
High Power Laser Science and Engineering, (2025), Vol. 13, e68, 8 pages.
doi:10.1017/hpl.2025.10047

RESEARCH ARTICLE

Impact of imperfect surface and imperfect groove pattern
of compressor diffraction gratings on laser pulse focal
intensity

Efim Khazanov
Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia

(Received 22 January 2025; revised 8 May 2025; accepted 19 June 2025)

Abstract
An analytical expression for focal intensity is derived for arbitrary surface profiles and arbitrary groove patterns of
compressor gratings. The expression is valid for different compressor designs: plane and out-of-plane compressors,
symmetric and asymmetric compressors (compressors composed by two not-identical pairs of gratings) and a two-
grating compressor. It is shown that the quality requirements for the optics used to write a grating are higher than for
the grating. The focal intensity can be maximized by rotating each grating around its normal by 180 degrees. Moreover,
it may be increased to maximum by interchanging any two gratings in the compressor, because imperfections of an
individual grating do not additively affect the focal intensity. The intensity decrease is proportional to the squared pulse
spectrum width and the squared total distortions of the second and third gratings of the four-grating compressor and the
total distortions of two gratings of the two-grating compressor.
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1. Introduction

The compressor in chirped pulse amplification lasers is one
of the key elements of all high-power femtosecond lasers[1,2].
Its main function is to compress the pulse to the Fourier limit,
that is, to obtain a pulse with a constant spectral phase at the
output. In practice, an inevitable residual spectral phase is
still crucial. To approach the Fourier limit, an acousto-optic
programmable dispersive filter (AOPDF)[3] is used. The
shortest pulse is a key goal, because it provides the highest
pulse power for a given pulse energy. Nevertheless, the most
important parameter is the focal intensity, which strongly
depends on beam focusability. The highest focusability is
provided by a diffraction limited beam, that is, a beam
with a plane wavefront (a flat spatial phase). To approach
the diffraction limited beam, adaptive mirrors (AMs) are
widely employed[4]. The AOPDF and AM efficiently cor-
rect temporal and spectral phase distortions separately, but
they are not able to compensate for space–time coupling;
therefore, the focal intensity is less than the diffraction
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limit. Besides the reduction of focal intensity (which is
the subject of the present paper), the space–time coupling
affects the pulse contrast ratio. The contrast degradation
due to imperfect surface quality of stretcher and compressor
optics has been studied analytically[5–7], numerically[8–11] and
experimentally[7,10,11].

Compressor diffraction gratings introduce two types of
space–time coupling: amplitude and phase. The amplitude
coupling is related to the spatial dependence of the reflection
coefficient[12], as well as to the beam clipping on the grat-
ings[12,13], if any. In this paper, we will restrict our study to
the phase space–time coupling caused by two reasons. The
first one is an imperfectly flat grating surface. This effect was
numerically studied in Refs. [12, 14–20], and an analytical
expression for the focal intensity for arbitrary compressor
grating surface profiles was obtained in Ref. [21].

The second, much less studied, reason for the phase
space–time coupling is the groove pattern imperfection: non-
equidistance and non-parallelism. In this case, the wavefront
of the wave reflected from the grating is no longer flat, even
for a perfectly flat surface, and the wavefront distortions are
different for different frequencies, which results in space–
time coupling. Methods for measuring groove imperfec-
tion of the grating were proposed in Refs. [22, 23]. For
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Figure 1. 4OC (symmetric) (a) and 2OC (maximum asymmetric) (b). G1–G4, gratings; OAP, off-axis parabola; m = −1; the angle of reflection from the
first grating is negative. Angle γ is not shown as it is outside the plane of the figure; γ is the same for all gratings.

holographic gratings, groove imperfection is determined
exclusively by the imperfect wavefronts of the waves used for
writing the grating[24,25]. The impact of groove imperfection
on the compressor of femtosecond laser pulses was studied
in Ref. [24], where only a particular case of period-chirped
gratings was considered. The simplest case in which only the
fourth grating of the classical Treacy compressor (TC)[26]

is non-ideal was studied analytically in Ref. [23]. The TC
consists of two identical pairs of diffraction gratings, where
the gratings in each pair are parallel and the pairs are mirror
images of each other, that is, the TC is a plane symmetric
compressor.

Recently, two routes of TC modification have been dis-
cussed in the literature. The first one – an asymmetric com-
pressor – is based on abandoning symmetry, and the second
– an out-of-plane compressor (OC) – is based on abandoning
flat geometry. In the asymmetric compressor proposed in
Ref. [27] two pairs of parallel diffraction gratings differ
from each other by grating distance and/or incident angle.
An important property of the asymmetric compressor is
smoothing of fluence fluctuations, which allows a signifi-
cant reduction of the probability of optical breakdown of
the fourth grating. In Ref. [28], an analytical theory was
constructed, which showed that no compressor asymmetry
reduces focal intensity. This conclusion is also true for a
compressor consisting of one pair of gratings, which is a
special (maximum asymmetric) case[12,29,30]. In the OC[31–38],
the angle of incidence in the plane normal to the diffraction
plane is nonzero. In Ref. [39] it was shown that effective
smoothing of the output beam is also possible in the OC,
which was confirmed experimentally[40]. In Ref. [41] it was
proposed to use the OC to increase the output power by
reducing the angle of incidence.

In Section 2, the focal intensity will be found analytically
for an arbitrary symmetric OC and a maximum asymmetric
OC consisting of one pair of gratings. The influence of the
grating surface profile imperfection will be compared with
the impact of the groove pattern imperfection, and the sym-
metric compressor will be compared with the asymmetric
one and the plane compressor with the OC in Section 3.

2. Dependence of focal intensity on out-of-plane
compressor parameters

Let the compressor consist of gratings with groove density
N and distance between the gratings along the normal L. We
will consider the OC with the angle of incidence on the first
grating α in the diffraction plane and γ in the non-diffraction
plane. Most labs use a compressor consisting of two identical
pairs of gratings: the parameters α,γ,N and L are the same
for the two pairs. Such a compressor is referred to as a
symmetric one (Figure 1(a)). In an asymmetric compres-
sor[27,28,39,42] the grating pairs differ from each other; they
have at least one of the parameters α,γ,N or L that differs
from the others. The asymmetric compressor smooths small-
scale fluence fluctuations and, hence, reduces the probability
of laser-induced damage. A special case of the asymmetric
compressor is a compressor consisting of just one pair of
gratings – a two-grating compressor (Figure 1(b))[13,27,30].
It has some additional advantages: smoothing of large-scale
fluence fluctuations, simplicity and lower cost. From the
point of view of compressor (a)symmetry, we will restrict
ourselves to two most interesting cases – a symmetric
compressor and an asymmetric two-grating compressor
(Figures 1(a) and 1(b)). They will be designated as 4OC
(four-grating OC) and 2OC (two-grating OC). A plane
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TC is a particular case of the OC at γ = 0, so it will be
designated as 4TC and 2TC. Another interesting special
case is the Littrow compressor, in which α = αL, where αL

is the Littrow angle; the abbreviations 4LC and 2LC will be
used for this compressor. The LC has a number of additional
advantages[21,33,41]. We assume that the beam size and the
size of gratings G2 and G3 are such that all frequencies fall
into the aperture of G2 and G3, that is, there are no beams
that ‘miss’ the grating. This is not the case for the so-called
full-aperture compressor [13,30,43], which is not considered in
this paper.

In the case of a perfect grating, the incident plane
wave after reflection remains plane, that is, its spatial
phase �(x,y) = const, and the angle of reflection θ (ω)

is determined by the following expression for the grating:

sinθ (ω) = m
2πc
ω

N
cosγ

+ sinα, (1)

where m is the diffraction order. A perfect grating is under-
stood as a grating with a perfectly flat substrate surface
and perfectly parallel and equidistant grooves. As a result
of an imperfect (out-of-plane) surface and imperfect (non-
equidistant and non-parallel) grooves, the wavefront of the
reflected wave is no longer flat and �(x,y) �= const. AM1,2
can compensate for distortions only at one (central) fre-
quency ω0. Since � depends on frequency ω (space–time
coupling), this compensation cannot be complete, which
leads to a decrease in the focal intensity. In Ref. [23],
an expression was found for the spatial phase �

(
x′,y′,ω

)
of a plane monochromatic wave after reflection from the
grating:

�
(
x′,y′,ω

) = −ω

c

(
Hgrhgr

(
x′

cosθ (ω)
,

y′

cosγ

)

+ Hwrhwr

(
x′cos�

cosθ (ω)
,

y′

cosγ

))
, (2)

where

Hgr (ω) = cosγ (cosα + cosθ (ω)), Hwr (ω) = 2
ωwr

ω
, (3)

where hgr
(
x′′,y′′) is the profile of the grating surface;

hwr
(
x′′,y′′) characterizes groove pattern imperfection and

has the sense of the difference of the total surface profiles
of the optical elements on the path of two waves writing
the holographic grating (Figure 2); ωwr = 2πc/λwr is the
frequency of the writing waves; and � is the angle of
incidence of the writing waves on the grating substrate,
sin� = Nλwr/2. Here,

(
x′′,y′′) are the coordinates of the

grating surface and
(
x′,y′) are the coordinates in the plane

normal to the wave vector of the beam between the first and
second gratings shown in Figure 1. On reflection from the
second grating, the beam changes its size, that is, to pass to

Figure 2. Scheme of writing a holographic grating. BS, beamsplitter;
M1–M3, mirrors; ψ1,2, phase of the beams writing the grating; ψ1 −ψ2 =
2kwrhwr.

the laboratory reference frame, (x,y), x′ in Equation (2) must
be replaced by cosθ(ω)

cosα x. Thus, the phase introduced into the
beam upon reflection from the first grating has the following
form:

�1 (x,y,ω) = −ω

c

(
Hgrhgr,1

(
x

cosα
,

y
cosγ

)

+ Hwrhwr,1

(
xcos�

cosα
,

y
cosγ

))
. (4)

To find the phase for the remaining gratings, we fix the
coordinate system

(
x′′,y′′) on each grating (Figure 1) so that,

in the case of identical gratings, the functions hgr
(
x′′,y′′)

and hwr
(
x′′,y′′) should be identical for all gratings: hgr =

hgr,n;hwr = hwr,n;n = 1,2,3,4 is the grating number.
As can be seen from Figure 1, for even gratings the angle

between the x′′- and x-axes is obtuse; therefore, the sign
of the first argument in hgr and hwr for them should be
changed: x → −x. Accordingly, for a grating with number
n, the substitution x → (−1)n+1x should be made on the
right-hand side of Equation (4). As shown in Ref. [23], the
expression in Equation (2) is valid if the wave vector of
the incident wave makes an acute angle with the x′′-axis.
If this angle is obtuse, then the plus sign in front of Hwr

should be replaced with the minus sign. From Figure 1 it
is clear that G3 and G4 must have the minus sign. Therefore,

in front of Hwr the factor (−1)

[
n−1

2

]
should be used, where

[. . .] denotes the integer part. In addition, for the second
and fourth gratings in Equation (2), obvious substitutions
α → −θ (ω) and θ (ω) → −α should be made. Taking all
this into account, the phase introduced by the reflection from
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the grating with number n takes on the following form:

�n (x,y,ω) = −ω

c

(
Hgrhgr,n

(
(−1)n+1 x

cosα
,

y
cosγ

)

+ (−1)

[
n−1

2

]
Hwrhwr,n

(
(−1)n+1 xcos�

cosα
,

y
cosγ

))
. (5)

Let the input field have the following form:

E0 (ω,r) = eiϕin(ω)+iϕD(ω)e−
(

ω−ω0
�ω

)2μ

eiy ω
c sinγ |E0 (r)|, (6)

where ϕin (ω) is the spectral phase without allowance for the
phase introduced by the AOPDF ϕD (ω). Here we assume
that the wavefront of E0 (r) is plane, that is, E0 (r) = |E0 (r)|.
If this is not the case, AM1 can fix it. The Strehl ratio is
defined by the following:

St = If

If
(
hgr = hwr = 0

), (7)

where If is focal intensity. According to Equation (7), the
Strehl ratio shows the reduction of the focal intensity com-
pared to the case of compressor gratings with a perfectly
plane surface and perfectly parallel and equidistant grooves.
We assume that AM2 provides a plane wavefront at central
frequency ω0, and AOPDF ensures a constant spectral phase
at zero spatial frequency κ = 0, as under these conditions
If is maximal[21]. Following the procedure described in Ref.

[21], in the
(

�ω
ω0

)2

2

4,2 � 2 approximation for 4OC and 2OC
we find St2 and St4:

St4,2 = 1−M (μ)

(
�ω

ω0

)2


2
4,2 (x,y), (8)

where M (μ) = �
(

3
2μ

)
/�

(
1

2μ

)
, � is the gamma function

and (. . . ) denotes averaging over the grating surface with the
weight of the laser field module:

(. . . ) ≡
∫ |E0 (xcosα,ycosγ )|(. . . )dxdy∫ |E0 (xcosα,ycosγ )|dxdy

, (9)


4 (x,y) = fg4 (x,y)+uw4 (xcos�,y)

−FG(x,y)−UW(xcos�,y), (10)


2 (x,y) = fg(x,y)+uw(xcos�,y), (11)

g4 (x,y) =
4∑

n=1

hgr,n
(
(−1)n+1x,y

)
,

w4 (x,y) =
4∑

n=1

(−1)

[
n−1

2

]
hwr,n

(
(−1)n+1x,y

)
, (12)

g(x,y) = hgr,1 (x,y)+hgr,2 (−x,y),

w(x,y) = hwr,1 (x,y)+hwr,2 (−x,y), (13)

G(x,y) = ∇hgr,2 (−x,y)+∇hgr,3 (x,y),

W(x,y) = −∇hwr,2 (−x,y)−∇hwr,3 (x,y), (14)

f = 2πNtgβ, u = 4π

λwr
,

F = 2πNL
cosα + cosβ
cosγ cos3β

(
cosαcosγ
λ0Ntgγ

)
,

U = 2
tg

(
α−β

2

)
Nλwr

F, (15)

∇h(−x,y) � ∇h(x,y)|x=−x, (16)

where β = θ (ω0). Hereafter, the sub-indices ‘2’ and ‘4’
correspond to the two-grating (Figure 1(b)) and the four-
grating (Figure 1(a)) compressors. The sub-index ‘4, 2’
denotes either the four-grating or the two-grating compres-
sor. Without loss of generality, hereinafter we assume that
g = w = g4 = w4 = G = W = 0. In addition, the functions
hgr,n and hwr,n do not contain components linear with respect
to x and y (wedges) that are equivalent to the rotation of the
grating as a whole for hgr,n and to the changes in the groove
density N uniformly over the entire grating surface for hwr,n.
As shown in Ref. [21], all the components in ∇hgr,n (x,y)
linear with respect to x and y can be effectively compensated
for by rotating one grating, for example, G4. The same is
true for ∇hwr,n (x,y). If this is done, then the terms linear
with respect to x and y should be subtracted from ∇hgr,n (x,y)
and ∇hwr,n (x,y) in Equation (14). These terms correspond to
the aberrations of hgr,n (x,y) and hwr,n (x,y) quadratic with
respect to x and y, that is, to defocus, vertical astigmatism
and oblique astigmatism.

Taking into account that |∇hn (x,y)| ≈ hn(x,y)
d , where d <

Lg
2 is a typical transverse scale of hi (x,y) variation, and that

Lg < L, we obtain the following:

fg4 (x,y)
FG(x,y)

� sinβcos2β

2(cosα + cosβ)cosα
Lg

L
� 1,

uw4

UW
�

ctg
(

α−β

2

)
cos3β

2(cosα + cosβ)cosα
Lg

L
� 1, (17)

and the expression in Equation (10) reduces to the following:


4 (x,y) = −ω0

c
(FG(x,y)+UW(xcos�,y)) . (18)

Let us now consider this case and use Equation (18)
for 4OC. It should be noted, however, that the above
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approximation is violated if the quadratic components in
hgr,n (x,y) and hwr,n (x,y) are significantly larger than all
the others taken together. Then, if the quadratic distortions
are compensated for by rotating the fourth grating[21], the
approximation |∇hn (x,y)| ≈ hn(x,y)

d is invalid and Equation
(10) must be used instead of Equation (18).

As seen from Equation (18), the focal intensity for 4OC
is determined by the total value of the hgr and hwr gradients
(functions G(x,y) and W(x,y)), where only gratings G2 and
G3 are significant, whereas the contribution of G1 and G4
is negligible. Contrariwise, for 2OC, according to Equation
(11), the gradients are of no importance, and the focal
intensity is determined only by the total values of hgr and
hwr (functions g(x,y) and w(x,y)).

Analogous to Equation (17), we obtain fg(x,y) � FG(x,y)
and uw(x,y) � UW (x,y). With allowance for Equations (11)
and (18), this follows that a decrease in the Strehl ratio in
2OC is much smaller than in 4OC: (1−St2) � (1−St2),
which is a significant advantage of the two-grating compres-
sor along with its other merits[21,33,41].

3. Discussion of results

As can be seen from Equation (8), one function 
4,2 (x,y)
is responsible for all distortions of all compressor gratings.
It has the meaning of the effective phase (effective wave-
front), which characterizes all imperfections of all compres-
sor gratings. The decrease in the Strehl ratio

(
1−St4,2

)
is

proportional to the squared root mean square (rms) of this
phase and to the squared �ω. Therefore, a decrease/increase
in �ω proportionally reduces/increases the requirements for
the rms of both the surface of the gratings and the surfaces
of the optics used for their writing. To determine the Strehl
ratio it is sufficient to know only 
2

4,2 (x,y), that is, the
dispersion (rms squared) of the function 
4,2 (x,y), with
averaging being performed according to Equation (9). The
laser beam profile E0 (x,y) affects St4,2 only through this
averaging. It is obvious that the flat-top profile is better than
the Gaussian one, especially in the presence in 
4,2 (x,y)
of Zernike polynomials with large radial indices. The pulse
spectrum profile has a similar effect: for a Gaussian spec-
trum M (μ = 1) = 0.5 and for μ ≥ 6,M ≈ 0.32, that is,
for a super-Gaussian spectrum, St4,2 is larger than for a
Gaussian one.

The function 
4,2 (x,y) is determined by the total distor-
tions of gratings G2 and G3 for 4OC (Equation (14)) and
G1 and G2 for 2OC (Equation (13)). The rotation of one
grating by 180 degrees around its normal changes the sign
of the arguments of the functions hgr (x,y) and hwr (x,y). In
addition, with such a rotation, the angle between the wave
vector of the incident wave and the x′′-axis changes from
acute to obtuse or vice versa, that is, hwr,n (x,y) changes its

sign[23]. Thus, the rotation corresponds to the replacements:

hgr,n (x,y) → hgr,n (−x, − y) and

hwr,n (x,y) → −hwr,n (−x, − y) . (19)

In 2OC the gratings may be arranged in four non-
equivalent ways: each grating may be placed in two ways.
There are significantly more options in 4OC. The values of

2

4,2 (x,y) and, hence, of St4,2 will be different for different
variants. Knowing hgr,n (x,y) and hwr,n (x,y) for each grating,
for any compressor it is easy to choose the best option – the
one that gives the smallest value of 
2

4,2 (x,y).
The grating surface profiles hgr,n (x,y) are, as a rule, inde-

pendent for different gratings. In contrast, it is reasonable
to conjecture that hwr,n (x,y) = hwr (x,y), if the gratings are
written by the same optics (see Figure 2). Then, from
Equations (13) and (14) we obtain the following:

w(x,y) = hwr (x,y)+hwr (−x,y),

W(x,y) = −∇hwr (−x,y)−∇hwr (x,y), (20)

that is, the Zernike polynomials that are odd in x will
make a zero contribution to w(x,y), and even ones a zero
contribution to W(x,y) (see Equation (16)). If the second
grating is rotated by 180 degrees around its normal, then we
have the following:

w(x,y) = hwr (x,y)−hwr (x, − y),

W(x,y) = −∇hwr (−x,y)+∇hwr (−x, − y), (21)

and the Zernike polynomials that are even in y will make a
zero contribution to w(x,y), and the odd ones to W(x,y).
From this it is clear that identical gratings do not allow
for compensating for the imperfection of the grooves of
each other, since in any case w(x,y) �= 0 and W(x,y) �= 0.
However, w(x,y) = 0 if any of the conditions

hwr,2 (x,y) = −hwr,1 (−x,y) or

hwr,2 (x,y) = hwr,1 (x, − y) (22)

is met, and W(x,y) = 0 if any of the conditions

∇hwr,2 (x,y) = −∇hwr,1 (−x,y) or

∇hwr,2 (−x, − y) = ∇hwr,1 (−x,y) (23)

is fulfilled. Thus, to completely nullify the influence of an
imperfect groove pattern for 2OC or 4OC, a pair of grooves
satisfying Equation (22) or (23), respectively, should be
written. By interchanging the beamsplitter (BS) and M3, as
well as M1 and M2 (Figure 2), it is possible to change the
sign of hwr, but this is insufficient to fulfill Equations (22)
and (23).
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(a)     (b)

Figure 3. Here, St4,gr (�) (solid curves) and St4,wr (�) (dashed curves) are plotted by Equation (25) for 4TC (red) and 4LC (blue) for the compressor
parameters (see Table 1) proposed for XCELS (a) and SEL-100PW (b).

Table 1. Compressor parameters.

XCELS SEL-100PW
910±75 nm 925±100 nm

4TC 4LC 4TC 4LC

N, mm–1 950 1000 1000 1100
α, degree 36 27.4 38.5 31.3
γ, degree 0 11.2 0 14.8
L, cm 333 231 272 155

The Strehl ratio St depends on (i) the total grating profile
described by the functions G(x,y) and g(x,y) and (ii) the
total groove imperfection which, in turn, is determined by the
total profile of the optics used for writing the grooves that is
described by the functions W(x,y) and w(x,y). Compare the
influence of these two reasons assuming that the profiles are
uncorrelated, that is, GW = gw = 0. Then, from Equations
(8), (11) and (18) we find that the Strehl ratio St is a
product of the Strehl ratio caused by the grating surface
imperfection Stgr and the Strehl ratio caused by the groove
pattern imperfection Stwr:

St4 = St4,grSt4,wr, St2 = St2,grSt2,wr, (24)

St4,gr = 1−M
(

�ω

ω0

)2 (
F2

x G2
x +F2

y G2
y

)
,

St4,wr = 1−M
(

�ω

ω0

)2 (
U2

x W2
x +U2

y W2
y

)
, (25)

St2,gr = 1−M
(

�ω

ω0

)2

f 2g2,

St2,wr = 1−M
(

�ω

ω0

)2

u2w2. (26)

Note that for the St close to unity, the contribution of these
two factors to the reduction of the Strehl ratio is additive:
1−St ≈ 1−Stgr −Stwr. Supposing that the quality of grating

substrate polishing is the same as the quality of polishing the
optics used for writing the grating, we have g2 = w2 = σ 2

and G2
x = W2

x = G2
y = W2

y = �2. We also assume that x and
y are equivalent. Then it is readily found that

1−St2,gr

1−St2,wr
= 1

2
tgβNλwr,

1−St4,gr

1−St4,wr
= 1

2
ctg

(
α −β

2

)
Nλwr.

For typical compressor parameters, both ratios are <<1,
that is, the imperfection of the optics used to write the grating
exerts a greater influence. For example, for the 4TC and
4LC parameters proposed in Ref. [41] for the XCELS and
SEL-100PW projects (Table 1), St4,gr (�) and St4,wr (�) are
plotted in Figure 3, from which it is clear that St4,gr (�) ≈
St4,wr ((2.5−3)�), that is, the requirements for the optics
used to write the grating are approximately 2.5–3 times
higher. The curves are plotted for λwr = 413 nm; for λwr =
266 nm this coefficient will be even 1.55 times larger.

From Equation (15) it is clear that u does not depend on N
and the dependence of U on N is very weak. Consequently,
Stwr,4 weakly depends on N, and Stwr,2 does not depend
on it at all. Contrariwise, f and F and, hence, Stgr, depend
on N. In Figure 4, Stgr(N) and Stwr(N) are plotted for four
compressor configurations: 4TC, 4LC, 2TC and 2LC. For
the TC, γ = 0 and the value of |α −αL| for each N was
chosen to be minimal, ensuring decoupling (grating G2 does
not overlap the beam incident on grating G1). Analogously,
for LC the angle γ was chosen to be minimal and α = αL.
For all points in Figure 4 the distance between the gratings
L corresponds to the group velocity dispersion of 4.4 ps2.
For identical � and σ , the values of Stgr(N) differ little
from unity. Therefore, for clarity, the curves for Stgr(N)

are plotted a factor of 10 larger for � (Figure 4(a)) and a
factor of 5 larger for σ (Figure 4(b)) than for Stwr(N). This
once again emphasizes that the contribution of hwr is much
larger than that of hgr. As expected, Stwr (green symbols)
is virtually independent of N, except for a small drop at
large N in Figure 4(a). For the same quality of the optics,
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Figure 4. Here, Stgr(N) (red) and Stwr(N) (green) for 4TC and 4LC are plotted by Equation (25) (a); 4TC and 2TC are plotted by Equation (25) and 2LC is
plotted by Equation (26) (b). The incidence angles α and γ as well as the distance between the gratings L are described in the text. For clarity, the curves for
Stgr(N) are plotted for larger values of distortion than for Stwr(N): a factor of 10 for (a) and a factor of 5 for (b).

Stgr(N) ≈ 1 and St(N) ≈ Stwr(N). However, if Equation (22)
is met or quadratic components (defocus, vertical astig-
matism and oblique astigmatism) dominate in hwr, then
Stwr(N) ≈ 1 and St(N) ≈ Stgr(N). In this case, as can be seen
from Figure 4, for 4TC and 4LC it is more advantageous to
have large N, and for 2TC and 2LC small N. The comparison
of TC and LC (triangles versus squares) shows that St is
larger for TC, but the difference is insignificant, and for the
two-grating compressor Stwr is the same for 2TC and 2LC
(circles in Figure 4(b)).

4. Conclusion

The focal intensity (Strehl ratio St) depends on the grating
surface profile hgr (x,y) and on the groove pattern imperfec-
tion hwr (x,y) – the function that, in turn, is determined by the
total surface profile of the optics used for writing the holo-
graphic gratings. In the majority of cases, the influence of
hwr (x,y) is much more significant, that is, the requirements
for the quality of the surface of the optics used for inscribing
the gratings are several times higher than for the quality of
the grating surface.

When the grating is rotated by 180 degrees around its nor-
mal, hwr (x,y) (unlike hgr (x,y)) changes its sign. By rotating
the gratings and interchanging them it is possible to find an
optimal variant for maximizing St.

The influence of all imperfections of all compressor grat-
ings on St is described by one function 
 (x,y) that has
the sense of the effective wavefront. The decrease in St is
proportional to the squared rms of this function. The 
 (x,y)
function is determined by the total distortions of gratings
G2 and G3 for the four-grating compressor (Equation (14))
and of G1 and G2 for the two-grating compressor (Equation
(13)), with the St decrease in the latter being much smaller,
which is its undoubted advantage.

The number of grooves N almost does not affect the
decrease in St due to groove pattern imperfection, but it

influences the St decrease due to the imperfection of the grat-
ing surface. In four-grating compressors, St increases with
increasing N, while in two-grating compressors it decreases.
The comparison of the Treacy and Littrow compressors
demonstrated that St is higher for the TC but the difference
is insignificant.

In all cases the reduction of the pulse spectrum width �ω

proportionally reduces the requirements for the rms of both
the surface of the gratings and the surface of the optics used
for their writing.
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