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EXISTENCE OF POSITIVE SOLUTIONS
OF QUASILINEAR ELLIPTIC EQUATIONS

ADRIAN CONSTANTIN

We prove under quite general assumptions the existence of a positive solution to
the equation Au + f(x,u) + g(x)x.Vu = 0 in exterior domains of Rn (n ^ 3).

1.

Let us consider the quasilinear second order elliptic equation

(1) Au+ / (* ,« )+ 0(|sB|)a;.Vti = O, x£GA,

in an exterior domain GA = {x € Rn : \x\ > A}. (Here n ^ 3 and A > 0.)

Our purpose is to prove under quite general assumptions on the functions / and
g the existence of a positive solution to (1) in GB — {x £ Rn : |as| > B} for some
B> A.

Given that all solutions of (1) that are radial functions (which depend only on
r = \x\) satisfy a second-order nonlinear ordinary differential equation, it seems natural
to consider first the problem of the existence of solutions of constant sign to second
order nonlinear ordinary differential equations. This ODE approach will enable us to
construct a positive subsolution w and a positive supersolution v to (1) such that
w(x) ^ v(x), x 6 GB, for some B ^ A, and then to establish the existence of a
positive solution of (1) in GB that is squeezed between w(x) and v(x).

Among the equations of the form (1) we have the equation

(2) Au + f(x,u) = 0, XGGA-

To show the apphcabihty and usefulness of our results we show that they cover cases
when recent investigations (see [4]) on equation (2) are powerless.
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2.

Let us consider the second order elliptic equation

(3) Au + F(x,u,Vu) = Q, xeGAcRn,

subject to the assumptions

(i) there is a number a £ (0,1) such that F £ C°(M x 7 x W,R) (Holder
continuous) for every bounded domain M C GA , every bounded interval
J C R and every bounded domain N C Rn;

(ii) for every bounded subdomain M of GA , there exists a nonnegative con-
tinuous function IM such that

\F(x,t,y)\

A solution u of (3) in GB for some B ^ A is defined to be a function u £
C2+a(^M) for every bounded subdomain M C GB , such that u satisfies (3) at every
point x £ GB • Subsolutions of (3), that is, functions u satisfying Au + F(x,u, Vu) ^ 0,
and supersolutions, that is, functions u satisfying Au + F(x,u,'S7u) ^ 0, are defined
similarly.

Let us denote for B ̂  A,

SB = {xeRn: \x\ = B}.

We shall need the following result in the sequel.

LEMMA 1. [3] Assume that the conditions (i) and (ii) are satisfied. If for some
B ^ A there exists a positive subsolution w and a positive supersolution v to (3) in
GB such that w(x) ^ v(x) for all x £ GB U 5 B , then (3) has a solution u in GB such
that w(x) ^ u(x) ^ v(x) throughout GB U SB and u(x) = v(x) for x £ SB-

3.

Let us consider the nonlinear ordinary differential equation

(4) u" + G(t,tt,tt') = 0, t^l,

where G £ C71([l,oo) x R2,R).
We introduce the class 5R of functions w £ C1(R+,R+) with w(0) = 0 and w(t) >

0 for t > 0, nondecreasing on .R+ and which satisfy J^° (l/w(s))ds = oo.
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LEMMA 2 . Assume that

where rngS and a,b £ C(R+,R+) satisfy /0°° [o(a) + b{s)]ds < oo.
Then equation (4) has a solution u(t) which is of constant sign in [TO, oo) for some

PROOF: Under the hypotheses of Lemma 2 we know (see [1]) that every solution of
(4) is defined on [l,oo) and that for every solution u(t) of (4) there are real constants
c, d such that u(t) = ct + d + o(t) as t —> oo.

We shall actually show that any nontrivial solution of (4) is of constant sign in
some interval [m, oo) for some m ^ 1.

Assume that there is a nontrivial solution u(t) of (4) which has a strictly increasing
sequence of zeros {tn}n^i accumulating at oo. Then we have that the corresponding
c,d are both equal to zero and taking into account (see [1]) that c = lim ii'(t), this

t—>oo

implies that lim u'(t) = lim u(t) = 0.
Since u(t) is bounded on [l,oo), we may define

L= SUp {\W'(U)\}.

By the mean-value theorem (since w(0) = 0) we have that W(|M|) ^ L \u\ for |u| ^ K.
Let tk > 1 be a root of u(t) such that / t~ [a(s) + b(s)] ds < 1/(1 + 1). Since G

is of class C1 we have uniqueness for the solutions of (4) and so, since ii(tfc) — 0 and
u(t) is nontrivial, we have that |u'(ifc)| > 0 (otherwise u(t) = 0 for all t ^ 1 since
G(t, 0,0) = 0 for all t ^ 1). Since lim u'(t) = 0, there is a root tn > tk of u{t)

t—^OO

with |rt'(OI < lu'(*fc)l/2 f o r t>*n- If T 6 [tk,tn] is a point where |u'(i) | attains its
maximum on this interval, by the previous construction we have that

\u'(t)\ ^ \ U ' { T ) \ , t>tk,

and since \u'(tk)\ > 0 we also have that \u'(T)\ > 0.

In view of the relation T ^ tk we get by the mean-value theorem that

\u(s)\ - \u(s) - u(tk)\ ^(s- th) \u'(T)\, i>T,

so that

^ or.
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By integrating (4) on [T, t], we get

r*
u'(t) - u'(T) + / G(s, u(s), u'{s))ds = 0, t^T,

JT

thus

u'(T)\^\u'(t)\+ ft
a(s)w(Mf)l'\ds+ f\(s) V(S)\ds,

JT \ s / JTJT \ s / JT

Since lim u'(t) = 0, we obtain taking into account the previous remarks that
t*oo

<

^^)ds+ rb(s)\u'{s)\ds
s / JT

L\u'(T)\ / a{s)ds + \u'(T)\ / b(s) da
JT JT

«'(T)| (L + l) ria(s)+b(s)]ds<\u'(T)\,
JT

a contradiction.
This proves that any nontrivial solution u(t) of (4) is of constant sign in some

interval [771,00) for some m ^ 1. U

4.

In order to be able to prove the main result of this paper, we recall from [2] the

following useful fact

LEMMA 3 . [2] If w e SR, then the function defined on R+ by t -* t + w{t) also
belongs to the class 3J.

THEOREM. Assume that there is a number a £ (0,1) such that f e Ca(~M x7,R)
for every bounded domain M C GA and every bounded interval J C R and that
geC1(R+,R). If

0 ^ f{x,t) < a(\x\)w(\t\), teR+, xe Rn,

where w £ 3? and a £ C(R+,R+), then there is a positive solution to (1) on GB for
some B ^ A if

s[a(s) + \g(s)\}ds<oo.

PROOF: Let us consider the differential equation
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where Wo{t) = w(t) for t E R+ and w(t) = —w(\t\) for t ^ 0 (since •w(O) = 0 we see

that w0 € C1(R+,R+)).

The change of variables

= *

transforms (5) into

(6) h"(.) + -1^'(,)0(,)«(0(,)) w0

In view of Lemma 3 we have that the function t —> t + w(t), t £ R+, belongs to
, so that, since

f°
Jo )\g(0(s))\}ds= / s[a(s) + \g(s)\] ds < oo,/

o

we deduce by Lemma 2 that there is a solution to (6) which has a constant sign on
some interval [771,00) with B = /3(m) ̂  A.

Returning to (5), this yields a solution of (5) which has a constant sign on some
interval [f?,oo) with B ^ A. Since wo is odd on R, we observe that if y(r) is a
solution of (5), then — y(r) is also a solution; thus we can state that (5) has a positive
solution on some interval [B,oo) with B ^ A.

Let us define v(x) = y(r), r = \x\ ^ B.

We have that v(x) > 0 on SB U GB and

r""1 Av(x) = i-lr"-1^-} + T*-1 f(x,v(x)) + r""1 g(r) x.Vv(x)
or I dr i

so that v is a supersolution to (1) on GB- Clearly w(x) = 0 satisfies

Ato(x) + f{x,w(x)) + g(\x\) x.Vw{x) ^ 0, x e GB-

By Lemma 1 we deduce that (1) has a solution u(x) in GB with w(x) ^ u(x)
w(x) for |as| > B and tt(x) = v(x) for |x| = B.
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Since /0°° s \g(s)\ da < oo there is k > 0 such that

Define for e > 0,

uc(x) = inf {u(2)}+ee"'l*l , XESBUGB,

where u(x) is the solution of (1) in GB, and let us consider the operator

Lz = Az + g(\x\)x.Vz, z £ C2(GB) D C(GB).

Observe that

/ , , , l2 \ _,, ,:
Luc — £ (4ib \X\ -2kn)e ! l - 2e

> 2e Jfc2 |x|2 e"*|z | 2 - 2e « |x | 25( |

= Au(x)+g{\x\) X.VU(X) = L(U + E e~kB2^, x € GB,

that is,

( + e e"kBi) -u^j < 0, x € GB-

On the other hand,

[u(x) + e e-kB2}-ue(x) ^0, i e 5 B .

Since u(x) ̂ 0 on GB and u£(x) is bounded on GB , we have that the function
ze(x) = u(x) + e e~kB — uc(x), x £ GB U 5 B , has a finite infimum in GB U SB • If
there was xo € GB with

we would have that Azc(xo) ^ 0 and VZS(J;O) = 0, so that Lze(xo) ^ 0, which is not
possible. Thus

0 ^ inf {zs(x)} = inf
xes l v / J i e c ? u

and we obtain

ue(x) ^ u(x) + e e-*11'2, x G G B U 5 B .

https://doi.org/10.1017/S0004972700015148 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015148


[7] Quasilinear elliptic equations 153

By letting e —» 0 in the previous relation, we get

0 < y(B) = inf {u(x)} < u(x), x 6 GB,
x£S

so that u(x) is positive in GB • U

As a Corollary of our theorem we have the following

PROPOSITION. Assume that there is a number a £ (0,1) such that / £
Ca {M x J , R) for every bounded domain M C G\ and every bounded interval J C R.
If

0 ^ f{x,t) ^ a{\x\)w{\t\), t£R,xeRn,

where w £ 5f and a £ C(R+,R+), then there is a positive solution to (2) on GB for
some B ^ A if

(7) / sa(s)ds < CO.
Jo

The following example shows the applicabihty of the proposition.

EXAMPLE. Consider the quasilinear second order elliptic equation

(8) A u + = Q ) x e G l C R .

By our Proposition, there is a positive solution to (8) in some GB with B ^ 1.

Observe that the results of Swanson [4] are not applicable.

Among the equations of the form (2) we have the subhnear Emden-Fowler equation

(9) Aii + p(x)|w|7 sgn{u) = 0, 0 < 7 < 1, x&GA,

where p{x) is nonnegative and Holder continuous in G^ with A > 0. An application
of our proposition shows that if

f
Jo

s max{p(a:)}ds < 00
0 1*1='

then (9) has a positive solution in GB for some B ^ A. It is known (see [4]) that if

soo

s min {p(z)} ds = oo
o \x\=s

then all solutions of (9) are oscillatory. Thus if p(x) — a( |z|), then the necessary and
sufficient condition for the existence of a positive solution to (9) is condition (7) and
this shows the sharpness of our results.
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