, m - ez, mx - ezx, mxx - ezxx)

- Fit, x, m, mx, mxx)}
= M {ezt + fit, x, m - ez + y, mx - ezx, mxx - ezxx) -fx(t, y)

-fit,x,m + y, mx, mxx) + fx{t, y)}

JC y 171 "r / j x ' X * XX 'XX'

,m + y-ez,mx + yx-ezx, mxx + yxx - ezxx)}
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Moreover, we have

Gk(u(tk, x)) - Gk(u(tk, x) - ez(tk, x))

- gk(u(tk, x) - ez(tk, x) + y(tk)) + gk(y(tk))

<e[z(tk,x)-z(tk,x)].

Therefore F and Gk satisfy (HI). By Theorem 2.4, we have m(t, x) < 0
on Qy, that is, u(t, x) < y(t) on g ^ . Similarly, we can prove that
u(t, x) > p(t) on QT. The proof is completed.

3. Applications to single-species models

We consider the following reaction-diffusion equation

ut = aAu + uf(u) + c, t£tk, k= 1, 2 , . . . , x<=Cl (3.1)

subject to the initial condition

u(0,x) = uQ(x) onQ, (3.2)

the no-flux boundary condition

j U ( r , x ) = 0, t*tk, k=l,2,..., xedQ, (3.3)

a n d t h e i m p u l s e s a t fixed m o m e n t s tk , k = 1 , 2 , . . . .

u(tk,x)-u(tk,x) = gk(u(tk,x)), k= 1 , 2 , . . . , xeU, (3.4)

where u(t, x) is the population density at the point x e Q. and time t > 0 ,
f{u) is the specific growth rate of u and satisfies standard assumptions [9],
[10], a > 0 is the diffusion coefficient, gk: [0, oo) -• R is continuous, c > 0
is a constant, Q is a suitable open and bounded domain, and {tk} is an
increasing unbounded sequence.

We consider two cases, I: c = 0, II: c>0. Each of these cases can be in-
terpreted biologically. For example, the case where c = 0 , but gk(u(tk, x)) <
0 models the growth dynamics in a closed environment with instantaneous
harvesting at times tk, k = 1 , 2 , . . . , (see [4], [5], [6], [9] for continuous
harvesting). On the other hand, the case c > 0 could be thought of as a
model of urban growth of human populations with a constant influx rate
of population into the urban environment and occasional rapid changes in
population due to heavy immigration (gk > 0) or a disaster (disease, war,
etc.), (gk < 0). In this last case, the diffusion is particularly significant in
the scenario of a city with expanding boundaries (see [6] for a model with
constant stocking).
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We first obtain some results in Case I: c = 0. The following theorem gives
criteria for the global asymptotic stability of the steady state solution, which
is an equilibrium representing the carrying capacity of the environment.

THEOREM 3.1. Assume that
(i) /(«) is continuously differentiable, ^ [«/(«)] is uniformly bounded for

u > 0 and there exists a constant K > 0 such that

(u - K)uf{u) < -r(u - K)2 foru>K,
(u - K)uf(u) < 0 forO<u<K,

where r > 0 is a constant,
(ii) gk: [0, oo) —• (-oo, +oo) is a globally Lipschitz continuous function

such that x + gk(x) is increasing and

x = gk(x)>K ifx>K,
x<x + gk(x) <K if0<x<K,k = l,2,...,

(iii) for any z > 0,

k>2,

where £k is a constant, k > 2,
(iv) the series J2T=i %k is divergent.

Then the solution x = K is globally asymptotically stable, that is, for any uQ e
C{U, (0, oo)) and any solution o/(3.1)-(3.4) with c = 0, l im^^ u(t, x) =
K for xeU.

PROOF. Let u = minx€-^u0(x) and u = ma\x€^u0(x). By Theorem 2.5
and Remark 2.2 one gets p(t) ^ u{t, x) < y(t), where p(t) and y{t) are
solutions of the following impulsive ordinary differential equation

iz = zf{z), / / 0 , / f c ,

\z{t+
k)-z{tk) = gk{z{tk)), A:= 1,2

subject to the initial conditions

z(0) = u (3.6a)
Z(0) = M, (3.6b)

respectively. Therefore to prove the theorem it suffices to prove that for any
given z(0) > 0 the solution of (3.5) tends to K as t —* oo. Hence, let z(t)
be a solution of (3.5) subject to z(0) > 0. Define m{t) = (z(t) - K)1. We
distinguish three cases:
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Case I: 0 < z(0) < K,
Case 2: z(0) > K,
Case 3: z(0) = K.

If 0 < z(0) < K, it follows from (i) and (ii) that

{z(t)-K){z{0)-K)>0 fort>0, (3.7)

m'(0 = - ( * - z(0)*( ') /(*(0) < 0 for t > 0 , r ̂  ffc , (3.8)

and m(tk) < m ( ^ ) , fc = 1, 2, . . . . Clearly, for any given e > 0, if

0<^-z(0)<T^, (3.9)

then (3.8) and (3.9) imply that

0 < K - z(t) < - j -^— < e for t > 0.

We claim that for any z(0) with 0 < z(0) < K, l i m , ^ z(r) = K. Other-
wise, we can find a constant a > 0 such that z(f) < /^ - CT for / > 0. Thus
from (3.8) we derive

m{t) < m(0) - erz(O) min f(u)t < 0
z(0)<M<fc(7

as t -* oo which is a contradiction to w(f) > 0.

If z(0) > ̂ , from conditions (i), (ii) and (3.8) we get

m\t)<-rm{t) for t > 0 and t ̂  tk> l<k<oo, (3.10)

and

m(tt)<m(tk) + 2s/^)g(yf^) + K) + gl(Jrt^) + k). (3.11)
Define

y/{u) = u + 2sfugk (y/u + K)+ g\ (^/u + K).

Clearly ^(M) is continuous and y(0) = 0. For any k > 2, it follows from
(3.10) and (3.11) that

ln(m(tk)) - \n{m{t+
k_x)) < -r(tk - t^) (3.12)

and
ln(m(£)) - \n(m{tk)) < ln(^(w(rfc))) - ln(w(^)) (3.13)

which imply that

rit t \ x \ J \ i- -ntk -'*_,) + m yi + ^ j

<-Zk (3.14)
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because of assumption (iii). Thus we have

m ( ^ ) < w ( ^ _ , ) for* = 2, 3 , . . . (3.15)

since £,k > 0. Let e > 0 be given. Since y/(u) is continuous and ^(0) = 0,
we can find a positive number 0 < a < e2 such that

y/(s)<e2 for s e[0, a). (3.16)

Choose d = min{y/a, e} and let z(t) be a solution of (3.5) with 0 < z(0) -
K < 5 . Then by (3.10), m{t) = {z(t) -1
[tlc_i, tk], k = \, 2, ... . Thus we have
K < 5 . Then by (3.10), m(t) = {z(t) - K)2 is nonincreasing in the interval

m(t)<a for /e lO.f , ] (3.17)

and consequently
^ ) < e 2 . (3.18)

This, together with (3.15), implies that m(t) < e2 for / > 0. Thus the
solution z = K of (3.5) is stable. By (3.14) it is easy to derive

k

ln(m(t+
k)) - ln(/n(tf)) < - £ £ , . . (3.19)

7=2

Thus

Urn \n{m{ti)) < \n{m{t+
x)) - f ) ^ , = -oo

^ ^ 7=2

which implies that lim^^^ m(t~£) = 0. Thus we have l i m ^ ^ m{t) = 0.
In the case of z(0) = K, we have z{t) = K for all t > 0, completing the

proof.
We illustrate Theorem 3.1 by the so-called logistic equation

ut = aAu + au(K - u) (3.20)

(see [10]) where K > 0 is the carrying capacity of the environment and
a > 0 is the natural growth rate of the population. For this case, in condition
(iii) r is replaced by aK. Therefore, increasing the growth rate, carrying
capacity or the length of time between successive impulses tends to stabilise
the system.

To illustrate how sharp the sufficient condition

is, we consider a special case where tk = kx, T > 0 is a constant, gk(z) =
d(z-K) if z > K and gk(z) = 0 i f 0 < z < 0 , < J e ( 0 , l ) is a constant. The
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above sufficient condition becomes aKx-2\n(l+S) > 0 i.e., eaKr > (l+S)2 .
We will show that if the above inequality is not satisfied, for example, if
eaKx < 1 + S , then the positive equilibrium point x = K of the following
impulsive system

J x{t) = ax(K-x), t^kx,
\ x{kx+) = x{kz) + g(x(kx)), t = kx, k = 0,l,...

is not globally asymptotically stable.
In fact, let h(z) = z + g(z) for z > 0, then for kx < t < {k + 1)T , we

have
+

from which we obtain
Kx(kx+)

v ' [K-x(kx+)]e-aK^^ + x(kx+)

and hence
Kh(x(kx))

x{{k+\)x) =
[K - h(x(kx))]e-aKz + h(x(kx))'

Let yk = x(kx), then we get

yk+l=f(yk)>
 k = 0 , 1 , 2 , . . . ,

where

In the case where y > K, we have

) y

-(1 +

m

S){\

\(l+S)y-SK]

-e-aK')l2\\
- ( 1

K(l-

-e-afCx)[(U
)[{l+S)y-S.

\-S)-SK(l-

- 8)y - SK]y - Ke aKxy
K] + Ke~aKx

e~aKx) - Ke~aKx]y - SK2

+ S)y - SK] + Ke~aKx

)(l-e~aKx)Ky + SKy-SK2

(1 - e~aKx)[{\ + d)y - SK] + Ke~aKx

-{y - K)[a(l +S)(l- e-aKx)y - SK]

S)y - SK] + Ke~aKx'

Since eaKx < 1 + S, we have SK,\{\ + <5)(1 - e~aKx)) > K. Therefore,
y = aSK/((l + S)(l - e~aKx)) is a fixed point of / which means

x(t) = Kx{® „ . for t e (kx, (k + l)r]
[K - x(0)]e~aK{'~KT) + x(0) V V ; J
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if x(0) = adK/((l + S)(l - e~aKx)). That is, the impulse creates a positive
nonconstant periodic solution. Therefore, the equilibrium x = K is not
globally asymptotically stable.

CASE II: c > 0. To motivate assumption (3.22) below, we consider the lo-
gistic equation

ut = aAu + u(K - u) + c. (3.21)

It is easy to verify that au{K - u) + c = -a(u - L)(u + M) where L =

^ + K) > 0 and M = \{\jK1 + 4c/a - K) > 0. Therefore for
u > 0

(« - L)[au{K -u)+c] = -a(u + M){u - L)2 < -aM(u - L)1.

Motivated by this observation, we make the following assumption for the
general equation (3.1) with c > 0:

there exist constants L > 0 and r > 0 such that

(u - K)[uf{u) + c] < -r(u - L)2 for u > 0. (3.22)

Under this assumption, we can employ a similar argument to that for the
case where z(0) > K in Theorem 3.1 to prove the following result.

THEOREM 3.2. Assume that
(i) (3.22) holds, f is continuously differentiable, and j^[uf(u)] is uni-

formly bounded for u > 0.
(ii) gk: [0, oo) —• (-00, +oo) is globally Lipschitz continuous and the

mapping x + gk{x) is increasing,
( i i i ) g k ( L ) = 0 , A: = 1 , 2
(iv) for any z > 0,

(v) the series 5lT=i *»fc is divergent.
Then the solution u = L is globally asymptotically stable. That is, for
any u0 e C(Q, (0, oo)) and for any solution o/(3.1)-(3.4) with c > 0,

Kx> u{t, x) = L for x e Q.

Therefore, increasing the stocking rate not only enlarges the effective carry-
ing capacity, L, of the environment but also stabilises the system. Moreover,
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increasing the length between two successive moments at which impulses oc-
cur tends to stabilise the system.
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