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Abstract

Let G be the simple algebraic group Sp(2, 2), to be defined over Q. It is a non-quasi-split,
Q-rank-two inner form of the split symplectic group Sp8 of rank four. The cohomology
of the space of automorphic forms on G has a natural subspace, which is spanned by
classes represented by residues and derivatives of cuspidal Eisenstein series. It is called
Eisenstein cohomology. In this paper we give a detailed description of the Eisenstein
cohomology Hq

Eis(G, E) of G in the case of regular coefficients E. It is spanned only by
holomorphic Eisenstein series. For non-regular coefficients E we really have to detect
the poles of our Eisenstein series. Since G is not quasi-split, we are out of the scope of the
so-called ‘Langlands–Shahidi method’ (cf. F. Shahidi, On certain L-functions, Amer. J.
Math. 103 (1981), 297–355; F. Shahidi, On the Ramanujan conjecture and finiteness of
poles for certain L-functions, Ann. of Math. (2) 127 (1988), 547–584). We apply recent
results of Grbac in order to find the double poles of Eisenstein series attached to the
minimal parabolic P0 of G. Having collected this information, we determine the square-
integrable Eisenstein cohomology supported by P0 with respect to arbitrary coefficients
and prove a vanishing result. This will exemplify a general theorem we prove in this
paper on the distribution of maximally residual Eisenstein cohomology classes.

Introduction

Let G be a connected, semisimple algebraic group defined over Q of Q-rank rkQ(G) > 1, let E be
a finite-dimensional, irreducible complex representation of the Lie group G(R) of real points of G,
and let Γ⊂G(Q) be an arithmetic congruence subgroup. The study of the cohomology spaces
H∗(Γ, E) has been carried out over the last 40 years from various points of view and motivations,
using and comparing several techniques. Among these techniques, the cohomology of arithmetic
groups has major applications within the Langlands program, which itself originated in the
attempt to solve classical problems of algebraic and analytic number theory, such as giving a
satisfactory non-abelian class field theory. This approach to cohomology of an arithmetically
defined group indicates a close connection to the theory of automorphic forms, in particular to
cusp forms and Eisenstein series.

The link between H∗(Γ, E) and automorphic forms was first provided in a conceptual way
by Harder in the case of groups of Q-rank one [Har75b, Har75a]. His method is of a differential
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geometric nature and uses the fact that the cohomology of Γ is isomorphic to the cohomology of
a certain compact space Γ\X, which is a manifold with boundary ∂(Γ\X). In fact, X =G(R)/K
is the Riemannian symmetric space associated with the Lie group G(R) and a maximal compact
subgroup K, and Γ\X is the Borel–Serre compactification of the locally symmetric quotient Γ\X.
With this framework at place, Harder showed that one can construct the ‘cohomology at infinity’,
i.e. (up to isomorphy) the image of the natural restriction map H∗(Γ\X, E)→H∗(∂(Γ\X), E)
by means of Eisenstein series. This image is complementary within H∗(Γ, E) to the cohomology
of a space of square-integrable automorphic forms, which contains the cusp forms.

In the early 1990s, Franke finally proved in [Fra98] that such a decomposition can also be
given in the general framework of an arbitrary connected, reductive algebraic group G. More
precisely, Franke particularly showed that the cohomology of an arithmetic congruence subgroup
Γ⊂G(Q) decomposes as

H∗(Γ, E) =Hcusp(Γ, E)⊕HEis(Γ, E)

into the cohomology space of classes represented by cuspidal automorphic forms and a natural
complement called the Eisenstein cohomology of Γ. This is due to the adelic interpretation of
H∗(Γ, E) as a subspace of the space of KΓ fixed vectors in

H∗(G, E) :=H∗(g, K,A(G(Q)\G(A))⊗ E)

and an analogous decomposition of this cohomology as H∗(G, E) =Hcusp(G, E)⊕HEis(G, E).
(Here KΓ is an appropriate open, compact subgroup of the group of finite adelic points G(Af )
and A(G(Q)\G(A)) is the usual space of (adelic) automorphic forms on G.)

In the case of regular coefficients E, i.e. the highest weight λ of E lies inside the open,
positive Weyl chamber, the space of Eisenstein cohomology was investigated by Schwermer
in [Sch94] together with Li in [LS04]. It was shown that under this assumption on E, each
class in H∗Eis(G, E) can be represented by a bunch of Eisenstein series evaluated at a certain
point in the region of holomorphy [Sch94, §§ 2 and 6]. This lead to a vanishing result in lower
degrees of cohomology (cf. [LS04, Theorem 5.5]).

Still, for non-regular coefficients E, little is known in general: in contrast to the regular
case, residues of Eisenstein series really enter the game (i.e. can contribute non-trivially to
cohomology), when regarding non-regular coefficient modules E. The results gained so far suggest
that the poles of Eisenstein series are encoded by poles and zeros (i.e. so-called special values) of
automorphic L-functions. However, even for square-integrable residues the situation is not fully
understood, since, e.g., a satisfactory theory of describing the residual spectrum of a non-quasi-
split algebraic group G is not yet available.

On the other hand, finding the poles of Eisenstein series is not the only difficulty one
encounters in this case. One also has to understand whether residual Eisenstein series contribute
non-trivially to cohomology and, if they do contribute, in which degrees of cohomology. Again,
all of these problems are entirely linked to deep questions of local and global representation
theory and number theory, in particular the Langlands program.

In the present work we consider the above questions and approaches to Eisenstein cohomology
regarding the connected, simple algebraic group Sp(2, 2) defined over Q. It is a non-quasi-split
Q-rank-two form of the split symplectic group Sp8/Q, the classical group of Cartan type C4.

In § 1 the necessary facts about the automorphic cohomology H∗(G, E) for a connected,
semisimple algebraic group G/Q are reviewed. We recall the decomposition of Eisenstein
cohomology H∗Eis(G, E) along the cuspidal support of the Eisenstein series in question, see
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Theorem 1.1 (respectively, the original sources [FS98] or [MW95]): this is a decomposition along
associate classes {P} of a proper, parabolic Q-subgroup P of G and certain (collections ϕ of)
cohomological, cuspidal automorphic representations π̃ of the corresponding Levi subgroups L
of P .

In § 2, still for an arbitrary connected, semisimple algebraic group G/Q, we deal with the
question of how to breed the space of Eisenstein cohomology out of cohomological cuspidal
automorphic representations π̃ of the Levi subgroups L of parabolic Q-subgroups P $G. Recall
that P has a Levi decomposition P = LN and a Langlands decomposition P =MAN , where N
is a unipotent radical of P and A a maximal central Q-torus of L. As in [FS98] we use the
Eisenstein intertwining operator to obtain a map on the level of (g, K)-cohomology

Hq(g, K, WP,π̃ ⊗ Sχ(a∗)⊗ E) Eqπ−→H∗Eis(G, E). (1)

Here, WP,π̃ is essentially the representation induced parabolically from π̃. Further, Sχ(a∗)
denotes the symmetric tensor algebra of the linear dual of a = Lie(A(R)). (The symbol ‘χ’
indicates an action of a onto Sχ(a∗) by means of a character χ of A(R)◦. See § 2.2 for details.)
This construction procedure of Eisenstein cohomology is explained in detail. In particular, we
recall the notion of a class of type (π, w) (where w is a so-called Kostant representative with
respect to the right action of the Weyl group of L(C) on the Weyl group of G(C)): this is a non-
trivial class in the right-hand side of (1). It follows from general results on (g, K)-cohomology
that the derivative of χ must satisfy dχ=−w(λ+ ρ)|a C . We may also suppose that it lies inside
the closed, positive Weyl chamber C defined by P and A.

In § 2.3 we explain how the behavior of holomorphy of an Eisenstein series EP (f, Λ), f ∈WP,π̃,
Λ ∈ aC, interacts with the degree(s) of cohomology in which the image of Eqπ lies. The case of
holomorphic Eisenstein series was already solved by Schwermer in [Sch83] and is summarized
briefly in § 2.3.1.

Again, the residual case is the most difficult and remains unsolved in its full generality.
We know by Langlands [Lan76] that the poles of the Eisenstein series EP (f, Λ) are those of its
constant terms along parabolic subgroups. Assume that P is a self-associate, standard parabolic,
then it suffices to consider the constant term along P itself. Putting W (A) =NG(Q)(A(Q))/L(Q)
(which is a subgroup of the Weyl group attached to theQ-roots ofG) we arrive at a decomposition
of this constant term as a finite sum

EP (f, Λ)P =
∑

w∈W (A)

M(Λ, π̃, w)(fe〈Λ+ρP ,HP (·)〉), (2)

where M(Λ, π̃, w) are certain well-known meromorphic functions associated with Λ, π̃ and
w ∈W (A) (cf. § 2.3.2 for their precise definition and for the other symbols not explain here). So
the behavior of holomorphy of EP (f, Λ) is given by the interplay of the poles and zeros of the
finitely many functions M(Λ, π̃, w). If M(Λ, π̃, w) is residual at Λ = Λ0, then we assume that we
have normalized it to a holomorphic and non-vanishing function N(Λ0, π̃, w). Put

W (A)res = {w ∈W (A)|M(Λ, π̃, w) has a pole of order `= dim aC at Λ = dχ}.

This means that the order of the pole is maximal and implies that the longest element w0 of
W (A) (as a reduced word in the simple reflections generating W (A)) will be inside W (A)res. We
prove the following new theorem in § 2.3.2 (cf. Theorem 2.1) on the degree of residual Eisenstein
cohomology classes.
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Theorem. In the notation used above, let 0 6= [ω] ∈Hq(g, K, WP,π̃ ⊗ Sχ(a∗)⊗ E). If all
Eisenstein series EP (f, Λ), f ⊗ 1 in the image of ω, have a pole of maximal possible
order `= dim aC at dχ=−w(λ+ ρ)|a C ∈ C and if ImN(dχ, π̃, w0) is a direct summand of∑

w∈W (A)res
ImN(dχ, π̃, w), then Eqπ([ω]) contributes at least in degree q′ := q + dimN(R)−

2l(w), where l(w) is the length of w.

From § 3 on, we concentrate on the case G= Sp(2, 2)/Q. As mentioned earlier, G is a simple,
connected, simply connected algebraic group over Q, which is an non-quasi-split, Q-rank-two
inner form of Sp8, the classical split group over Q of Cartan type C4. Hence, the classes of
associate and conjugate parabolicQ-subgroups ofG coincide and can be represented by the choice
of three standard parabolic subgroups P0 (a minimal subgroup) and P1 and P2 (two maximal
subgroups). In order to construct Eisenstein cohomology, we need to obtain some knowledge
on cohomology classes of type (π, w) as remarked before: π = χπ̃ with χ a certain character of
Ai(R)◦ and π̃ a cohomological cuspidal automorphic representation of Li(A) (i= 0, 1, 2); and w
is a Kostant representative of a coset with respect to the right action of the Weyl group of L(C)
on the Weyl group of G(C). In § 4 the possible archimedean components π̃∞ of cohomological
cuspidal automorphic representations π̃ are classified (cf. Lemma 4.1 and Proposition 4.2).
These are irreducible unitary cohomological representations of the semisimple part Mi(R) of
the reductive Lie groups Li(R). We use the well-known Vogan–Zuckerman classification of such
representations, cf. [VZ84].

Having gained this knowledge, in § 5 we then give a complete description of the G(Af )-
module structure of the Eisenstein cohomology spaces Hq

Eis(G, E), under the assumption that
the coefficient module E is regular. The case of each parabolic Q-subgroup Pi, i= 0, 1, 2 is
treated separately in three subsections. The main theorems describing the internal nature of
Eisenstein cohomology classes with respect to regular coefficients are Theorems 5.3, 5.4 and 5.5.
The general phenomenon that each Eisenstein class can be represented by (a finite number of)
regular values of Eisenstein series (see [Sch94]) and the vanishing of Hq

Eis(G, E) below the half
of dimX = 16 (see [LS04]) is verified concretely in this case.

The much more difficult case of a general (meaning not necessarily regular) coefficient
system E is dealt with in § 6. We concentrate on the contribution of the minimal parabolic P0.
The analysis of (residual) Eisenstein cohomology supported in P0 might be viewed as a case
study, which sources its interest in the absence of a good general theory from the following
questions, which have been stated already above.

(a) How do we find the poles of an Eisenstein series EP0(f, Λ)?

(Working on this question is particularly interesting in our concrete case, since G= Sp(2, 2)
(and so L0) is not quasi-split, whence we are out of scope of the ‘Langlands–Shahidi
method’ [Sha81, Sha88].)

(b) How do we control the contribution of the various resulting residues to Eisenstein
cohomology?

In order to answer question (a), i.e. calculate the poles of EP0(f, Λ), we have to normalize
the operators M(Λ, π̃, w) of (2), meaning we have to find a function r(Λ, π̃, w) ‘whose behavior
of holomorphy we understand’ such that N(Λ, π̃, w) = r(Λ, π̃, w)−1M(Λ, π̃, w), to be called the
normalized intertwining operator, is holomorphic and non-vanishing in the region we need it.
For quasi-split groups a suggestion for such a normalization is provided by the Langlands–
Shahidi method. However, as remarked before, our group is not quasi-split. We apply a little
trick (cf. Proposition 6.2 or our original paper [Gro09, Proposition 3.1]), which allows us to
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obtain a good normalization of M(Λ, π̃, w) by only normalizing the local operators M(Λ, π̃p, w),
where p is a place where G(Qp) = Sp8(Qp) (i.e. G splits). Then we use Proposition 6.1, which
tells us that we can reduce the problem of normalizing M(Λ, π̃p, w) at such places to the
Q-rank-one case. Still, we need some extra information, since we also have to normalize cuspidal
representations of L0(A) which are locally not generic. At this point, we use the recent work
of Grbac [Grb07, Grb09], which solves the question of how to normalize our operators for such
non-generic local representations. The candidates for double poles of Eisenstein series are finally
listed in our Propositions 6.6 and 6.8.

Question (b) is the most subtle matter. Here we confine ourselves to considering the space of
square-integrable Eisenstein cohomology, (supported by P0), denoted Hq(g, K, LE,P0 ⊗ E). Its
coefficient system LE,P0 is a subspace of the residual spectrum of G and hence decomposes as
a direct Hilbert sum over unitary residual automorphic representations of G(A), each of which
is generated by twice-iterated residues of Eisenstein series. By our Propositions 6.6 and 6.8 we
can therefore determine the internal nature of a representative of a square-integrable Eisenstein
cohomology class. This is contained in Theorem 6.9.

Theorem. Let P0 be the minimal standard parabolic Q-subgroup of G= Sp(2, 2) and E
any irreducible, finite-dimensional complex-rational representation of G(R). Then the square-
integrable Eisenstein cohomology supported by P0, H∗(g, K, LE,P0 ⊗ E), is spanned by
cohomology classes which are Eisenstein lifts of a class of type (π, w), π = χπ̃ ∈ ϕP0 ∈ ϕ ∈ΨE,P0 ,
π̃ = θ ⊗̂ τ and w ∈WP0 , such that necessarily one of the following conditions holds.

If dχ is inside the open, positive Weyl chamber defined by P0 and A0:

(A) if dim θ > 1 and dim τ > 1,

π̃ = τ ⊗̂ τ , χτ = 1, L(1
2 , τ) 6= 0 and dχ= (3

2 ,
1
2);

(B) if dim θ = 1, dim τ > 1,

π̃ = 1⊗ τ , χτ = 1, L(1
2 , τ) 6= 0 and dχ= (3

2 ,
1
2);

(C) if dim θ = dim τ = 1, then:

(1) π̃ = 1 ⊗̂ τ , τ 6= 1, τ2 = 1, τp 6= 1p ∀p ∈ S(B) and dχ= (3
2 ,

1
2);

(2) π̃ = τ ⊗̂ τ , τ 6= 1, τ2 = 1, τp 6= 1p ∀p ∈ S(B) and dχ= (5
2 ,

1
2);

(3) π̃ = 1⊗ 1 and dχ= (7
2 ,

3
2) = ρP0 .

If dχ is on the boundary of the closed, positive Weyl chamber defined by P0 and A0:

(A) if dim θ > 1 and dim τ > 1,

dχ= (1
2 ,

1
2), (1

2 , 0) or (1, 0);
(B) if dim θ = 1, dim τ > 1,

dχ= (1
2 ,

1
2), (3

2 ,
3
2), (1

2 , 0) or (3
2 , 0);

(B′) if dim θ > 1, dim τ = 1,

dχ= (1
2 ,

1
2), (3

2 ,
3
2) or (1

2 , 0);
(C) if dim θ = dim τ = 1,

dχ= (1
2 ,

1
2), (1, 1), (3

2 ,
3
2), (1

2 , 0), (3
2 , 0) or (2, 0).

Our general Theorem 2.1 on the other hand gives a partial answer on how square-integrable
Eisenstein cohomology classes are distributed in the various degrees. In addition, the classification
of cohomological, irreducible, unitary representations of G(R) given by [VZ84], essentially implies
the following vanishing result (see Theorem 6.10).
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Theorem. If E 6= C, then square-integrable Eisenstein cohomology supported by P0 vanishes
below degree three

Hq(g, K, LE,P0 ⊗ E) = 0 for q 6 3.

If E = C, then there is an epimorphism

H0(g, K, LC,P0)�H0(G, C) = C

and

Hq(g, K, LC,P0) = 0 for 1 6 q 6 3.

In fact, q = 3 is a sharp bound for the vanishing of (g, K)-cohomology in low degrees, so
H4(g, K, LE,P0 ⊗ E) should not vanish. However, this should also follow from our Theorem 2.1,
as we point out in § 6.4.

Finally, we give all necessary computational data (e.g. the sets of Kostant representatives w)
in Tables A1–A8 that we have placed in a small appendix.

Notation and conventions

Throughout this paper, G will be a connected, simply connected, semisimple algebraic group
over Q of rank rkQ(G) > 1 with finite center. Lie algebras of groups of real points of algebraic
groups will be denoted by the same but fractional letter, e.g., Lie(G(R)) = g. The complexification
of a Lie algebra will be denoted by the subscript ‘C’, e.g., g⊗R C= gC. If U(g) is the universal
enveloping algebra of the complex algebra gC, Z(g) denotes its center.

We use the standard terminology and hypotheses concerning algebraic groups and
their subgroups to be found in [MW95, §§ I.1.4–I.1.12]. In particular, we assume that a minimal
parabolic subgroup P0 has been fixed and that KA =KR ×KAf is a maximal compact subgroup
of the group G(A) of adelic points of G which is in a good position with respect to P0 (see [MW95,
§ I.1.4]). Then K =KR is maximal compact in G(R), hence comes with a Cartan involution ϑ.
If H is a subgroup of G, we let KH =K ∩H(R).

Assume that L0 is a Levi subgroup of P0 which is invariant under ϑ and N0 is the unipotent
radical of P0. Then we have the Levi decomposition P0 = L0N0 and if we additionally denote
by A0 a maximal, central Q-split torus in L0, then we also obtain the Langlands decomposition
P0 =M0A0N0. As usual, M0 =

⋂
χ ker χ, χ ranging over the group X(L0) of all Q-characters

on L0. Let P be a standard parabolic Q-subgroup of G. It has a unique Levi decomposition
P = LPNP , with LP ⊇ L0 and also a unique Langlands decomposition P =MPAPNP with
unique ϑ-stable split component AP ⊆A0. If it is clear from the context we also omit the
subscript ‘P ’. We write ∆(P, A) for the set of weights of the adjoint action of P with respect
to AP . Here ρP denotes the half-sum of these weights. In particular, ρ= ρP0 is the half-sum of
positive Q-roots of G with respect to A0.

Extend the Lie algebra a of A(R) to a ϑ-stable Cartan subalgebra h of g by adding a Cartan
subalgebra b of m. The absolute root system of g is denoted by ∆ = ∆(gC, hC), a simple subsystem
(given by the obstruction that positivity on the system of absolute roots shall be compatible with
the positivity on the set ∆Q of Q-roots implied by the choice of the minimal pair (P0, A0)) is
denoted ∆◦. We also write ∆◦M for the set of absolute simple roots of m with respect to b

(so ∆◦ = ∆◦G). The Weyl groups associated with ∆ and ∆Q are denoted by W =W (gC, hC)
and WQ. We let WP = {w ∈W | w−1(α)> 0 ∀ α ∈∆◦M}. The elements of WP are called Kostant
representatives, cf. [BW80].
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Using the fact that KA is in a good position, we can extend the standard Harish-Chandra
height function HP : P (A)→ a∗ given by

∏
p |χ(p)|p = e〈χ,HP (p)〉, with χ ∈X(L) viewed as an

element of a∗C, to a function on all of G(A) by setting HP (g) :=HP (p), g = kp.

Let G be a connected, reductive group over Q and χ̃ a central character. As usual
L2

dis(G(Q)\G(A)) (respectively, L2
dis(G(Q)\G(A), χ̃)) denotes the discrete spectrum of G

(respectively, the part of it consisting of functions with central character χ̃). It can be written as
the direct sum of the cuspidal spectrum L2

cusp(G(Q)\G(A)) (respectively, L2
cusp(G(Q)\G(A), χ̃))

and the residual spectrum L2
res(G(Q)\G(A)) (respectively, L2

res(G(Q)\G(A), χ̃)). By [GGP69] the
space L2

dis(G(Q)\G(A), χ̃), decomposes as a direct Hilbert sum over all irreducible, admissible
representations π of G(A) with central character χ̃, each of which occurring with finite
multiplicity mdis(π). The same is therefore true for the cuspidal (respectively, residual) spectrum,
if we replace the multiplicity by m(π) (respectively, mres(π)). Every π can be written as a
restricted tensor product π =⊗′pπp, where p is a place of Q, i.e. either a prime or ∞ and πp is
a local irreducible, admissible representation πp of G(Qp) (see [Fla79]). Further, π (and so all πp)
is unitary if and only if χ̃ is. Then π is the completed restricted tensor product π = ⊗̂′pπp.

For any G(A) representation σ, we write σ∞ for the space of its smooth vectors and σ(K)

for the space of K-finite vectors. Clearly, if σ is unitary, then σ∞(K) is a unitary (g, K, G(Af ))
module.

1. Automorphic cohomology

1.1 Let E be a finite-dimensional, irreducible, complex-rational representation of G(R)
characterized by its highest weight λ. A starting point of our interest is the G(Af )-module
structure of the (g, K)-cohomology of the space of (E-valued) adelic automorphic forms
A(G(Q)\G(A))⊗ E:

H∗(G, E) :=H∗(g, K,A(G(Q)\G(A))⊗ E).

As is well known, and as we shall also see again later, in order to understand this
cohomology space, one should understand the cohomological contribution of those automorphic
representations π = π∞ ⊗ πf of G(A) which have a cohomological infinite component π∞.

By [Lan79, Proposition 2], a (g, K, G(Af ))-module π is automorphic if and only if it
is isomorphic to an irreducible subquotient of a parabolically induced representation π′ =
IndG(Af )

P (Af ) Ind(g ,K)
(l ,KL)[σ(KL)], σ being a cuspidal automorphic representation of a Levi subgroup L of

a parabolic Q-subgroup of G. This can be proved by use of the so-called Eisenstein intertwining
operator (cf. § 2.2), which assigns, very roughly, to each function f ∈ π′ a regular value, a residue
or a derivative of an Eisenstein series at a certain point (cf. [Fra98, Corollary 1, p. 236] for this
more subtle approach).

Clearly, if π is cuspidal itself, then we can take P =G and this Eisenstein summation
process degenerates essentially to the identity function. Therefore, as a (g, K, G(Af ))-module,
A(G(Q)\G(A)) decomposes as the space of cuspidal automorphic forms Acusp and the
subrepresentation AEis, which is spanned as a representation by all subquotients of parabolically
induced representations IndG(Af )

P (Af ) Ind(g ,K)
(l ,KL)[σ], with P 6=G. By the very definition of the

Eisenstein intertwining operator, this subspace is spanned by Eisenstein series, residues and
derivatives of such. We obtain the decomposition as G(Af )-modules

H∗(G, E) =H∗(g, K,Acusp ⊗ E)⊕H∗(g, K,AEis ⊗ E).
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The first space is called cuspidal cohomology and is denoted by H∗cusp(G, E), the second
Eisenstein cohomology, to be denoted by H∗Eis(G, E). Now, what we are interested in is the space
H∗Eis(G, E) of Eisenstein cohomology, on which we focus in this paper. Since (g, K)-cohomology
only takes into account representations which have a certain infinitesimal character, see [BW80],
one can replace the space of all automorphic forms A(G(Q)\G(A)) by the space AE consisting
of those automorphic forms which are annihilated by a power of the ideal Z of Z(g), which
annihilates the dual representation of E: Z · Ě = 0,

AE = {f ∈ A(G(Q)\G(A)) | Znf = 0 for some n}

and
H∗(G, E) =H∗(g, K,AE ⊗ E).

1.2 The spaces AE,P
In [FS98], Franke and Schwermer (and also Mœglin and Waldspurger in [MW95]) were able to
give a much more detailed decomposition of the space AE , taking into account the cuspidal
support along Levi subgroups of the Eisenstein series involved.

First of all, the space AE admits a certain decomposition as a direct sum with respect to the
classes {P} of associate parabolic Q-subgroups P ⊆G. This relies on such a decomposition of
the space VG ofK-finite, leftG(Q)-invariant, smooth functions f :G(A)→ C of uniform moderate
growth, first proved by Langlands in a letter to Borel [Lan72]. See also [BLS96, Theorem 2.4]:
VG =

⊕
{P} VG({P}), where VG({P}) denotes the space of elements f in VG which are negligible

along Q for every parabolic Q-subgroup Q⊆G, Q /∈ {P}. Putting AE,P = VG({P}) ∩ AE we
obtain the desired decomposition of AE as (g, K, G(Af ))-module

AE =
⊕
{P}

AE,P .

Observe that AE,G ⊂ VG({G}) = L2
cusp(G(Q)\G(A))∞(K). Hence,

Hq
cusp(G, E) =Hq(g, K,AE,G ⊗ E),

and
Hq

Eis(G, E) =
⊕

{P},P 6=G

Hq(g, K,AE,P ⊗ E).

Since VG({G}) = L2
cusp(G(Q)\G(A))∞(K) decomposes as a (g, K, G(Af ))-module as a direct

sum over all cuspidal automorphic representations of G(A), each occurring with finite multiplicity
m(π), by [BW80, XIII] we obtain a finite direct sum decomposition

H∗cusp(G, E) =
⊕
π

H∗(g, K, π ⊗ E)m(π) =
⊕
π

(H∗(g, K, (π∞)(K) ⊗ E)⊗ π∞f

f )m(π),

the sum ranging over all cuspidal automorphic representations π of G(A).

1.3 Eisenstein series
Also the summands AE,P giving Eisenstein cohomology have a decomposition as (g, K, G(Af ))-
module. We refer the reader to the original paper [FS98] for details.

Some technical assumptions and notation have to be fixed.
ForQ= LN =MAN associated with the standard parabolic P , ϕQ is a finite set of irreducible

representations π = χπ̃ of L(A), with χ :A(R)◦→ C∗ a continuous character and π̃ an irreducible,
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unitary subrepresentation of L2
cusp(L(Q)A(R)◦\L(A)) of L(A) whose central character induces a

continuous morphism A(Q)A(R)◦\A(A)→ U(1) and whose infinitesimal character matches the
one of the dual of an irreducible subrepresentation of H∗(n, E). This means that π̃ is a unitary,
cuspidal automorphic representation of L(A) whose central and infinitesimal character satisfy the
above conditions. Finally, three further ‘compatibility conditions’ have to be satisfied between
these sets ϕQ, skipped here and written down in [FS98, § 1.2]. The family of all collections
ϕ= {ϕQ} of such finite sets is denoted by ΨE,P .

Now, let WQ,π̃ be the space of all smooth, K-finite functions

f : L(Q)N(A)A(R)◦\G(A)→ C,
such that for every g ∈G(A) the function l 7→ f(lg) on L(A) is contained in the π̃-isotypic
component π̃m(π̃) of L2

cusp(L(Q)A(R)◦\L(A)). For a function f ∈WQ,π̃, Λ ∈ a∗C and g ∈G(A)
an Eisenstein series is formally defined as

EQ(f, Λ)(g) :=
∑

γ∈Q(Q)\G(Q)

f(γg)e〈Λ+ρQ,HQ(γg)〉.

If we set (a∗)+ := {Λ ∈ a∗C | <e(Λ) ∈ ρQ + C}, where C equals the open, positive Weyl chamber
with respect to ∆(Q, A), the series converges absolutely and uniformly on compact subsets
of G(A)× (a∗)+. It is known that EQ(f, Λ) is an automorphic form there and that the
map Λ 7→ EQ(f, Λ)(g) can be analytically continued to a meromorphic function on all of a∗C,
cf. [MW95] or [Lan76, § 7]. It is known that the singularities Λ0 (i.e. poles) of EQ(f, Λ) lie along
certain affine hyperplanes of the form Rα,t := {ξ ∈ a∗C | 〈ξ, α〉= t} for some constant t and some
root α ∈∆(Q, A), called ‘root hyperplanes’ ([MW95, Proposition IV.1.11(a)] or [Lan76, p. 131]).
Choose a normalized vector ν ∈ a∗C orthogonal to Rα,t and assume that Λ0 is on no other singular
hyperplane of EQ(f, Λ). Then define Λ0(u) := Λ0 + uν for u ∈ C. If c is a positively oriented circle
in the complex plane around zero which is so small that EQ(f, Λ0(·))(g) has as no singularities
on the interior of the circle with double radius, then

ResΛ0(EQ(f, Λ)(g)) :=
1

2πi

∫
c
EQ(f, Λ0(u))(g) du

is a meromorphic function on Rα,t, called the residue of EQ(f, Λ) at Λ0. Its poles lie on the
intersections of Rα,t with the other singular hyperplanes of EQ(f, Λ). So one obtains a function
holomorphic at Λ0 in finitely many steps by taking successive residues as explained above.

1.4 The spaces AE,P,ϕ
Now we are able to turn to the desired decomposition of AE,P : for π = χπ̃ ∈ ϕP ∈ ϕ ∈ΨE,P let
AE,P,ϕ be the space of functions, spanned by all possible residues and derivatives of Eisenstein
series defined via all f ∈WP,π̃, at the value dχ inside the closed, positive Weyl chamber defined by
∆(P, A). It is a (g, K, G(Af ))-module. Thanks to the functional equations (see [MW95, IV.1.10])
satisfied by the Eisenstein series considered, this is well defined, i.e. independent of the choice of
a representative for the class of P (whence we took P itself) and the choice of a representation
π ∈ ϕP . Finally, we obtain the following result.

Theorem 1.1 (Franke and Schwermer [FS98, Theorems 1.4 and 2.3]; see also Mœglin and
Waldspurger [MW95, III, Theorem 2.6]). There is direct sum decomposition as a (g, K, G(Af ))-
module

AE,P =
⊕

ϕ∈ΨE,P

AE,P,ϕ
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giving rise to

H∗Eis(G, E) =
⊕

{P},P 6=G

⊕
ϕ∈ΨE,P

H∗(g, K,AE,P,ϕ ⊗ E).

2. Construction of Eisenstein cohomology

We now review a method to construct Eisenstein cohomology, using the notion of so-called
‘(π, w)-types’.

2.1 Classes of type (π, w)

Take π = χπ̃ ∈ ϕP and consider the symmetric tensor algebra

Sχ(a∗) =
⊕
n>0

n⊙
a∗C,

where
⊙n a∗C is the symmetric tensor product of n copies of a∗C, as a module under aC: via the

natural identification aC
∼→ a∗C it is an aC-module acted upon by ξ ∈ aC ∼= a∗C via multiplication

with 〈ξ, ρP + dχ〉+ ξ (within the symmetric tensor algebra). This explains the subscript ‘χ’. We
extend this action trivially on lC and nC to obtain an action of the Lie algebra pC on the Banach
space Sχ(a∗). Observe that one can equivalently regard Sχ(a∗) as the space of polynomials p
on aC. Thus, we can define a P (Af )-module structure via the rule

(q · p)(ξ) = e〈ξ+dχ+ρP ,HP (q)〉p(ξ),

for q ∈ P (Af ), ξ ∈ aC and p ∈ Sχ(a∗). There is a continuous linear isomorphism

IndG(Af )

P (Af ) Ind(g ,K)
(l ,KL)[π̃

∞
(KL) ⊗ Sχ(a∗)]m(π̃) ∼→WP,π̃ ⊗ Sχ(a∗),

induced by the tensor map ⊗ and the evaluation of functions f ∈ C∞(G(A), (π̃∞)m(π̃)) at
the identity, f 7→ evid(f) : g 7→ f(g)(id), so in particular one can view the right-hand side as
a (g, K, G(Af ))-module by transport of structure. Doing this, Franke [Fra98, pp. 256–257] shows
that

Hq(g, K, WP,π̃ ⊗ Sχ(a∗)⊗ E)

∼=
⊕
w∈WP

−w(λ+ρ)|aC=dχ

IndG(Af )

P (Af )[H
q−l(w)(m, KM , (π̃∞)(KM ) ⊗ ◦Fw)⊗ Cdχ+ρP ⊗ π̃

∞f

f ]m(π̃). (3)

Here ◦Fw is the finite-dimensional representation of M(C) with highest weight w(λ+ ρ)−
ρ|b C and Cdχ+ρP the one-dimensional, complex P (Af )-module on which q ∈ P (Af ) acts by
multiplication by e〈dχ+ρP ,HP (q)〉. A non-trivial class in a summand of the right-hand side is
called a cohomology class of type (π, w), π ∈ ϕP , w ∈WP . (This notion was first introduced
in [Sch83].)

Further, as L(R)∼=M(R)×A(R)◦, π̃∞ can be regarded as an irreducible, unitary
representation of M(R). Therefore, a (π, w) type consists of an irreducible representation
π = χπ̃ whose unitary part π̃ = π̃∞ ⊗̂ π̃f has at the infinite place an irreducible, unitary
representation π̃∞ of the semisimple group M(R) with non-trivial (m, KM )-cohomology with
respect to ◦Fw.
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2.2 The Eisenstein map
In order to construct Eisenstein cohomology classes, we start from a class of type (π, w).
Since we are interested in cohomology, we can by (3) assume without loss of generality that
dχ=−w(λ+ ρ)|a C lies inside the closed, positive Weyl chamber defined by ∆(P, A).

We reinterpret Sχ(a∗) as the (Banach) space of formal, finite C-linear combinations of
differential operators ∂α/∂Λα on the complex, l-dimensional vector space aC. It is understood
that some choice of Cartesian coordinates z1(Λ), . . . , zl(Λ) on aC has been fixed and α=
(n1, . . . , nl) ∈ Nl0 denotes a multi-index with respect to these. As a consequence of [MW95,
Proposition IV.1.11], there exists a polynomial 0 6= q(Λ) on aC such that for every f ∈WP,π̃ the
function

Λ 7→ q(Λ)EP (f, Λ)

is holomorphic at dχ. Since AE,P,ϕ can be written as the space which is generated by the
coefficient functions in the Taylor series expansion of q(Λ)EP (f, Λ) at dχ, f running through
WP,π̃, we are able to define a surjective homomorphism of (g, K, G(Af ))-modules EP,π

WP,π̃ ⊗ Sχ(a∗)
EP,π // AE,P,ϕ

f ⊗ ∂α

∂Λα
7→ ∂α

∂Λα
(q(Λ)EP (f, Λ))|dχ

and obtain a well-defined map in cohomology

Hq(g, K, WP,π̃ ⊗ Sχ(a∗)⊗ E) Eqπ−→H∗(g, K,AE,P,ϕ ⊗ E). (4)

2.3 Degrees of Eisenstein cohomology classes
2.3.1 Regular Eisenstein series. Suppose that [ω] ∈Hq(g, K, WP,π̃ ⊗ Sχ(a∗)⊗ E) is a class

of type (π, w), represented by a morphism ω, such that for all elements f ⊗ (∂α/∂Λα) in its image,
EP,π(f ⊗ (∂α/∂Λα)) = (∂α/∂Λα)(q(Λ)EP (f, Λ))|dχ is just the regular value EP (f, dχ) of the
Eisenstein series EP (f, Λ), which is assumed to be holomorphic at the point dχ=−w(λ+ ρ)|a C
inside the closed, positive Weyl chamber defined by ∆(P, A). Then Eqπ([ω]) is a non-trivial
Eisenstein cohomology class

Eqπ([ω]) ∈Hq(g, K,AE,P,ϕ ⊗ E).

This is a consequence of [Sch83, Theorem 4.11].

2.3.2 Residual Eisenstein series. In the residual case, there might no longer be an unique
degree, in which the image of Eqπ contributes. However, we can still single out a certain degree
in which residual Eisenstein series contribute, if they have a pole of maximal possible order at
Λ = dχ and satisfy some extra condition to be introduced below. (Observe that this maximum
is precisely the dimension of aC.)

Let us explain this. As a matter of fact, the poles of the Eisenstein series EP (f, Λ) are those
of its constant terms [Lan76]. Furthermore, it is enough to consider the constant term along
associate parabolic subgroups. Indeed, due to the functional equation satisfied by Eisenstein series
(cf. [MW95, § IV.1.10]) it suffices to consider the constant term along the standard parabolic
subgroup P ′ ∈ {P}, which is conjugate to P , the parabolic opposite to P . For sake of simplicity
we assume that P is a self-associate, i.e. P = P ′. Put

IP,π̃,Λ := IndG(Af )

P (Af ) Ind(g ,K)
(l ,KM )[π̃

∞
(KM ) ⊗ CΛ+ρP ]m(π̃),
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where we assume that q ∈ P (Af ) acts on CΛ+ρP by multiplication with e〈Λ+ρP ,HP (q)〉. Then
the constant term along P can be written as a finite sum over certain Weyl group elements
w ∈W (A) :=NG(Q)(A(Q))/L(Q)

EP (f, Λ)P =
∑

w∈W (A)

M(Λ, π̃, w)(fe〈Λ+ρP ,HP (·)〉), (5)

see, e.g., [MW95, Propsition II.1.7], and the poles of the Eisenstein series are determined by the
mutual influence of the poles of the (g, K, G(Af ))-intertwining operators

M(Λ, π̃, w) : IP,π̃,Λ→ IP,w(π̃),w(Λ)

M(Λ, π̃, w)ψ(g) =
∫
N(Q)∩wN(Q)w−1\N(A)

ψ(w−1ng) dn.

Let us assume that EP (f, Λ) has got a pole of order ` at the point dχ for an f ∈WP,π̃. Then
the residue of the Eisenstein series ResdχEP (f, Λ) will be obtained via the constant term map
in the sum of the images J(dχ, π̃, w) of those normalized intertwining operators N(dχ, π̃, w)
for which M(Λ, π̃, w) has a pole of at least order ` at Λ = dχ. (By a normalization we mean
a function which results out of M(Λ, π̃, w) when dividing out the poles, i.e. more precisely,
we assume that we have found a meromorphic function r(Λ, π̃, w) such that N(Λ, π̃, w) =
r(Λ, π̃, w)−1M(Λ, π̃, w) is holomorphic and non-vanishing in a region containing dχ.) This set
of operators therefore defines a subset W (A)res ⊆W (A), given by

W (A)res = {w ∈W (A) |M(Λ, π̃, w) has a pole of at least order ` at Λ = dχ}.

In particular, if we assume that ` is maximal, then M(Λ, π̃, w0), with w0 the longest element
of W (A), will be among these operators, i.e. w0 ∈W (A)res. Now, let [ω] ∈Hq(g, K, WP,π̃ ⊗
Sχ(a∗)⊗ E) be a class represented by a morphism ω having only functions f ⊗ 1 in its image
whose associated Eisenstein series EP (f, Λ) have a pole of maximal possible order at the
uniquely determined point Λ = dχ. We recall that the class [EP,π(ω)P ] which is represented
by the constant term of the residues ResdχEP (f, Λ) along P equals the natural restriction
resqP (Eqπ([ω])) of the class Eqπ([ω]) to the face e′(P )A := P (Q)\P (A)/KPA(R)◦ of the adelic
Borel–Serre-compactification of S :=G(Q)\G(A)/K. As this will not play a big role here, we
refer the reader to [Sch83, Satz 1.10] and [Roh96] for details. Having observed this, we see that

resqP (Eqπ([ω])) ∈Hq

(
g, K,

∑
w∈W (A)res

J(dχ, π̃, w)⊗ E
)
.

The reader should observe that the sum
∑

w∈W (A)res
J(dχ, π̃, w) will not be direct in general.

This is the point where we introduce the extra condition mentioned already at the beginning
of this subsection: from now on we assume that J(dχ, π̃, w0) is a direct summand of our coefficient
space, i.e. there is a (g, K, G(Af ))-module N such that

J(dχ, π̃, w0)⊕N =
∑

w∈W (A)res

J(dχ, π̃, w). (6)

This assumption is not too strong. However, it enables us to write resqP (Eqπ([ω])) as
resqP (Eqπ([ω])) = [Ωw0 ]⊕ [ΩN ], where clearly [Ωw0 ] ∈Hq(g, K, J(dχ, π̃, w0)⊗ E) and [ΩN ] ∈
Hq(g, K, N ⊗ E). We now show that [Ωw0 ] might be viewed as a cohomology class in a certain
degree q′.
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As P is self-associate, we have L(A) = w0L(A)w−1
0 = L(A) and N(A) = w0N(A)w−1

0 . This
implies that we can rewrite the intertwining operator M(Λ, π̃, w0) as

M(Λ, π̃, w0)ψ(g) =
∫
N(A)

ψ(nw−1
0 g) dn

and hence M(Λ, π̃, w0)ψ ∈ IP ,π̃,Λ, the representation induced from the opposite parabolic P .
Therefore, it is justified to look at the image J(dχ, π̃, w0) of N(dχ, π̃, w0) as a subspace
of IP ,π̃,dχ. However, this implies further that [Ωw0 ] can be viewed as a cohomology class in
Hq(g, K, IP ,π̃,dχ ⊗ E). Clearly, the degrees in which J(dχ, π̃, w0) has cohomology with respect
to E are determined by its infinite component

J(dχ, π̃∞, w0) ↪→ Ind(g ,K)
(l ,KM )[(π̃∞)(KM ) ⊗ Cdχ+ρP

]m(π̃).

As a consequence of the first half of the proof of [BW80, V, Proposition 1.5], [Ωw0 ] defines
in this case (i.e. if all Eisenstein series EP (f, Λ), f ⊗ 1 in the image of ω, have a pole of
maximal possible order ` at dχ=−w(λ+ ρ)|a C and if (6) holds) a cohomology class in degree
q′ := q + dimN(R)− 2l(w).

By (3) r = q − l(w) is a degree, in which π̃∞ has (m, KM )-cohomology. So we have proved
the following theorem.

Theorem 2.1. Let [ω] ∈Hq(g, K, WP,π̃ ⊗ Sχ(a∗)⊗ E) be a non-trivial class of type (π, w),
π = χπ̃, w ∈WP such that π̃∞ has non-zero (m, KM )-cohomology in degree r = q − l(w) with
respect to ◦Fw. Suppose that all Eisenstein series EP (f, Λ), f ⊗ 1 in the image of ω, have a
pole of maximal possible order `= dim aC at the uniquely determined point dχ=−w(λ+ ρ)|a C
and that J(dχ, π̃, w0) is a direct summand of

∑
w∈W (A)res

J(dχ, π̃, w). Then the restriction of

Eqπ([ω]) to the face e′(P )A has a summand which defines an Eisenstein cohomology class in degree
r + dimN(R)− l(w).

Remark (Maximal parabolic P ). If P maximal, then P will automatically be a self-associate if G
is not of type An (n > 2), Dn (n odd) or E6. Assume that P is a self-associate. Then only the
longest (since it is the only non-trivial) Weyl group element w ∈W (A) can contribute a pole to
an Eisenstein series and we are in the situation considered above. We recall further that if P is
not self-associate, then EP (f, Λ) will be holomorphic for <e(Λ) > 0.

Clearly, if rkQ(G) = 1, then any proper parabolic P will be self-associate and hence the above
statement always applies to these groups.

3. The group Sp(2, 2)

3.1 We now collect necessary, basic facts concerning the group G= Sp(2, 2). Therefore, let B
be a quaternion algebra over Q with canonical involution x 7→ x, such that B ⊗Q R∼=H where H
equals the real Hamilton quaternions. We denote by S(B) the finite set of places p where B does
not split, i.e. B ⊗Q Qp is a division algebra. Suppose that f :Bn ×Bn→B is a Hermitian form
of signature (p, q), where 0 6 q 6 p with n= p+ q and Bn is being regarded as a B-right module.
We suppose that f is equivalent to (x, y) 7→

∑p
i=1 xiyi −

∑q
j=1 xj+pyj+p. Then we define Sp(p, q)

to be the group of all B-linear automorphisms of Bn leaving f invariant:

Sp(p, q) = {g ∈Mn(B) | g∗Kp,qg =Kp,q}.

33

https://doi.org/10.1112/S0010437X09004266 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004266


H. Grobner

Here, g∗ = (gji)i,j = gt and

Kp,q :=
(
idp×p 0

0 −idq×q

)
.

Here Sp(p, q) is a connected, simply connected, simple algebraic group over Q of ranks
rkQ(G) = rkR(G) = min(p, q). It is a non-quasi-split inner form of Sp2n, the split group of
type Cn. From now on let G= Sp(2, 2). A maximal compact subgroup K of G(R) is isomorphic
to K = Sp(2)× Sp(2).

3.2 Parabolic groups

We fix a minimal parabolic P0 = L0N0 =M0A0N0 as in the introduction. We see that

L0
∼= GL1(B)×GL1(B)

and so

M0 = SL1(B)× SL1(B).

Further, A0 can be chosen such that Lie(A0(R)) = a0, with

a0 =
{(

0 a
a 0

)
, a= diag(a1, a2) ∈M2(R)

}
and we can identify the set of Q- and R-roots of G with

∆Q = ∆(g, a0) = {±βi ± βj , 1 6 i < j 6 2} ∪ {±2β1,±2β2},

where βi is the linear functional on a0 extracting the value ai. The simple Q-roots are
∆◦Q = {β1 − β2, 2β2}. The unipotent radical N0 of P0 is of dimension 14.

There are two standard, maximal parabolic Q-subgroups P1, P2 (the latter being the Siegel
parabolic). Explicitly, we obtain

L1
∼= GL1(B)× Sp(1, 1)

M1 = SL1(B)× Sp(1, 1)
A1 = {g ∈A0|a2 = 1}

dimN1(R) = 11
KM1

∼= SL1(H)× Sp(1)× Sp(1)

and

L2
∼= GL2(B)

M2 = SL2(B)
A2 = {g ∈A0|a1 = a2}

dimN2(R) = 10
KM2

∼= Sp(2).

3.3 Root data

For i= 0, 1, 2, extend ai to a Cartan subalgebra h of g by adding a Cartan subalgebra bi of mi.
We may take

b0 =
{(

b 0
0 b

) ∣∣∣∣ b= diag(b1, b2) ∈ iM2(R)
}
.
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Then the absolute root system of G is given as

∆(gC, hC) = {±λi ± λj , 1 6 i < j 6 4} ∪ {±2λi, 1 6 i 6 4}

where λi equals the functional sending H ∈ hC to

λi(H) =

{
bi + ai 1 6 i 6 2,
bi−2 − ai−2 3 6 i 6 4.

A simple subsystem which is compatible with the choice of positivity on a∗0 is hence

∆◦ = {λ1 + λ3︸ ︷︷ ︸
=:α1

,−λ2 − λ3︸ ︷︷ ︸
=:α2

, λ2 + λ4︸ ︷︷ ︸
=:α3

,−2λ4︸ ︷︷ ︸
=:α4

}.

The highest weight λ of an irreducible, finite-dimensional representation E of G(R) may be
written as λ=

∑4
i=1 ciαi, where ci are non-negative half-integers.

The corresponding systems of simple roots for the three standard parabolics are

∆◦M0
= {α1, α3}

∆◦M1
= {α1, α3, α4}

∆◦M2
= {α1, α2, α3}.

Clearly, the restrictions of the roots αj ∈∆◦\∆◦Mi
to ai gives the set of simple roots

within ∆(Pi, Ai). For later purpose we also fix the following notation for the corresponding
fundamental weights: ωij , j = 1, 2, 3, denotes the jth fundamental weight of Mi(C), i= 1, 2.
The fundamental weights of M0(C) are denoted by ω01 and ω02.

We list the tables of values w(λ+ ρ)− ρ|b iC , w ∈WPi , and 〈−w(λ+ ρ)|a iC , αj〉, αj ∈
∆(Pi, Ai), w ∈WPi (and therefore also the sets WPi) in the appendix.

4. Cohomological representations for the three standard Levi subgroups

4.1 Recall the notion of (π, w)-types and the construction process of Eisenstein cohomology
described in § 2. We need to find the cohomological, irreducible, unitary representations of
Mi(R). Denote the set of irreducible, unitary representations by M̂i(R), the cohomological
representations among them by M̂i(R)coh. Connected, semisimple Lie groups are of ‘type I’
(or ‘tame’ in the sense of Kirillow and Bernstein), so by the Künneth rule (cf. [BW80, § I.1.3])

M̂0(R)coh = ŜL1(H)coh ⊗̂ ŜL1(H)coh,

M̂1(R)coh = ŜL1(H)coh ⊗̂ ̂Sp(1, 1)coh,

M̂2(R)coh = ŜL2(H)coh.

4.2 Compact factors
The cohomological representations of a SL1(H)-factor of Mi(R), i= 0, 1, are easily determined
in the next lemma. For the sake of simplicity we identify ◦Fw with its restriction to this factor.

Lemma 4.1. Let w ∈WP (P = P0 or P1) and V be an irreducible, unitary representation of
SL1(H). Then

Hq(sl1(H), SL1(H), V ⊗ ◦Fw) =

{
C if q = 0 and V = ◦Fw
0 else.
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Proof. Since SL1(H) is compact, relative Lie algebra cohomology with respect to V ⊗ ◦Fw
is one-dimensional, if V ∼= ˇ◦Fw (the representation contragredient to ◦Fw) and q = 0 and
vanishes otherwise. By [Sch94, Proposition 4.13], and our Tables A5 and A6 (see Appendix A),
respectively, our Table A1 (see Appendix A) we see that ˇ◦Fw ∼= ◦Fw. 2

4.3 Non-compact factors
The paper [VZ84] provides a full classification of irreducible, unitary, cohomological
representations of a connected semisimple Lie group. In order to apply it to the simple Lie groups
Sp(1, 1) and SL2(H), let us fix a maximal compact Cartan algebra t1 ∼= u(1)⊕ u(1) of sp(1, 1)
(respectively, t2 ∼= u(1)⊕ u(1)⊕ R of sl2(H)). We can arrange that with respect to this Cartan
algebra the system of positive roots looks like ∆+

1 = {µ1 ± µ2, 2µ1, 2µ2}, (respectively, ∆+
2 =

{µ1 ± µ2, µ1 ± µ3, µ2 ± µ3}). Take a finite-dimensional, irreducible, complex representation F of
Sp(1, 1) (respectively, SL2(H)) with highest weight µ with respect to ∆+

1 (respectively, ∆+
2 ).

Skipping the details, we obtain the following proposition.

Proposition 4.2 (Vogan and Zuckerman [VZ84]). For each µ there is an integer j1(µ), 0 6
j1(µ) 6 2 such that the irreducible, unitary (sp(1, 1), Sp(1)× Sp(1))-modules with non-trivial
cohomology with respect to F are the uniquely determined irreducible, unitary representations
Aj(µ), j1(µ) 6 j 6 1 having the property

Hq(sp(1, 1), Sp(1)× Sp(1), Aj(µ)⊗ F ) =

{
C if q = j or q = 4− j
0 otherwise

together with the two irreducible, unitary (sp(1, 1), Sp(1)× Sp(1))-modules A+(µ), A−(µ) with

Hq(sp(1, 1), Sp(1)× Sp(1), A±(µ)⊗ F ) =

{
C if q = 2
0 otherwise.

This integer is given as

j1(µ) =


0 if µ= 0
1 if µ= kµ1, k = 1, 2, 3, . . .
2 otherwise.

Analogously, there is an integer j2(µ), 0 6 j2(µ) 6 3 such that the irreducible, unitary
(sl2(H), Sp(2))-modules with non-trivial cohomology with respect to F are the uniquely
determined irreducible, unitary representations Bj(µ), j2(µ) 6 j 6 2 having the property

Hq(sl2(H), Sp(2), Bj(µ)⊗ F ) =

{
C if q = j or q = 5− j
0 otherwise.

This integer is given as

j2(µ) =


0 if µ= 0
1 if µ= kµ1, k = 1, 2, 3, . . .
2 if µ ◦ ϑ= µ

3 otherwise.

Remark . One can see this also by use of the isomorphisms SO(4, 1)◦ ∼= PSp(1, 1) and SO(5, 1)◦ ∼=
PSL2(H) of real Lie groups and the classification of ̂SO(n, 1)coh as given essentially in [BW80]
and, later on, completely in [RS87].
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The condition j2(µ) = 3 can be interpreted as F � F̌ , see [BC83, Corollary 1.6(a)].

4.4 We have to compare weights with respect to maximally non-compact Cartans to weights
in t∗iC . Therefore, let $ij ∈ t∗iC , be the fundamental weights corresponding to the simple roots
in ∆+

i and consider the linear maps given by

ϕ1 : (sp(1, 1) ∩ b1)∗C→ t∗1C , ω12 7→$12, ω13 7→$11

and

ϕ2 : b∗2C → t∗2C , ω21 7→$22, ω22 7→$21, ω23 7→$23.

These are isomorphisms respecting the choices of positivity on each side and transferring
fundamental representations to fundamental representations.

In particular, we can compare highest weights of irreducible representations of Sp(1, 1) and
SL2(H) with respect to the two Cartan subalgebras and their choices of positivity by applying
the corresponding map ϕi.

5. Eisenstein cohomology of Sp(2, 2) with respect to regular coefficients

5.1 Having listed the sets WPi, i= 0, 1, 2, in our Appendix A, and the cohomological
representations of the groups Mi(R) in the last section, we are now ready to attack the problem of
determining the Eisenstein cohomology of G. In view of our § 2, we need to construct the spaces
Hq(g, K,AE,P ⊗ E) for each class {P} of proper, associate parabolic Q-subgroups of G. We
remark that for G= Sp(2, 2) the associate classes and conjugacy classes of parabolic Q-subgroups
coincide, hence we can suppose that P is one of the groups P0, P1 or P2.

This section deals with the case of regular coefficients E. That means the highest weight λ
of E has strictly positive integer coefficients with respect to a decomposition according to the
fundamental weights. Recall the following crucial result on Eisenstein cohomology with respect
to regular coefficients E, which in our particular case reads as follows.

Theorem 5.1 (Schwermer [Sch94]; see also Franke [Fra98, Theorem 19.II]). Residual Eisenstein
series do not contribute to the Eisenstein cohomology of G with respect to regular E. More
precisely, if Π is a set of representatives of irreducible representations π = χπ̃ of the Levi
components L(A) of standard parabolic Q-subgroups of G, which give rise to non-trivial maps
E∗π. Then Eqπ is an isomorphism and we obtain

Hq
Eis(G, E)

∼=
⊕
π∈Π

⊕
w∈WP

−w(λ+ρ)|aC=dχ

IndG(Af )

P (Af )[H
q−l(w)(m, KM , (π̃∞)(KM ) ⊗ ◦Fw)⊗ Cdχ+ρP ⊗ π̃

∞f

f ]m(π̃).

5.2 The minimal parabolic subgroup

In order to perform the construction via (π, w)-types, we need to know for which w ∈WP0 ,
Λw =−w(λ+ ρ)|a 0C

lies inside the closed, positive Weyl chamber. This is achieved explicitly in
Tables A7 and A8 (see Appendix A) and we see that only very few elements in WP0 can actually
satisfy this condition. These are underlined in Table A8. Among them, only six elements satisfy it
for sure, i.e. for all coefficient systems E (even non-regular systems). The others need some extra
condition on the highest weight λ which might also not be satisfied by a regular representation E.
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It is given in Table A8 (see Appendix A). We denote by W+(λ) the set of w ∈WP0 giving rise
to Λw ∈ C.

Remark 5.2. General theory, as developed in [Sch94], tells us that Λw to make part of the closed,
positive Weyl chamber must at least satisfy l(w) > 1

2 dimN0(R) = 7. However, instead of looking
at all w ∈WP0 having l(w) > 7, it would have been enough to consider those w ∈WP0 giving
rise to the inequality

l(wPi/P0) >
dimN0(R)

2 dimNi(R)
, i= 1, 2. (7)

This follows from [Sch94, Theorem 6.4]. Here, the Weyl group element wPi/P0 is defined as
follows: let WPi/P0 be the set of representatives of minimal length for the right cosets of
W (m0C , b0C) in W (miC , biC). Such representatives are unique by [Kos61, Proposition 5.13].
Now, for a given w ∈WP0 there are uniquely determined elements wPi/P0 ∈WPi/P0 , wPi ∈WPi

satisfying w = wPi/P0 ◦ wPi and l(w) = l(wPi/P0) + l(wPi), see [Sch94, Proposition 4.7].
In our cases, (7) reads as

l(wP1/P0) > 7
11 and l(wP2/P0) > 7

10 ,

meaning that we only have to consider those w ∈WP0 which are neither in WP1 nor in WP2 . In
fact, these elements can be excluded by direct means as Tables A7 and A8 in our Appendix A
show.

Collecting this information we obtain the following theorem.

Theorem 5.3. Let E be an irreducible, finite-dimensional, complex-rational representation of
G(R) = Sp(2, 2) with regular highest weight λ=

∑4
i=1 ciαi. The summand

Hq(g, K,AE,P0 ⊗ E) =
⊕

ϕ∈ΨE,P0

Hq(g, K,AE,P0,ϕ ⊗ E)

in the Eisenstein cohomology Hq
Eis(G, E) is given as a G(Af )-module by

Hq(g0, K,AE,P0 ⊗ E) =
⊕

w∈W+(λ)
l(w)=q

⊕
π=χπ̃

π̃∞=◦Fw,
dχ=−w(λ+ρ)|a 0C

Eqπ 6=0

IndG(Af )

P0(Af )[Cdχ+ρP0
⊗ π̃∞f

f ]m(π̃)

for 8 6 q 6 13

H14(g, K,AE,P0 ⊗ E) =
⊕
π=χπ̃

π̃∞=◦Fw,
l(w)=14

dχ=λ+ρ|a 0C

IndG(Af )

P0(Af )[Cdχ+ρP0
⊗ π̃∞f

f ]m(π̃)

Hq(g, K,AE,P0 ⊗ E) = 0 otherwise.

All of these spaces are entirely built up by cohomology classes representable by regular values
of Eisenstein series.

Proof. Recalling the construction process via (π, w)-types, and the result on cohomological,
irreducible, unitary representations in Lemma 4.1, it is clear that π̃∞ and dχ must satisfy the
above conditions. By Theorem 5.1, Eqπ is already an isomorphism, if it is not identically zero.
Looking up in Tables A7 and A8 (see Appendix A) the possible w ∈WP0 that can give rise
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to values dχ=−w(λ+ ρ)|a 0C
inside the closed, positive Weyl chamber defined by the positive

restricted roots ∆(P0, A0) or recalling Remark 5.2, proves that Hq(g, K,AE,P0 ⊗ E) = 0 if q 6 7.
Our Table A8 shows that W+(λ) can actually contain representatives w having l(w) equal to
8, 9, 10, 11, 12, 13 and 14, whence we have to list cohomology in all of these degrees. Again by
our Table A8 there is a unique Kostant representative of length 14 in W+(λ) for all λ and its
corresponding evaluation point dχ= λ+ ρ|a 0C

lies in the region C + ρP0 of absolute convergence
of the Eisenstein series EP0(f, Λ), since λ is regular. Hence, we can omit the condition E14

π 6= 0.
This is not true for the other degrees 8 6 q 6 13, see Table A8. This proves the theorem. 2

5.3 The first maximal parabolic subgroup
We explain now which classes of type (π, w), π ∈ ϕP1 ∈ ϕ ∈ΨE,P1 and w ∈WP1 contribute to
the Eisenstein cohomology of G.

Since the highest weight λ of E is supposed to be regular, each irreducible module ◦Fw is also
regular [Sch94, Lemma 4.9]. Therefore, π̃∞ must equal the tensor product of the representation
V = ◦Fw|SL1(H) as in Lemma 4.1 with one of the two discrete series representations A±(µw), µw =
ϕ1(w(λ+ ρ)− ρ|(sp (1,1)∩b 1)C), see § 4.4, having non-trivial (sp(1, 1), Sp(1)× Sp(1))-cohomology
only in degree two, as is proved in Proposition 4.2. The actual contribution of the first maximal
parabolic Q-subgroup to Eisenstein cohomology is given in the next theorem.

Theorem 5.4. Let E be an irreducible, finite-dimensional, complex-rational representation of
G(R) = Sp(2, 2) with regular highest weight λ=

∑4
i=1 ciαi. The summand

Hq(g, K,AE,P1 ⊗ E) =
⊕

ϕ∈ΨE,P1

Hq(g, K,AE,P1,ϕ ⊗ E)

in the Eisenstein cohomology Hq
Eis(G, E) is given as a G(Af )-module by

Hq(g, K,AE,P1 ⊗ E) =
⊕

w∈WP1

l(w)=q−2

⊕
π=χπ̃

π̃∞=V⊗A±(µw),
dχ=−w(λ+ρ)|a 1C

Eqπ 6=0

IndG(Af )

P1(Af )[Cdχ+ρP1
⊗ π̃∞f

f ]m(π̃)

for 8 6 q 6 13
= 0 otherwise.

All of these spaces are entirely built up by cohomology classes representable by regular values
of Eisenstein series.

Proof. The assertions on dχ and π̃∞ are already explained. By Theorem 5.1, we only need to sum
over those π, which satisfy Eqπ 6= 0 and for which Eqπ is therefore an isomorphism. Now Lemma 4.1
and Proposition 4.2 imply that we must have l(w) = q − 2, since Hr(sl1(H)⊕ sp(1, 1), SL1(H)×
Sp(1)× Sp(1), V ⊗A±(µw)⊗ ◦Fw) = 0 for r 6= 2. By Table A3 (see Appendix A) there is no
element w ∈WP1 of length l(w) > 12 but also dχ= Λw does not lie inside the closed, positive
Weyl chamber for l(w) 6 5. This proves the vanishing of Hq(g, K,AE,P1 ⊗ E) in the degrees
q 6 7 and q > 14. 2

Remark . In fact, Table A3 also shows that all w ∈WP1 with l(w) > 9 give rise to evaluation
points dχ=−w(λ+ ρ)|a 1C

which lie in the region C + ρP1 of absolute convergence of the

Eisenstein series EP1(f, Λ). Hence, we could have omitted the condition El(w)+2
π 6= 0 for these w.
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5.4 The second maximal parabolic subgroup

We conclude the analysis of Eisenstein cohomology of G with respect to regular coefficients E
describing the remaining summand H∗(g, K,AE,P2 ⊗ E). Again, since E is supposed to be
regular, each representation ◦Fw, w ∈WP2 , of the group M2(C) is also regular. Recalling
Proposition 4.2, there can only be one single cohomological, irreducible, unitary representation
of M2(R) with respect to ◦Fw, namely B2(µw) with µw = ϕ2(w(λ+ ρ)− ρ|b 2C

), see § 4.4.
Proposition 4.2 now gives us the appropriate tool to decide when j2(µw) = 2, i.e. when B2(µw)
exists. This is the case if and only if the first and the third coefficient of w(λ+ ρ)− ρ|b 2C

in
its decomposition according to the basis of fundamental weights ω21, ω22 and ω23 coincide. Our
Table A2 (see Appendix A) answers the question of when this happens exactly in detail. Observe
that the two conditions c1 − c4 = 1 and c3 − c4 = c1 from Table A2 contradict each other, so they
cannot be satisfied at the same time. It can very well happen that they are both not satisfied,
e.g., if c1 < c3 − c4, or equivalently if the first coefficient of w(λ+ ρ)− ρ|b 2C

in its decomposition
according to the basis of fundamental weights ω21, ω22 and ω23 is strictly smaller than the
third coefficient. Clearly, there are even regular representations E satisfying c1 < c3 − c4. In this
case j2(µw) = 3 for all w ∈WP2 , implying that P2 does not give any contribution to Eisenstein
cohomology with respect to such E. This contribution can be described in general as follows.

Theorem 5.5. Let E be an irreducible, finite-dimensional, complex-rational representation of
G(R) = Sp(2, 2) with regular highest weight λ=

∑4
i=1 ciαi. Let us write WP2(λ) := {w ∈WP2 |

j(µw) = 2}. The summand

Hq(g, K,AE,P2 ⊗ E) =
⊕

ϕ∈ΨE,P2

Hq(g, K,AE,P2,ϕ ⊗ E)

in the Eisenstein cohomology Hq
Eis(G, E) is given as a G(Af )-module by

Hq(g, K,AE,P2 ⊗ E) =
⊕

w∈WP2 (λ)
l(w)=q−3

⊕
π=χπ̃

with π̃∞=B2(µw),
dχ=−w(λ+ρ)|a 2C

Eqπ 6=0

IndG(Af )

P2(Af )[Cdχ+ρP2
⊗ π̃∞f

f ]m(π̃)

⊕
⊕

w∈WP2 (λ)
l(w)=q−2

⊕
π=χπ̃

with π̃∞=B2(µw),
dχ=−w(λ+ρ)|a 2C

Eqπ 6=0

IndG(Af )

P2(Af )[Cdχ+ρP2
⊗ π̃∞f

f ]m(π̃)

for 8 6 q 6 13
= 0 otherwise.

All of these spaces are entirely built up by cohomology classes representable by regular values
of Eisenstein series.

Proof. This is proved in a similar manner to Theorems 5.3 and 5.4, so we will be very brief. Recall
from Proposition 4.2 that B2(µw) has non-trivial (sl2(H), Sp(2))-cohomology with respect to ◦Fw
only in degrees two and three. Therefore, Hq(g, K,AE,P2 ⊗ E) is built up by classes of type
(π, w), having l(w) = q − 2 or l(w) = q − 3. The rest follows from Table A4 (see Appendix A). 2

Remark . The vanishing of Hq
Eis(G, E) for q 6 7 is also a consequence of [LS04, Theorem 5.5].
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6. Residual Eisenstein cohomology classes supported by the minimal parabolic

6.1 In § 5 we discussed the contribution of the various standard parabolic Q-subgroups to the
Eisenstein cohomology Hq

Eis(G, E), for finite-dimensional irreducible representations E of G with
regular highest weight. The regularity condition ensured that residual Eisenstein series would not
contribute to cohomology, so we did not really have to check the analytic behavior of Eisenstein
series at the various points of evaluation in question.

However, in principle it is possible to give a complete description of Eisenstein cohomology
even if the regularity condition is dropped, but we first have to understand the analytic behavior
of the Eisenstein series EP (f, Λ) at the points dχ=−w(λ+ ρ)|a C . As our parabolics are all self-
associate, we can reduce this problem by § 2.3.2 to the following task: understand the interplay
of the various poles of the intertwining operators M(Λ, π̃, w), w ∈W (A).

In order to exemplify the difficulties and some general phenomena that occur during the
analysis of residual Eisenstein cohomology, we now consider the space of square-integrable
Eisenstein cohomology supported by the minimal parabolic subgroup P0. We enforce square-
integrability because then we only need to consider Eisenstein series which have poles of maximal
possible order `= 2. This allows us to use the results of § 2.3.2, which give a partial answer to
the question in which degrees of cohomology maximally residual Eisenstein series contribute.

6.2 When trying to find out the various poles of the intertwining operators M(Λ, π̃, w),
w ∈W (A), the actual problem is to give a suitable normalization, i.e. to find a function r(Λ, π̃, w)
such that N(Λ, π̃, w) = r(Λ, π̃, w)−1M(Λ, π̃, w), be called the normalized intertwining operator,
is holomorphic and non-vanishing on the open, positive Weyl chamber defined by the pair (P, A).
The difficulty lies in the fact that each standard Levi group L of G is a non-quasi-split algebraic
group, whence one cannot apply the Langlands–Shahidi method, as developed in [Sha81, Sha88]
in order to normalize the local intertwining operators at the non-split places. However, if L(Qp)
is compact modulo its center, we can use the same trick as in [Gro09, Proposition 3.1] and show
that the local intertwining operator at the place p is itself holomorphic and non-vanishing inside
the open, positive Weyl chamber defined by ∆(P, A). Clearly, only the minimal parabolic P = P0

gives a Levi subgroup L= L0 which satisfies the condition to be compact modulo its center at
all non-split places.

For the rest of this section let P be the standard minimal parabolic Q-subgroup P0 of
G= Sp(2, 2) with decompositions P = LN =MAN . As already remarked, L(Qp) is compact
modulo its center at all places p ∈ S(B), since M = SL1(B)× SL1(B). We have W (A) =WQ.

Let π = χπ̃ ∈ ϕP ∈ ϕ ∈ΨE,P , f ∈WP,π̃ and identify Λ = xα2 + yα4 ∈ a∗C with s= (s1, s2) ∈
C2 via s1 = x/2 and s2 = y − (x/2). As in the following, we assume here for sake of simplicity
that all roots αj mean their restriction to aC. Further, observe that since L= GL1(B)×GL1(B),
each π̃ factors as π̃ = θ ⊗̂ τ , where θ and τ are cuspidal automorphic representations of GL1(B).

Now, as mentioned in § 2.3.2, the holomorphic behavior of the Eisenstein series EP (f, Λ) is
the same as of its constant term along P , which can be rewritten as

EP (f, Λ)P =
∑
w∈WQ

M(s, π̃, w)(fe〈Λ+ρP ,HP (·)〉). (8)

Therefore, the poles of EP (f, Λ) are determined by the poles of M(s, π̃, w), w ∈WQ. We
recall the following fact.
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Proposition 6.1 (Shahidi [Sha81, § 2.1] and Muić and Savin [MS00, § 2]). Let w ∈WQ be an
element of the Weyl group with decomposition w = wn1 . . . wnk according to the reflections wni
corresponding to the simple Q-roots αni , ni ∈ {2, 4}. Then the local intertwining operator
M(s, π̃p, w) decomposes as

M(s, π̃p, w) =M(sk, π̃k,p, wnk) · · ·M(s1, π̃1,p, wn1)

where we put recursively si = (2〈si, αni〉/〈αni , αni〉), si = wni−1(si−1) with s1 = s and π̃i,p =
wni−1(π̃i−1,p) with π̃1,p = π̃p. The action of a Weyl group element on a representation π̃p = θp ⊗̂ τp
is given by w2(π̃p) = τp ⊗̂ θp and w4(π̃p) = θp ⊗̂ τ̌p.

The point of this proposition is that for each w ∈WQ we can write the local intertwining
operator M(s, π̃p, w) as a finite product of the analogous local intertwining operators
M(si, π̃i,p, wni) attached to the two standard maximal Levi subgroups ofG: if ni = 4, the maximal
Levi is Sp(1, 1), while if ni = 2, it is GL2(B). Hence, on the one hand, we can apply the following
proposition.

Proposition 6.2 (Grobner [Gro09, Proposition 3.1]). Let p ∈ S(B). Then M(si, π̃i,p, wni) is
holomorphic and non-vanishing for <e(si)> 0.

Then we obtain the following corollary.

Corollary 6.3. The poles of M(s, π̃, w) in the region <e(s1)> <e(s2)> 0 are the poles of
⊗̂′p/∈S(B)M(s, π̃p, w).

On the other hand, we can normalize each local operator M(s, π̃p, w) by normalizing the
factors M(si, π̃i,p, wni) and obtain a global normalization

r(s, π̃, w) =
k∏
i=1

⊗̂′p/∈S(B)r(sk−i+1, π̃k−i+1,p, wnk−i+1
). (9)

6.2.1 Sp(1, 1). The corresponding normalizing factors for ni = 4, i.e. our maximal Levi looks
like Sp(1, 1), can be found in [Gro09, § 5], where the whole residual spectrum of Sp(1, 1) was
calculated.1 For the convenience of the reader, we review these results briefly: recall that we may
write π̃i = θi ⊗̂ τi, with θi and τi being cuspidal automorphic representations of GL1(B). The only
proper parabolic Q-subgroup inside Sp(1, 1) has a Levi subgroup isomorphic to GL1(B), which
is actually the second GL1(B)-factor of L0. Hence, we always identify π̃i with its second GL1(B)-
factor τi, when it comes to ni = 4. Now suppose that p /∈ S(B). If τi is not one-dimensional, then
the required normalization follows from the Gindikin–Karpelevich integral formula, as shown
in [Lan71, p. 27] (see also [Sha88, p. 554]) and had been already given in [Kim95, MW89]:

r(si, π̃i,p, wni) =
L(si, τi,p)

L(1 + si, τi,p)ε(si, τi,p)
L(2si, χ̃i,p)

L(1 + 2si, χ̃i,p)ε(2si, χ̃i,p)
. (10)

Here we wrote χ̃i,p for the central character of τi,p. The L- and ε-functions are the standard
Jacquet–Langlands and Hecke L- and ε-functions of the second GL1(B)-factor τi,p of π̃i,p and of
its central character χ̃i,p, respectively.

If τi = χ̃i is one-dimensional, then we used the concrete normalization of [Grb07], where the
idea of [MW89, Lemme I.8] had been applied, i.e. induction from generic representations of

1 As we were preparing this article, the residual spectrum of Sp(1, 1) was, in even greater generality, calculated
independently in [Yas07].
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smaller parabolic subgroups:

r(si, π̃i,p, wni) =
L(si − 1

2 , χ̃i,p)L(2si, χ̃2
i,p)

L(si + 3
2 , χ̃i,p)ε(si −

1
2 , χ̃i,p)ε(si + 1

2 , χ̃i,p)L(1 + 2si, χ̃2
i,p)ε(2si, χ̃

2
i,p)

. (11)

6.2.2 GL2(B). Here we have to distinguish three cases: suppose that π̃i = θi ⊗̂ τi, with θi
and τi being cuspidal automorphic representations of GL1(B), satisfies dim θi > 1 and dim τi > 1.
Then, again after having used the Gindikin–Karpelevich integral formula, our local normalizing
factor at p /∈ S(B) looks like

r(si, π̃i,p, wni) =
L(si, θi,p × τ̌i,p)

L(1 + si, θi,p × τ̌i,p)ε(si, θi,p × τ̌i,p)
. (12)

Here, the L-functions and the ε-factor are of Rankin–Selberg type. Again see [MW89].
Suppose now that one factor of π̃i is one-dimensional, without loss of generality say dim θi = 1.

We can use [Grb09] to normalize M(si, π̃i,p, wni) and obtain

r(si, π̃i,p, wni) =
L(si − 1

2 , θi,pτ̌i,p)
L(si + 3

2 , θi,pτ̌i,p)ε(si −
1
2 , θi,pτ̌i,p)ε(si + 1

2 , θi,pτ̌i,p)
. (13)

In the third case, i.e. both factors θi and τi are one-dimensional, again [Grb09] provides a
normalization by

r(si, π̃i,p, wni)

=
L(si, θi,pτ−1

i,p )L(si − 1, θi,pτ−1
i,p )

L(si + 2, θi,pτ−1
i,p )L(si + 1, θi,pτ−1

i,p )ε(si, θi,pτ−1
i,p )2ε(si − 1, θi,pτ−1

i,p )ε(si + 1, θi,pτ−1
i,p )

.

(14)

Therefore, we have defined recursively the global normalization factor r(s, π̃, w) as in (9) for
each w ∈WQ. We finally conclude as follows.

Proposition 6.4. Let s be inside the open region <e(s1)> <e(s2)> 0. Then there is an
f ∈WP,π̃ such that the Eisenstein series EP (f, Λ) has a double pole at s if and only if

r(s, π̃) =
∑
w∈WQ

r(s, π̃,w)

has a double pole at s.

Proof. Suppose that r(s, π̃) has a double pole at s, <e(s1)> <e(s2)> 0. Then there is a w ∈WQ
such that r(s, π̃,w) has a double pole at s. By our discussion of the normalizing factors we know
that N(s, π̃, w) = r(s, π̃,w)−1M(s, π̃,w) is holomorphic and non-vanishing at s. So there is an
f ∈WP,π̃, which is not sent to zero by N(s, π̃, w) and therefore M(s, π̃,w)f =
r(s, π̃,w)N(s, π̃, w)f really has a double pole at s. By the decomposition (8), the constant term
EP (f, Λ)P has a double pole at s, wherefrom it finally follows that EP (f, Λ) has a double pole
at s. 2

6.3 Double poles of normalizing factors
Recall the well-known facts on the analytic behavior of Jacquet–Langlands, Hecke and Rankin–
Selberg L-functions, summarized in our next result.
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Lemma 6.5 (Jacquet–Langlands [JL70], Tate [Tat67] and Jacquet [Jac72]). We have the
following results.

(i) Let σ = ⊗̂′pσp be a cuspidal automorphic representation of GL1(B) with central character

χσ = ⊗̂′pχσp , assuming that dim σ > 1. Then the local Jacquet–Langlands L-function
L(s, σp) is holomorphic and non-zero on <e(s)> 1 at each place p. For the infinite place,

in particular, we obtain L(s, σ∞) = 2(2π)−s−n−
1
2 Γ(s+ n+ 1

2) if σ∞ is the nth symmetric
power

⊙n C2 and hence this local L-factor is holomorphic and non-vanishing for <e(s) > 0.
The global Jacquet–Langlands L-function L(s, σ) is an entire function and has no zeros for
<e(s) > 1.

(ii) The local Hecke L-function L(s, χσp) has a simple pole at s= 0 if χσp = 1p and is entire
otherwise. It vanishes nowhere. The global Hecke L-function L(s, χσ) has simple poles at
s= 0 and s= 1 if χσ = 1 (and L(s, 1) = π−(s/2)Γ(s/2)ζ(s)) and is entire otherwise. It is
non-zero for <e(s) > 1.

(iii) Let ρ= ⊗̂′pρp, η = ⊗̂′pηp be two cuspidal automorphic representations of GL2(A). Then
the local Rankin–Selberg L-function L(s, ρp × ηp) is holomorphic and non-vanishing for
<e(s) > 1. If ρp and ηp are both square integrable, then L(s, ρp × ηp) is holomorphic and
non-zero in <e(s)> 0. The global Rankin–Selberg L-function L(s, ρ× η) has simple poles
at s= 0 and s= 1 if and only if ρ∼= η̌ and is entire otherwise. It has no zeros in <e(s) > 1.

Proposition 6.6. For an Eisenstein series EP (f, Λ) to have a double pole at s= (s1, s2) inside
the region <e(s1)> <e(s2)> 0 it is necessary that one of the following three conditions holds:

(A) dim θ > 1 and dim τ > 1,

s=A := (3
2 ,

1
2), π̃ = τ ⊗̂ τ , χτ = 1 and L(1

2 , τ) 6= 0;

(B) dim θ = 1, dim τ > 1,

s=B := (3
2 ,

1
2), χτ = 1, θ = 1 and L(1

2 , τ) 6= 0;

(C) dim θ = dim τ = 1,

(1) s= C1 := (3
2 ,

1
2), τ 6= 1, τ2 = 1, τp 6= 1p ∀p ∈ S(B), θ = τ̌ or θ = 1;

(2) s= C2 := (5
2 ,

1
2), τ 6= 1, τ2 = 1, τp 6= 1p ∀p ∈ S(B), θ = τ ;

(3) s= C3 := (7
2 ,

3
2) = ρP , π̃ = 1⊗ 1.

Sketch of a proof. As the determination of these necessary conditions is easy (by the concrete form
of our normalizing factors r(s, π̃) and Lemma 6.5) but rather cumbersome, we confine ourselves
in exemplifying the general procedure in the case (A). There is no loss of generality if we assume
that s ∈ R2, since this can be achieved by just twisting a cuspidal automorphic representation of
L(A) with an appropriate imaginary power of the absolute value of the reduced norm of the deter-
minant. So let π̃ be a cuspidal automorphic representation whose two cuspidal factors θ and τ are
both not one-dimensional. We need to regard the global function r(s, π̃). Each of its summands
r(s, π̃, w), w ∈WQ, is according to (9) a finite product of some of the following five func-
tions r1(s, π̃) = r(s1 − s2, π̃, w2), r2(s, π̃) = r(s2, τ, w4), r3(s, π̃) = r(s1, θ, w4), r4(s, π̃) = r(s1 +
s2, τ ⊗̂ θ̌, w2) or r5(s, π̃) = r(s1 + s2, θ ⊗̂ τ̌ , w2). Here we already calculated the various infinite
products ⊗̂′p/∈S(B)r(sk−i+1, π̃k−i+1,p, wnk−i+1

) according to the rule of Proposition 6.1. By the
concrete form of r1(s, π̃), given by (12), Lemma 6.5 now gives that the poles of r1(s, π̃) are those of
L(s1 − s2, JL(θ)× JL(τ̌)), where JL(σ) denotes the global Jacquet–Langlands lift of the cuspidal
automorphic representation σ of GL1(B) to a cuspidal automorphic representation JL(σ)
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of GL2, see [GJ79, Theorem (8.3)]. Therefore, again by the above lemma, r1(s, π̃) has simple
poles in the region <e(s1)> <e(s2)> 0 if and only if s1 − s2 = 1 and θ = τ . Analogously, the
poles of r2(s, π̃) are by its concrete form given in (10) those of L(s2, τ)L(2s2, χτ ). We apply
Lemma 6.5 and see that r2(s, π̃) has simple poles in the region <e(s1)> <e(s2)> 0 if and only if
2s2 = 1, χτ = 1 and L(1

2 , τ) 6= 0. An analog and easy observation shows that r3(s, π̃) has simple
poles along 2s1 = 1 if χθ = 1 and L(1

2 , θ) 6= 0 and that the poles of rj(s, π̃), j = 4, 5 lie along
s1 + s2 = 1 for θ ∼= τ̌ . Only the singular hyperplanes of r1(s, π̃) and r2(s, π̃) intersect in the
region <e(s1)> <e(s2)> 0 and they intersect in s= (3

2 ,
1
2). 2

Remark 6.7. Only the longest element w0 = w2w4w2w4 in WQ gives rise to a normalizing factor
r(s, π̃, w) which carries r1(s, π̃) and r2(s, π̃). The remaining other two factors r3(s, π̃) and
r4(s, π̃) showing up in the decomposition of r(s, π̃, w0) have no zero at A= (3

2 ,
1
2). So for

any cuspidal automorphic representation π̃ of L(A), satisfying π̃ = τ ⊗̂ τ , χτ = 1 and L(1
2 , τ) 6= 0,

the necessary condition given above is also sufficient to ensure that there will be an f ∈WP,π̃

such that the Eisenstein series EP (f, Λ) has a double pole at A.

In fact, by the same argument the points C2 and C3 will actually give rise to double poles of
Eisenstein series attached to cuspidal automorphic representations π̃ of the Levi L that satisfy
the indicated condition. So for these points the given conditions on π̃ will also be sufficient for
an appropriate choice of f ∈WP,π̃.

Proposition 6.8. For an Eisenstein series EP (f, Λ) to have a double pole at s= (s1, s2) on the
boundary of the closed, positive Weyl chamber, i.e. either <e(s1)−<e(s2) = 0 or <e(s1) = 0, it
is necessary that:

(A) dim θ > 1 and dim τ > 1,

s= (1
2 ,

1
2), (1

2 , 0) or (1, 0);

(B) dim θ = 1, dim τ > 1,

s= (1
2 ,

1
2), (3

2 ,
3
2), (1

2 , 0) or (3
2 , 0);

(B′) dim θ > 1, dim τ = 1,

s= (1
2 ,

1
2), (3

2 ,
3
2), or (1

2 , 0);

(C) dim θ = dim τ = 1,

s= (1
2 ,

1
2), (1, 1), (3

2 ,
3
2), (1

2 , 0), (3
2 , 0) or (2, 0).

Sketch of a proof. Again this is easy, but not very instructive, so we will again confine ourselves to
case (A). We may also assume that s ∈ R2. We cannot decide by our means chosen here if the root
hyperplanes R1 := {s ∈ R2 | s1 − s2 = 0} and R2 := {s ∈ R2 | s1 = 0} forming the boundary of the
closed, positive Weyl chamber are actually singular hyperplanes for Eisenstein series attached
to cuspidal automorphic representations π̃ of L(A). However, in order to have a double pole at
a point s on this boundary, we need to have one of our singular root hyperplanes, given by the
five factors ri(s, π̃), 1 6 i 6 5, to cross R1 or R2 in s. From the proof above we know that these
singular hyperplanes are s1 − s2 = 1, 2s2 = 1, 2s1 = 1 and s1 + s2 = 1. Their intersection points
with one of the boundary hyperplanes R1 and R2 are precisely the points we claim to be the only
candidates for double poles of Eisenstein series on the boundary of the positive Weyl chamber
in case (A). 2
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6.4 Square-integrable Eisenstein cohomology
We now determine the square-integrable Eisenstein cohomology supported by P . Therefore, let

LE,P,ϕ ⊆AE,P,ϕ
be the subspace of AE,P,ϕ which consists of square-integrable automorphic forms. By [Lan76]
or [MW95] it is spanned by all twice-iterated, square-integrable residues of Eisenstein series
EP (f, Λ), f ∈WP,π̃, π = χπ̃ ∈ ϕP ∈ ϕ ∈ΨE,P at the point dχ inside the closed, positive Weyl
chamber defined by ∆(P, A). Hence, it is spanned by the square-integrable residues at dχ of
those Eisenstein series attached to a cuspidal automorphic representation π̃ of L(A) which have
a double pole there. This is because simple poles integrate to zero. Put

LE,P :=
⊕

ϕ∈ΨE,P

LE,P,ϕ.

We define the space of square-integrable Eisenstein cohomology (supported by P ) by

Hq(g, K, LE,P ⊗ E) =
⊕

ϕ∈ΨE,P

Hq(g, K, LE,P,ϕ ⊗ E).

Combining our previous results, Propositions 6.6 and 6.8, with the Langlands’ ‘square
integrability criterion’ (cf. [MW95, Lemma I.4.11]) we conclude as follows.

Theorem 6.9. Let P = LN be the minimal standard parabolic Q-subgroup of G= Sp(2, 2)
and E any irreducible, finite-dimensional complex-rational representation of G(R). Then the
square-integrable Eisenstein cohomology supported by P , H∗(g, K, LE,P ⊗ E), is spanned by
cohomology classes which are Eisenstein lifts of a class of type (π, w), π = χπ̃ ∈ ϕP ∈ ϕ ∈ΨE,P ,
w ∈WP , such that necessarily one of the following conditions holds.

If dχ is inside the open, positive Weyl chamber defined by ∆(P, A):

(A) if dim θ > 1 and dim τ > 1,

π̃ = τ ⊗̂ τ , χτ = 1 and L(1
2 , τ) 6= 0 and dχ= (3

2 ,
1
2);

(B) if dim θ = 1, dim τ > 1,

π̃ = 1⊗ τ , χτ = 1 and L(1
2 , τ) 6= 0 and dχ= (3

2 ,
1
2);

(C) if dim θ = dim τ = 1,

(1) π̃ = 1 ⊗̂ τ , τ 6= 1, τ2 = 1, τp 6= 1p ∀p ∈ S(B) and dχ= (3
2 ,

1
2);

(2) π̃ = τ ⊗̂ τ , τ 6= 1, τ2 = 1, τp 6= 1p ∀p ∈ S(B) and dχ= (5
2 ,

1
2);

(3) π̃ = 1⊗ 1 and dχ= (7
2 ,

3
2) = ρP .

If dχ is on the boundary of the closed, positive Weyl chamber defined by ∆(P, A):

(A) if dim θ > 1 and dim τ > 1,

dχ= (1
2 ,

1
2), (1

2 , 0) or (1, 0);
(B) if dim θ = 1, dim τ > 1,

dχ= (1
2 ,

1
2), (3

2 ,
3
2), (1

2 , 0) or (3
2 , 0);

(B′) if dim θ > 1, dim τ = 1,

dχ= (1
2 ,

1
2), (3

2 ,
3
2), or (1

2 , 0);
(C) if dim θ = dim τ = 1,

dχ= (1
2 ,

1
2), (1, 1), (3

2 ,
3
2), (1

2 , 0), (3
2 , 0) or (2, 0).
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Remark . By the square integrability criterion, i.e. [MW95, Lemma I.4.11], (non-zero) iterated
residues of Eisenstein series at C1 = (3

2 ,
1
2) cannot be square integrable, if they come from a

representation π̃ = τ̌ ⊗̂ τ of L(A). Hence, we excluded them from the list in Theorem 6.9.

We also have the following vanishing theorem.

Theorem 6.10. If E 6= C, then square-integrable Eisenstein cohomology supported by P
vanishes below degree three

Hq(g, K, LE,P ⊗ E) = 0 for q 6 3.

If E = C, then there is an epimorphism

H0(g, K, LC,P )�H0(G, C) = C

and

Hq(g, K, LC,P ) = 0 for 1 6 q 6 3.

Proof. For any E, LE,P is a direct summand of the residual spectrum of G(A), so LE,P is
the direct Hilbert sum of certain residual automorphic representations. So in order to give a
non-trivial cohomological contribution in the degrees 0 6 q 6 3, it is necessary that there is an
irreducible, unitary representation π = ⊗̂′pπp of G(A) with π∞ cohomological with respect to E.
However, if π∞ 6= C, then Hq(g, K, π∞ ⊗ E) = 0 for q 6 3, as it follows from [VZ84, Theorem 8.1].
Conversely, we can only have π∞ = C if E = C itself, and then we know that

Hq(g, K, C) =

{
C if q = 0, 4, 12, 16
C2 if q = 8

(15)

and vanishes in all other degrees. This happens, since Hq(g, K, C) equals the de Rham
cohomology of the quaternionic Grassmannian G2(H4) of two-dimensional H-subspaces in H4.
Further, identifying H0(G, C) with the de Rham cohomology of G(Q)\G(A)/K proves
H0(G, C) = C. Observe that we have now shown every assertion except that there is a surjection
H0(g, K, LC,P )�H0(G, C). This is certainly well-known and follows from general theory, but
for the convenience of the reader we give a direct argument here.

Therefore, recall that for E = C the longest element in WP will give the evaluation point
dχ= (7

2 ,
3
2) = ρP and π̃∞ = 1∞ ⊗ 1∞ and consider the image of the local normalized intertwining

operator N((7
2 ,

3
2), 1∞ ⊗ 1∞, w0). As ∞∈ S(B), 1∞ ⊗ 1∞ is compactly supported modulo the

center, whence tempered, and so the image of the local normalized operator is the Langlands
quotient of the local trivial representation. As C3 = (7

2 ,
3
2) = ρP , this quotient is the local trivial

representation of G(R). A twice-iterated residue at dχ= ρP of a singular Eisenstein series will be
square-integrable, by [MW95, Lemma I.4.11]. Therefore, there is a global residual automorphic
representation π ⊂ LC,P , namely the image of the global normalized intertwining operator
N((7

2 ,
3
2), 1⊗ 1, w0), such that π∞ = C. (In fact, by the above local argument, one can also

easily see that the image of the global operator is the global trivial representation 1 of G(A).)
By (15) we are done. 2

Remark . Of course we could also have gained the result in degrees q = 0, 1 by the following: in
degree q = 0 we could have used the equality H0(G, E) = lim−→KΓ

EΓ and Borel’s ‘density theorem’
(cf., e.g., [PR93]) or in degree q = 1 we could have referred to the well-known vanishing results
of Margulis and Raghunathan, which give H1(G, E) = 0 (see [Mar91, Rag67]). In particular,
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for E = C we could also have used [Bor74], which shows that Hq(g, K, C)→Hq(G, C) is an
isomorphism in low degrees together with our computations of the line (15).

Remark . As H4(g, K, C) = C, q = 3 is in fact a sharp upper bound for the vanishing of (g, K)-
cohomology of G= Sp(2, 2) in low degrees. However, there is also another residual representation
which has (g, K)-cohomology in degree four. This is a consequence of our Theorem 2.1: in fact,
if we consider q = 4, then for all λ the element w = w4w2w3w4w1w2w3w1w2w1 of length 10 is in
W+(λ) as indicated in our Table A8 (see Appendix A). We obtain π̃∞ =

⊙4+c1−c3+2c4 C2 ⊗⊙4−c1+c3 C2, whence dim θ > 5 and dim τ > 5 and we are in case (A). The corresponding
evaluation point dχ=−w(λ+ ρ)|a C reads as s= ((3 + c1 + c3 − 2c4/2), (1 + 2c2 − c1 − c3/2)),
satisfies s1 >

3
2 , s2 >

1
2 and is always inside the open, positive Weyl chamber. By Proposition 6.6

and Remark 6.7 there will really be an Eisenstein series EP (f, Λ) which has a double pole at
A= (3

2 ,
1
2) for all cuspidal automorphic representations π̃ = θ ⊗̂ τ of L(A) subject to the condition

θ = τ , χτ = 1 and L(1
2 , τ) 6= 0. According to [MW95, Lemma I.4.11], the space of twice-iterated

residues at A= (3
2 ,

1
2) of such Eisenstein series consists of square-integrable automorphic forms.

Playing around with the concrete form of π̃∞ and s given above yields λ= kω4, k = 0, 1, 2, 3 . . .
and ω4 the fundamental weight of gC which corresponds to the fourth simple root α4. By
Theorem 2.1 the twice-iterated residue of EP (f, Λ) will therefore contribute to square-integrable
Eisenstein cohomology with respect to E = Ekω4 in degree dimN(R)− l(w) = 14− 10 = 4.
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Appendix A. Tables for the three standard parabolic Q-subgroups

As before, E denotes a finite-dimensional, irreducible, complex-rational representation of G(R) =
Sp(2, 2) with highest weight λ=

∑4
i=1 ciαi. As λ is algebraically integral and dominant, we can

easily see that we obtain the following relations among the coefficients:

c4 >
c3

2
>
c2

2
>
c3

3
> 0 and c1 >

c2

2
. (16)

Let ω01 and ω02 be the two fundamental weights of M0(C). Analogously, ωij , j = 1, 2, 3,
denotes the jth fundamental weight of Mi(C), i= 1, 2.

Tables A1 and A2 give the values w(λ+ ρ)− ρ|b iC , w ∈WPi , i= 1, 2, in terms of the
fundamental weights ωij . Recall that ρ= 4α1 + 7α2 + 9α3 + 5α4. Table A2 additionally says
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Table A1. ◦Fw for P1.

w(λ+ ρ)− ρ|b 1C

id (2c1 − c2)ω11 + (−c2 + 2c3 − 2c4)ω12 + (−c3 + 2c4)ω13

w2 (1 + c1 + c2 − c3)ω11 + (1− c1 + c2 + c3 − 2c4)ω12 + (−c3 + 2c4)ω13

w2w1 (−c1 + 2c2 − c3)ω11 + (2 + c1 + c3 − 2c4)ω12 + (−c3 + 2c4)ω13

w2w3 (2 + c1 + c3 − 2c4)ω11 + (−c1 + 2c2 − c3)ω12 + (1− c2 + c3)ω13

w2w3w1 (1− c1 + c2 + c3 − 2c4)ω11 + (1 + c1 + c2 − c3)ω12 + (1− c2 + c3)ω13

w2w3w4 (4 + c1 − c3 + 2c4)ω11 + (−c1 + 2c2 − c3)ω12 + (1− c2 + c3)ω13

w2w3w4w1 (3− c1 + c2 − c3 + 2c4)ω11 + (1 + c1 + c2 − c3)ω12 + (1− c2 + c3)ω13

w2w3w1w2 (−c2 + 2c3 − 2c4)ω11 + (2c1 − c2)ω12 + (2− c1 + c2)ω13

w2w3w4w3 (5 + c1 − c2 + c3)ω11 + (1− c1 + c2 + c3 − 2c4)ω12 + (−c3 + 2c4)ω13

w2w3w4w3w1 (4− c1 + c3)ω11 + (2 + c1 + c3 − 2c4)ω12 + (−c3 + 2c4)ω13

w2w3w4w1w2 (2− c2 + 2c4)ω11 + (2c1 − c2)ω12 + (2− c1 + c2)ω13

w2w3w4w3w2 (6 + c2)ω11 + (−c2 + 2c3 − 2c4)ω12 + (−c3 + 2c4)ω13

w2w3w4w3w2w1 (6 + c2)ω11 + (−c2 + 2c3 − 2c4)ω12 + (−c3 + 2c4)ω13

w2w3w4w3w1w2 (4− c1 + c3)ω11 + (2 + c1 + c3 − 2c4)ω12 + (−c3 + 2c4)ω13

w2w3w4w1w2w3 (2− c2 + 2c4)ω11 + (2c1 − c2)ω12 + (2− c1 + c2)ω13

w2w3w4w3w1w2w1 (5 + c1 − c2 + c3)ω11 + (1− c1 + c2 + c3 − 2c4)ω12 + (−c3 + 2c4)ω13

w2w3w4w1w2w3w2 (3− c1 + c2 − c3 + 2c4)ω11 + (1 + c1 + c2 − c3)ω12 + (1− c2 + c3)ω13

w2w3w4w1w2w3w4 (−c2 + 2c3 − 2c4)ω11 + (2c1 − c2)ω12 + (2− c1 + c2)ω13

w2w3w4w1w2w3w2w1 (4 + c1 − c3 + 2c4)ω11 + (−c1 + 2c2 − c3)ω12 + (1− c2 + c3)ω13

w2w3w4w1w2w3w4w2 (1− c1 + c2 + c3 − 2c4)ω11 + (1 + c1 + c2 − c3)ω12 + (1− c2 + c3)ω13

w2w3w4w1w2w3w4w2w1 (2 + c1 + c3 − 2c4)ω11 + (−c1 + 2c2 − c3)ω12 + (1− c2 + c3)ω13

w2w3w4w1w2w3w4w2w3 (−c1 + 2c2 − c3)ω11 + (2 + c1 + c3 − 2c4)ω12 + (−c3 + 2c4)ω13

w2w3w4w1w2w3w4w2w3w1 (1 + c1 + c2 − c3)ω11 + (1− c1 + c2 + c3 − 2c4)ω12 + (−c3 + 2c4)ω13

w2w3w4w1w2w3w4w2w3w1w2 (2c1 − c2)ω11 + (−c2 + 2c3 − 2c4)ω12 + (−c3 + 2c4)ω13

Table A2. ◦Fw for P2.

w(λ+ ρ)− ρ|b 2C

id (2c1 − c2)ω21 + (−c1 + 2c2 − c3)ω22 + (−c2 + 2c3 − 2c4)ω23

w4 (2c1 − c2)ω21 + (−c1 + 2c2 − c3)ω22 + (2− c2 + 2c4)ω23

w4w3 (2c1 − c2)ω21 + (1− c1 + c2 + c3 − 2c4)ω22 + (2− c2 + 2c4)ω23

w4w3w2 (1 + c1 + c2 − c3)ω21 + (−c2 + 2c3 − 2c4)ω22 + (3− c1 + c2 − c3 + 2c4)ω23

w4w3w4 (2c1 − c2)ω21 + (3− c1 + c2 − c3 + 2c4)ω22 + (−c2 + 2c3 − 2c4)ω23

w4w3w4w2 (1 + c1 + c2 − c3)ω21 + (2− c2 + 2c4)ω22 + (1− c1 + c2 + c3 − 2c4)ω23

w4w3w2w1 (−c1 + 2c2 − c3)ω21 + (−c2 + 2c3 − 2c4)ω22 + (4 + c1 − c3 + 2c4)ω23 @
w4w3w4w2w1 (−c1 + 2c2 − c3)ω21 + (2− c2 + 2c4)ω22 + (2 + c1 + c3 − 2c4)ω23 @

w4w3w4w2w3 (2 + c1 + c3 − 2c4)ω21 + (2− c2 + 2c4)ω22 + (−c1 + 2c2 − c3)ω23 @
w4w3w4w2w3w4 (4 + c1 − c3 + 2c4)ω21 + (−c2 + 2c3 − 2c4)ω22 + (−c1 + 2c2 − c3)ω23 @
w4w3w4w2w3w1 (1− c1 + c2 + c3 − 2c4)ω21 + (2− c2 + 2c4)ω22 + (1 + c1 + c2 − c3)ω23 *

w4w3w4w2w3w4w1 (3− c1 + c2 − c3 + 2c4)ω21 + (−c2 + 2c3 − 2c4)ω22 + (1 + c1 + c2 − c3)ω23 **

w4w3w4w2w3w1w2 (−c2 + 2c3 − 2c4)ω21 + (3− c1 + c2 − c3 + 2c4)ω22 + (2c1 − c2)ω23 *

w4w3w4w2w3w4w1w2 (2− c2 + 2c4)ω21 + (1− c1 + c2 + c3 − 2c4)ω22 + (2c1 − c2)ω23 **

w4w3w4w2w3w4w1w2w3 (2− c2 + 2c4)ω21 + (−c1 + 2c2 − c3)ω22 + (2c1 − c2)ω23 **

w4w3w4w2w3w4w1w2w3w4 (−c2 + 2c3 − 2c4)ω21 + (−c1 + 2c2 − c3)ω22 + (2c1 − c2)ω23 *
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H. Grobner

Table A3. Λw for P1.

〈−w(λ+ ρ)|a 1C
, α2|a 1C

〉

id 2(−7− c2) 6−14
w2 2(−6− c1 + c2 − c3) 6−12
w2w1 2(−5 + c1 − c3) 6−10
w2w3 2(−5− c1 + c3 − 2c4) 6−10
w2w3w1 2(−4 + c1 − c2 + c3 − 2c4) 6−8
w2w3w4 2(−3− c1 − c3 + 2c4) 6−6
w2w3w1w2 2(−3 + c2 − 2c4) 6−6
w2w3w4w1 2(−2 + c1 − c2 − c3 + 2c4) 6−4
w2w3w4w3 2(−2− c1 − c2 + c3) 6−4
w2w3w4w3w1 2(−1 + c1 − 2c2 + c3) 6−2
w2w3w4w1w2 2(−1 + c2 − 2c3 + 2c4) 6−2
w2w3w4w3w2 2(−1− 2c1 + c2) 6−2

w2w3w4w3w2w1 2(1 + 2c1 − c2) > 2
w2w3w4w3w1w2 2(1− c1 + 2c2 − c3) > 2
w2w3w4w1w2w3 2(1− c2 + 2c3 − 2c4) > 2
w2w3w4w3w1w2w1 2(2 + c1 + c2 − c3) > 4
w2w3w4w1w2w3w2 2(2− c1 + c2 + c3 − 2c4) > 4
w2w3w4w1w2w3w4 2(3− c2 + 2c4) > 6
w2w3w4w1w2w3w2w1 2(3 + c1 + c3 − 2c4) > 6
w2w3w4w1w2w3w4w2 2(4− c1 + c2 − c3 + 2c4) > 8
w2w3w4w1w2w3w4w2w1 2(5 + c1 − c3 + 2c4) > 10
w2w3w4w1w2w3w4w2w3 2(5− c1 + c3) > 10
w2w3w4w1w2w3w4w2w3w1 2(6 + c1 − c2 + c3) > 12
w2w3w4w1w2w3w4w2w3w1w2 2(7 + c2) > 14

Table A4. Λw for P2.

〈−w(λ+ ρ)|a 2C
, α4|a 2C

〉

id 4(−5− c4) 6−20
w4 4(−4− c3 + c4) 6−16
w4w3 4(−3− c2 + c3 − c4) 6−12
w4w3w2 4(−2− c1 + c2 − c4) 6−8
w4w3w4 4(−2− c2 + c4) 6−8
w4w3w4w2 4(−1− c1 + c2 − c3 + c4) 6−4
w4w3w2w1 4(−1 + c1 − c4) ?
w4w3w4w2w1 4(c1 − c3 + c4) ?

w4w3w4w2w3 4(−c1 + c3 − c4) ?
w4w3w4w2w3w4 4(1− c1 + c4) ?
w4w3w4w2w3w1 4(1 + c1 − c2 + c3 − c4) > 4
w4w3w4w2w3w4w1 4(2 + c1 − c2 + c4) > 8
w4w3w4w2w3w1w2 4(2 + c2 − c4) > 8
w4w3w4w2w3w4w1w2 4(3 + c2 − c3 + c4) > 12
w4w3w4w2w3w4w1w2w3 4(4 + c3 − c4) > 16
w4w3w4w2w3w4w1w2w3w4 4(5 + c4) > 20
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The automorphic cohomology of Sp(2, 2)

Table A5. ◦Fw for the lower-half representatives.

w(λ+ ρ)− ρ|b 0C

id (2c1 − c2)ω01 + (−c2 + 2c3 − 2c4)ω02

w2 (1 + c1 + c2 − c3)ω01 + (1− c1 + c2 + c3 − 2c4)ω02

w4 (2c1 − c2)ω01 + (2− c2 + 2c4)ω02

w2w1 (−c1 + 2c2 − c3)ω01 + (2 + c1 + c3 − 2c4)ω02

w4w2 (1 + c1 + c2 − c3)ω01 + (3− c1 + c2 − c3 + 2c4)ω02

w2w3 (2 + c1 + c3 − 2c4)ω01 + (−c1 + 2c2 − c3)ω02

w4w3 (2c1 − c2)ω01 + (2− c2 + 2c4)ω02

w4w2w1 (−c1 + 2c2 − c3)ω01 + (4 + c1 − c3 + 2c4)ω02

w2w3w1 (1− c1 + c2 + c3 − 2c4)ω01 + (1 + c1 + c2 − c3)ω02

w4w3w2 (1 + c1 + c2 − c3)ω01 + (3− c1 + c2 − c3 + 2c4)ω02

w4w2w3 (2 + c1 + c3 − 2c4)ω01 + (4− c1 + c3)ω02

w2w3w4 (4 + c1 − c3 + 2c4)ω01 + (−c1 + 2c2 − c3)ω02

w4w3w4 (2c1 − c2)ω01 + (−c2 + 2c3 − 2c4)ω02

w4w3w2w1 (−c1 + 2c2 − c3)ω01 + (4 + c1 − c3 + 2c4)ω02

w4w2w3w1 (1− c1 + c2 + c3 − 2c4)ω01 + (5 + c1 − c2 + c3)ω02

w2w3w4w1 (3− c1 + c2 − c3 + 2c4)ω01 + (1 + c1 + c2 − c3)ω02

w2w3w1w2 (−c2 + 2c3 − 2c4)ω01 + (2c1 − c2)ω02

w4w2w3w2 (2 + c1 + c3 − 2c4)ω01 + (4− c1 + c3)ω02

w4w3w4w2 (1 + c1 + c2 − c3)ω01 + (1− c1 + c2 + c3 − 2c4)ω02

w2w3w4w3 (5 + c1 − c2 + c3)ω01 + (1− c1 + c2 + c3 − 2c4)ω02

w4w2w3w4 (4 + c1 − c3 + 2c4)ω01 + (4− c1 + c3)ω02

w4w2w3w2w1 (1− c1 + c2 + c3 − 2c4)ω01 + (5 + c1 − c2 + c3)ω02

w4w3w4w2w1 (−c1 + 2c2 − c3)ω01 + (2 + c1 + c3 − 2c4)ω02

w2w3w4w3w1 (4− c1 + c3)ω01 + (2 + c1 + c3 − 2c4)ω02

w4w2w3w4w1 (3− c1 + c2 − c3 + 2c4)ω01 + (5 + c1 − c2 + c3)ω02

w4w2w3w1w2 (−c2 + 2c3 − 2c4)ω01 + (6 + c2)ω02

w2w3w4w1w2 (2− c2 + 2c4)ω01 + (2c1 − c2)ω02

w2w3w4w3w2 (6 + c2)ω01 + (−c2 + 2c3 − 2c4)ω02

w4w2w3w4w2 (4 + c1 − c3 + 2c4)ω01 + (4− c1 + c3)ω02

w4w3w4w2w3 (2 + c1 + c3 − 2c4)ω01 + (−c1 + 2c2 − c3)ω02

w4w2w3w4w3 (5 + c1 − c2 + c3)ω01 + (3− c1 + c2 − c3 + 2c4)ω02

w4w2w3w1w2w1 (−c2 + 2c3 − 2c4)ω01 + (6 + c2)ω02

w2w3w4w3w2w1 (6 + c2)ω01 + (−c2 + 2c3 − 2c4)ω02

w4w2w3w4w2w1 (3− c1 + c2 − c3 + 2c4)ω01 + (5 + c1 − c2 + c3)ω02

w4w3w4w2w3w1 (1− c1 + c2 + c3 − 2c4)ω01 + (1 + c1 + c2 − c3)ω02

w4w2w3w4w3w1 (4− c1 + c3)ω01 + (4 + c1 − c3 + 2c4)ω02

w2w3w4w3w1w2 (4− c1 + c3)ω01 + (2 + c1 + c3 − 2c4)ω02

w4w2w3w4w1w2 (2− c2 + 2c4)ω01 + (6 + c2)ω02

w4w2w3w4w3w2 (6 + c2)ω01 + (2− c2 + 2c4)ω02

w2w3w4w1w2w3 (2− c2 + 2c4)ω01 + (2c1 − c2)ω02

w4w2w3w4w2w3 (5 + c1 − c2 + c3)ω01 + (3− c1 + c2 − c3 + 2c4)ω02

w4w3w4w2w3w4 (4 + c1 − c3 + 2c4)ω01 + (−c1 + 2c2 − c3)ω02

w2w3w4w3w1w2w1 (5 + c1 − c2 + c3)ω01 + (1− c1 + c2 + c3 − 2c4)ω02

w4w2w3w4w1w2w1 (2− c2 + 2c4)ω01 + (6 + c2)ω02

w4w2w3w4w3w2w1 (6 + c2)ω01 + (2− c2 + 2c4)ω02

w4w2w3w4w2w3w1 (4− c1 + c3)ω01 + (4 + c1 − c3 + 2c4)ω02

w4w3w4w2w3w4w1 (3− c1 + c2 − c3 + 2c4)ω01 + (1 + c1 + c2 − c3)ω02

w4w3w4w2w3w1w2 (−c2 + 2c3 − 2c4)ω01 + (2c1 − c2)ω02
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H. Grobner

Table A6. ◦Fw for the upper-half representatives.

w(λ+ ρ)− ρ|b 0C

w4w2w3w4w3w1w2 (4− c1 + c3)ω01 + (4 + c1 − c3 + 2c4)ω02

w2w3w4w1w2w3w2 (3− c1 + c2 − c3 + 2c4)ω01 + (1 + c1 + c2 − c3)ω02

w4w2w3w4w2w3w2 (6 + c2)ω01 + (2− c2 + 2c4)ω02

w4w2w3w4w1w2w3 (2− c2 + 2c4)ω01 + (6 + c2)ω02

w4w3w4w2w3w4w3 (5 + c1 − c2 + c3)ω01 + (1− c1 + c2 + c3 − 2c4)ω02

w2w3w4w1w2w3w4 (−c2 + 2c3 − 2c4)ω01 + (2c1 − c2)ω02

w4w2w3w4w3w1w2w1 (5 + c1 − c2 + c3)ω01 + (3− c1 + c2 − c3 + 2c4)ω02

w2w3w4w1w2w3w2w1 (4 + c1 − c3 + 2c4)ω01 + (−c1 + 2c2 − c3)ω02

w4w2w3w4w2w3w2w1 (6 + c2)ω01 + (2− c2 + 2c4)ω02

w4w2w3w4w1w2w3w1 (2− c2 + 2c4)ω01 + (6 + c2)ω02

w4w3w4w2w3w4w3w1 (4− c1 + c3)ω01 + (2 + c1 + c3 − 2c4)ω02

w4w2w3w4w2w3w1w2 (4− c1 + c3)ω01 + (4 + c1 − c3 + 2c4)ω02

w4w3w4w2w3w4w1w2 (2− c2 + 2c4)ω01 + (2c1 − c2)ω02

w4w2w3w4w1w2w3w2 (3− c1 + c2 − c3 + 2c4)ω01 + (5 + c1 − c2 + c3)ω02

w4w3w4w2w3w4w3w2 (6 + c2)ω01 + (−c2 + 2c3 − 2c4)ω02

w2w3w4w1w2w3w4w2 (1− c1 + c2 + c3 − 2c4)ω01 + (1 + c1 + c2 − c3)ω02

w4w2w3w4w1w2w3w4 (−c2 + 2c3 − 2c4)ω01 + (6 + c2)ω02

w4w2w3w4w2w3w1w2w1 (5 + c1 − c2 + c3)ω01 + (3− c1 + c2 − c3 + 2c4)ω02

w4w2w3w4w1w2w3w2w1 (4 + c1 − c3 + 2c4)ω01 + (4− c1 + c3)ω02

w4w3w4w2w3w4w3w2w1 (6 + c2)ω01 + (−c2 + 2c3 − 2c4)ω02

w2w3w4w1w2w3w4w2w1 (2 + c1 + c3 − 2c4)ω01 + (−c1 + 2c2 − c3)ω02

w4w2w3w4w1w2w3w4w1 (−c2 + 2c3 − 2c4)ω01 + (6 + c2)ω02

w4w2w3w4w1w2w3w1w2 (3− c1 + c2 − c3 + 2c4)ω01 + (5 + c1 − c2 + c3)ω02

w4w3w4w2w3w4w3w1w2 (4− c1 + c3)ω01 + (2 + c1 + c3 − 2c4)ω02

w4w2w3w4w1w2w3w4w2 (1− c1 + c2 + c3 − 2c4)ω01 + (5 + c1 − c2 + c3)ω02

w4w3w4w2w3w4w1w2w3 (2− c2 + 2c4)ω01 + (2c1 − c2)ω02

w2w3w4w1w2w3w4w2w3 (−c1 + 2c2 − c3)ω01 + (2 + c1 + c3 − 2c4)ω02

w4w2w3w4w1w2w3w1w2w1 (4 + c1 − c3 + 2c4)ω01 + (4− c1 + c3)ω02

w4w3w4w2w3w4w3w1w2w1 (5 + c1 − c2 + c3)ω01 + (1− c1 + c2 + c3 − 2c4)ω02

w4w2w3w4w1w2w3w4w2w1 (2 + c1 + c3 − 2c4)ω01 + (4− c1 + c3)ω02

w2w3w4w1w2w3w4w2w3w1 (1 + c1 + c2 − c3)ω01 + (1− c1 + c2 + c3 − 2c4)ω02

w4w2w3w4w1w2w3w4w1w2 (1− c1 + c2 + c3 − 2c4)ω01 + (5 + c1 − c2 + c3)ω02

w4w3w4w2w3w4w1w2w3w2 (3− c1 + c2 − c3 + 2c4)ω01 + (1 + c1 + c2 − c3)ω02

w4w2w3w4w1w2w3w4w2w3 (−c1 + 2c2 − c3)ω01 + (4 + c1 − c3 + 2c4)ω02

w4w3w4w2w3w4w1w2w3w4 (−c2 + 2c3 − 2c4)ω01 + (2c1 − c2)ω02

w4w2w3w4w1w2w3w4w1w2w1 (2 + c1 + c3 − 2c4)ω01 + (4− c1 + c3)ω02

w4w3w4w2w3w4w1w2w3w2w1 (4 + c1 − c3 + 2c4)ω01 + (−c1 + 2c2 − c3)ω02

w4w2w3w4w1w2w3w4w2w3w1 (1 + c1 + c2 − c3)ω01 + (3− c1 + c2 − c3 + 2c4)ω02

w2w3w4w1w2w3w4w2w3w1w2 (2c1 − c2)ω01 + (−c2 + 2c3 − 2c4)ω02

w4w3w4w2w3w4w1w2w3w4w2 (1− c1 + c2 + c3 − 2c4)ω01 + (1 + c1 + c2 − c3)ω02

w4w2w3w4w1w2w3w4w1w2w3 (−c1 + 2c2 − c3)ω01 + (4 + c1 − c3 + 2c4)ω02

w4w3w4w2w3w4w1w2w3w4w2w1 (2 + c1 + c3 − 2c4)ω01 + (−c1 + 2c2 − c3)ω02

w4w2w3w4w1w2w3w4w1w2w3w1 (1 + c1 + c2 − c3)ω01 + (3− c1 + c2 − c3 + 2c4)ω02

w4w2w3w4w1w2w3w4w2w3w1w2 (2c1 − c2)ω01 + (2− c2 + 2c4)ω02

w4w3w4w2w3w4w1w2w3w4w2w3 (−c1 + 2c2 − c3)ω01 + (2 + c1 + c3 − 2c4)ω02

w4w3w4w2w3w4w1w2w3w4w2w3w1 (1 + c1 + c2 − c3)ω01 + (1− c1 + c2 + c3 − 2c4)ω02

w4w2w3w4w1w2w3w4w1w2w3w1w2 (2c1 − c2)ω01 + (2− c2 + 2c4)ω02

w4w3w4w2w3w4w1w2w3w4w2w3w1w2 (2c1 − c2)ω01 + (−c2 + 2c3 − 2c4)ω02
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The automorphic cohomology of Sp(2, 2)

Table A7. Λw for the lower-half representatives.

〈−w(λ+ ρ)|a 0C
, α2|a 0C

〉 〈−w(λ+ ρ)|a 0C
, α4|a 0C

〉
id 2(−2− c2 + c4) 6−4 2(−3 + c2 − 2c4) 6−6
w2 2(−1− c1 + c2 − c3 + c4) 6−2 2(−4 + c1 − c2 + c3 − 2c4) 6−8
w4 2(−3− c2 + c3 − c4) 6−6 2(−1 + c2 − 2c3 + 2c4) 6−2
w2w1 2(c1 − c3 + c4) ? 2(−5− c1 + c3 − 2c4) 6−10
w4w2 2(−2− c1 + c2 − c4) 6−4 2(−2 + c1 − c2 − c3 + 2c4) 6−4
w2w3 2(−c1 + c3 − c4) ? 2(−5 + c1 − c3) 6−10
w4w3 2(−4− c3 + c4) 6−8 2(1− c2 + 2c3 − 2c4) > 2
w4w2w1 2(−1 + c1 − c4) ? 2(−3− c1 − c3 + 2c4) 6−6
w2w3w1 2(1 + c1 − c2 + c3 − c4) > 2 2(−6− c1 + c2 − c3) 6−12
w4w3w2 2(−4− c3 + c4) 6−8 2(2− c1 + c2 + c3 − 2c4) > 4
w4w2w3 2(−2− c1 + c2 − c4) 6−4 2(−1 + c1 − 2c2 + c3) 6−2
w2w3w4 2(1− c1 + c4) ? 2(−5 + c1 − c3) 6−10
w4w3w4 2(−5− c4) 6 10 2(3− c2 + 2c4) > 6
w4w3w2w1 2(−4− c3 + c4) 6−8 2(3 + c1 + c3 − 2c4) > 6
w4w2w3w1 2(−1 + c1 − c4) ? 2(−2− c1 − c2 + c3) 6−4
w2w3w4w1 2(2 + c1 − c2 + c4) > 4 2(−6− c1 + c2 − c3) 6−12
w2w3w1w2 2(2 + c2 − c4) > 4 2(−7− c2) 6−14
w4w2w3w2 2(−3− c2 + c3 − c4) 6−6 2(1− c1 + 2c2 − c3) > 2
w4w3w4w2 2(−5− c4) 6−10 2(4− c1 + c2 − c3 + 2c4) > 8
w2w3w4w3 2(1− c1 + c4) ? 2(−4 + c1 − c2 + c3 − 2c4) 6−8
w4w2w3w4 2(−1− c1 + c2 − c3 + c4) 6−2 2(−1 + c1 − 2c2 + c3) 6−2
w4w2w3w2w1 2(−3− c2 + c3 − c4) 6−6 2(2 + c1 + c2 − c3) > 4
w4w3w4w2w1 2(−5− c4) 6−10 2(5 + c1 − c3 + 2c4) > 10
w2w3w4w3w1 2(2 + c1 − c2 + c4) > 4 2(−5− c1 + c3 − 2c4) 6−10
w4w2w3w4w1 2(c1 − c3 + c4) ? 2(−2− c1 − c2 + c3) 6−4
w4w2w3w1w2 2(−1 + c1 − c4) ? 2(−1− 2c1 + c2) 6−2
w2w3w4w1w2 2(3 + c2 − c3 + c4) > 6 2(−7− c2) 6−14
w2w3w4w3w2 2(1− c1 + c4) ? 2(−3 + c2 − 2c4) 6−6
w4w2w3w4w2 2(−2− c2 + c4) 6−4 2(1− c1 + 2c2 − c3) > 2
w4w3w4w2w3 2(−5− c4) 6−10 2(5− c1 + c3) > 10
w4w2w3w4w3 2(−c1 + c3 − c4) ? 2(−2 + c1 − c2 − c3 + 2c4) 6−4
w4w2w3w1w2w1 2(−2− c1 + c2 − c4) 6−4 2(1 + 2c1 − c2) > 2
w2w3w4w3w2w1 2(2 + c1 − c2 + c4) > 4 2(−3 + c2 − 2c4) 6−6
w4w2w3w4w2w1 2(−2− c2 + c4) 6−4 2(2 + c1 + c2 − c3) > 4
w4w3w4w2w3w1 2(−5− c4) 6−10 2(6 + c1 − c2 + c3) > 12
w4w2w3w4w3w1 2(1 + c1 − c2 + c3 − c4) > 2 2(−3− c1 − c3 + 2c4) 6−6
w2w3w4w3w1w2 2(3 + c2 − c3 + c4) > 6 2(−5− c1 + c3 − 2c4) 6−10
w4w2w3w4w1w2 2(c1 − c3 + c4) ? 2(−1− 2c1 + c2) 6−2
w4w2w3w4w3w2 2(−c1 + c3 − c4) ? 2(−1 + c2 − 2c3 + 2c4) 6−2
w2w3w4w1w2w3 2(4 + c3 − c4) > 8 2(−7− c2) 6−14
w4w2w3w4w2w3 2(−2− c2 + c4) 6−4 2(2− c1 + c2 + c3 − 2c4) > 4
w4w3w4w2w3w4 2(−4− c3 + c4) 6−8 2(5− c1 + c3) > 10
w2w3w4w3w1w2w1 2(3 + c2 − c3 + c4) > 6 2(−4 + c1 − c2 + c3 − 2c4) 6−8
w4w2w3w4w1w2w1 2(−1− c1 + c2 − c3 + c4) 6−2 2(1 + 2c1 − c2) > 2
w4w2w3w4w3w2w1 2(1 + c1 − c2 + c3 − c4) > 2 2(−1 + c2 − 2c3 + 2c4) 6−2
w4w2w3w4w2w3w1 2(−2− c2 + c4) 6−4 2(3 + c1 + c3 − 2c4) > 6
w4w3w4w2w3w4w1 2(−4− c3 + c4) 6−8 2(6 + c1 − c2 + c3) > 12
w4w3w4w2w3w1w2 2(−5− c4) 6−10 2(7 + c2) > 14
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Table A8. Λw for the upper-half representatives.

〈−w(λ+ ρ)|a 0C
, α2|a 0C

〉 〈−w(λ+ ρ)|a 0C
, α4|a 0C

〉

w4w2w3w4w3w1w2 2(2 + c2 − c4) > 4 2(−3− c1 − c3 + 2c4) 6−6

w2w3w4w1w2w3w2 2(4 + c3 − c4) > 8 2(−6− c1 + c2 − c3) 6−12

w4w2w3w4w2w3w2 2(−1− c1 + c2 − c3 + c4) 6−2 2(1− c2 + 2c3 − 2c4) > 2

w4w2w3w4w1w2w3 2(1 + c1 − c2 + c3 − c4) > 2 2(−1− 2c1 + c2) 6−2

w4w3w4w2w3w4w3 2(−3− c2 + c3 − c4) 6−6 2(4− c1 + c2 − c3 + 2c4) > 8

w2w3w4w1w2w3w4 2(5 + c4) > 10 2(−7− c2) 6−14

w4w2w3w4w3w1w2w1 2(2 + c2 − c4) > 4 2(−2 + c1 − c2 − c3 + 2c4) 6−4

w2w3w4w1w2w3w2w1 2(4 + c3 − c4) > 8 2(−5 + c1 − c3) 6−10

w4w2w3w4w2w3w2w1 2(c1 − c3 + c4) ? 2(1− c2 + 2c3 − 2c4) > 2

w4w2w3w4w1w2w3w1 2(−c1 + c3 − c4) ? 2(1 + 2c1 − c2) > 2

w4w3w4w2w3w4w3w1 2(−3− c2 + c3 − c4) 6−6 2(5 + c1 − c3 + 2c4) > 10

w4w2w3w4w2w3w1w2 2(−1− c1 + c2 − c3 + c4) 6−2 2(3 + c1 + c3 − 2c4) > 6

w4w3w4w2w3w4w1w2 2(−4− c3 + c4) 6−8 2(7 + c2) > 14

w4w2w3w4w1w2w3w2 2(2 + c2 − c4) > 4 2(−2− c1 − c2 + c3) 6−4

w4w3w4w2w3w4w3w2 2(−2− c1 + c2 − c4) 6−4 2(3− c2 + 2c4) > 6

w2w3w4w1w2w3w4w2 2(5 + c4) > 10 2(−6− c1 + c2 − c3) 6−12

w4w2w3w4w1w2w3w4 2(2 + c1 − c2 + c4) > 4 2(−1− 2c1 + c2) 6−2

w4w2w3w4w2w3w1w2w1 2(c1 − c3 + c4) ? 2(2− c1 + c2 + c3 − 2c4) > 4

w4w2w3w4w1w2w3w2w1 2(2 + c2 − c4) > 4 2(−1 + c1 − 2c2 + c3) 6−2

w4w3w4w2w3w4w3w2w1 2(−1 + c1 − c4) ? 2(3− c2 + 2c4) > 6

w2w3w4w1w2w3w4w2w1 2(5 + c4) > 10 2(−5 + c1 − c3) 6−10

w4w2w3w4w1w2w3w4w1 2(1− c1 + c4) ? 2(1 + 2c1 − c2) > 2

w4w2w3w4w1w2w3w1w2 2(−c1 + c3 − c4) ? 2(2 + c1 + c2 − c3) > 4

w4w3w4w2w3w4w3w1w2 2(−2− c1 + c2 − c4) 6−4 2(5 + c1 − c3 + 2c4) > 10

w4w2w3w4w1w2w3w4w2 2(3 + c2 − c3 + c4) > 6 2(−2− c1 − c2 + c3) 6−4

w4w3w4w2w3w4w1w2w3 2(−3− c2 + c3 − c4) 6−6 2(7 + c2) > 14

w2w3w4w1w2w3w4w2w3 2(5 + c4) > 10 2(−5− c1 + c3 − 2c4) 6−10

w4w2w3w4w1w2w3w1w2w1 2(1 + c1 − c2 + c3 − c4) > 2 2(1− c1 + 2c2 − c3) > 2

w4w3w4w2w3w4w3w1w2w1 2(−1 + c1 − c4) ? 2(4− c1 + c2 − c3 + 2c4) > 8

w4w2w3w4w1w2w3w4w2w1 2(3 + c2 − c3 + c4) > 6 2(−1 + c1 − 2c2 + c3) 6−2

w2w3w4w1w2w3w4w2w3w1 2(5 + c4) > 10 2(−4 + c1 − c2 + c3 − 2c4) 6−8

w4w2w3w4w1w2w3w4w1w2 2(1− c1 + c4) ? 2(2 + c1 + c2 − c3) > 4

w4w3w4w2w3w4w1w2w3w2 2(−2− c1 + c2 − c4) 6−4 2(6 + c1 − c2 + c3) > 12

w4w2w3w4w1w2w3w4w2w3 2(4 + c3 − c4) > 8 2(−3− c1 − c3 + 2c4) 6−6

w4w3w4w2w3w4w1w2w3w4 2(−2− c2 + c4) 6−4 2(7 + c2) > 14

w4w2w3w4w1w2w3w4w1w2w1 2(2 + c1 − c2 + c4) > 4 2(1− c1 + 2c2 − c3) > 2

w4w3w4w2w3w4w1w2w3w2w1 2(−1 + c1 − c4) ? 2(5− c1 + c3) > 10

w4w2w3w4w1w2w3w4w2w3w1 2(4 + c3 − c4) > 8 2(−2 + c1 − c2 − c3 + 2c4) 6−4

w2w3w4w1w2w3w4w2w3w1w2 2(5 + c4) > 10 2(−3 + c2 − 2c4) 6−6

w4w3w4w2w3w4w1w2w3w4w2 2(−1− c1 + c2 − c3 + c4) 6−2 2(6 + c1 − c2 + c3) > 12

w4w2w3w4w1w2w3w4w1w2w3 2(1− c1 + c4) ? 2(3 + c1 + c3 − 2c4) > 6

w4w3w4w2w3w4w1w2w3w4w2w1 2(c1 − c3 + c4) ? 2(5− c1 + c3) > 10

w4w2w3w4w1w2w3w4w1w2w3w1 2(2 + c1 − c2 + c4) > 4 2(2− c1 + c2 + c3 − 2c4) > 4

w4w2w3w4w1w2w3w4w2w3w1w2 2(4 + c3 − c4) > 8 2(−1 + c2 − 2c3 + 2c4) 6−2

w4w3w4w2w3w4w1w2w3w4w2w3 2(−c1 + c3 − c4) ? 2(5 + c1 − c3 + 2c4) > 10

w4w3w4w2w3w4w1w2w3w4w2w3w1 2(1 + c1 − c2 + c3 − c4) > 2 2(4− c1 + c2 − c3 + 2c4) > 8

w4w2w3w4w1w2w3w4w1w2w3w1w2 2(3 + c2 − c3 + c4) > 6 2(1− c2 + 2c3 − 2c4) > 2

w4w3w4w2w3w4w1w2w3w4w2w3w1w2 2(2 + c2 − c4) > 4 2(3− c2 + 2c4) > 6
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for which w ∈WP2 the principal series representation B2(µw) exists. If some condition is added,
then it is necessary and sufficient for the existence of B2(µw): ‘∗’ means ‘c3 − c4 = c1’ and ‘∗∗’
means ‘c1 − c4 = 1’, while ‘@’ indicates that for these w the representation B2(µw) never exists.
Tables A3 and A4 give the values of the inner product of the point dχ=−w(λ+ ρ)|a iC of
evaluation of Eisenstein series and the only simple root within ∆(Pi, Ai). Using (16), we can
then read off which points dχ lie inside the closed, positive Weyl chamber defined by the above
system.

Tables A5–A8 give the previous data for the standard minimal parabolic Q-subgroup P0.
Owing to a lack of space we divided the set of Kostant representatives WP0 into a ‘lower’ and
an ‘upper’ half, according to the length of the elements w ∈WP0 . In Table A8 the Kostant
representatives w which can give rise to values Λw =−w(λ+ ρ)|a 0C

∈ C are underlined. No
point Λw in Table A7 will lie inside C.

All lists were compiled by a computer program, developed by Jakub Orbán.
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