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On the Garsia Lie Idempotent

Frédéric Patras, Christophe Reutenauer and Manfred Schocker

Abstract. The orthogonal projection of the free associative algebra onto the free Lie algebra is afforded

by an idempotent in the rational group algebra of the symmetric group Sn, in each homogenous degree

n. We give various characterizations of this Lie idempotent and show that it is uniquely determined by

a certain unit in the group algebra of Sn−1. The inverse of this unit, or, equivalently, the Gram matrix

of the orthogonal projection, is described explicitly. We also show that the Garsia Lie idempotent is

not constant on descent classes (in fact, not even on coplactic classes) in Sn.

1 Introduction

The celebrated criterion of Friedrichs characterizes Lie polynomials in the algebra of

noncommutative polynomials (equivalently, Lie elements in the tensor algebra). An

equivalent version of this criterion states that a (noncommutative) polynomial is a

Lie polynomial if and only if it is orthogonal to each proper shuffle (see [11, Problem

5.3.4], [14, 3.5.1]). This result motivated consideration of the orthogonal projection

onto the free Lie algebra, as was pointed out by Garsia in [7]; its kernel is the space

spanned by proper shuffles. This projection commutes with each homogeneous en-

domorphism of the algebra, since the algebra of Lie polynomials and the space of

proper shuffles are both closed under these endomorphisms. Hence, in given degree

n, the projection is afforded by an element of the group algebra QSn acting naturally,

by permuting positions, on the homogeneous polynomials of degree n (Schur–Weyl

duality). This element of the group algebra will necessarily be an idempotent: the

orthogonal Lie idempotent, or Garsia idempotent (see [6], [14, 8.6.4]). We denote it

by gn.

2 Orthogonality

We denote by 〈u, v〉 the scalar product in QSn for which Sn is an orthonormal basis.

Let x 7→ x− be the linear endomorphism of QSn that extends the mapping w 7→ w−1

of Sn into itself.

Denote by Ln the space of multilinear Lie polynomials, naturally embedded in

QSn. Recall that Ln is a left ideal in QSn and that a Lie idempotent is an idempotent e

in QSn such that Ln = QSn e, see [14, 8.4].

Note that the set of Lie idempotents is an affine subspace of QSn, as is well-known;

more precisely, if e is a Lie idempotent in QSn, then the set of all Lie idempotents in

QSn is e + (1 − e)QSne. Indeed, idempotents e and f generate the same left ideal if
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and only if e f = e and f e = f . If this condition holds, then (e − f )e = e − f =

(1 − e)(e − f ), hence f = e − (e − f )e = e − (1 − e)(e − f )e ∈ e + (1 − e) QSne.
Conversely, if f = e + (1 − e)x e, then e f = e (since e(1 − e) = 0) and f e = f .

Furthermore, f is idempotent since f 2
= f e f = f e = f .

We obtain the following characterization of the Garsia idempotent gn.

Theorem 1 The following conditions are equivalent, for a Lie idempotent e in QSn:

(i) e = gn;

(ii) e = e−;

(iii) e is the orthogonal projection of 0 onto the affine subspace of Lie idempotents;

(iv) e is of minimum norm among all Lie idempotents;

(v) the square of the norm of e is 1
n

;

(vi) Ln is orthogonal to QSn(1 − e).

Proof In fact, we may replace Sn by any finite group G, Q by any subfield K of R,

and Ln by any left ideal I of KG; then let 〈u, v〉 denote the scalar product on KG for

which G is an orthonormal basis; next, let I⊥ be the subspace of KG orthogonal to

I (I⊥ plays the role of the subspace of multilinear shuffles in QSn). The projection

π : KG → I with kernel I⊥ is left KG-linear, since I, I⊥ are left ideals and since

〈xy, xz〉 = 〈y, z〉 for x in G and y, z in KG.

Hence π(x) = xg, for some idempotent g in KG, defined by g = π(1). This g will

replace the Garsia idempotent in our general setting. Note that KGg = I.

We now take any idempotent e in KG such that KGe = I, and prove the equiva-

lence of the six conditions above, where in (v), 1
n

is replaced by e1, the coefficient of 1

in e; indeed, for any Lie idempotent e, e1 =
1
n

, see [14, Th. 8.14].

It is a well-known fact that for any idempotent e, the dimension of KGe is equal

to |G|e1, since for any projection p of a vector space, dim(Im p) = Tr(p).

(i) ⇔ (vi): The kernel of the mapping x 7→ xe, KG → KG, is KG(1 − e), and its

image is KGe = I. Hence this mapping is the orthogonal projection π onto I if and

only if I is orthogonal to KG(1 − e). We conclude since KGg = I.

(i) ⇒ (ii): An orthogonal projection is self-adjoint. Since the adjoint of x 7→ xe is

x 7→ xe− (because 〈xy, z〉 = 〈x, zy−〉), we must have e = e−.

(ii) ⇒ (iii): If f , f ′ are two idempotents with I = KG f = KG f ′, then e f =

e = e f ′, because e ∈ KG f = KG f ′. It follows that 〈e, f − f ′〉 = 〈e−, f − f ′〉 =

〈1, e( f − f ′)〉 = 0, since e = e−. Hence e is the orthogonal projection of 0 onto the

affine subspace of idempotent generators of the left ideal I.

(iii) ⇔ (iv): is clear.

(iii) ⇒ (i): What has been already proved shows that g is the orthogonal projection

of 0 onto the affine subspace of all idempotent generators of the left ideal I.. By

unicity of this projection, we deduce that e = g.

(i) ⇒ (v): Since g = g−, we have 〈g, g〉 = 〈g, g−〉 = 〈g2, 1〉 = 〈g, 1〉 = g1 =
dim I
|G| = e1.
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(v) ⇒ (iv): We know already that g is of minimum norm among all Lie idempo-

tents, and that the square of this norm is dim I
|G| . Hence e is also of minimum norm.

To conclude this section, we compute the dimension of the affine space of Lie

idempotents. This computation is classical.

Let e be a Lie idempotent. Recall that the set of all Lie idempotents is e +

(1 − e)QSne, hence the dimension we seek is simply the dimension of (1 − e)QSne.

Since e and 1 − e are both idempotents, the latter dimension is classically equal to

the scalar product of the characters of Sn acting on QSne and QSn(1 − e) (see [5,

Th. 43.18]). If we denote the first character by χ, the second will be ρ − χ, where ρ
is the character of the regular representation, since QSn = QSne

⊕
QSn(1 − e), as

Sn-modules. If we denote by fλ (resp., nλ) the multiplicity of the irreducible repre-

sentation corresponding to partition λ in the regular representation (resp., in the Lie

representation), this dimension is therefore equal to
∑

λ nλ( fλ − nλ).

Note that fλ is the number of Young tableaux of shape λ (see [12, Chapter 1])

and nλ is the number of such tableaux whose major index is ≡ 1 modulo n (theorem

of Kraskiewicz–Weyman, see [14, Cor. 8.10]). We may pursue a little further this

calculation. Since fλ is also the dimension of the irreducible representation corre-

sponding to λ,
∑

λ nλ fλ is the dimension of the Lie representation, that is, (n − 1)!.

And
∑

λ n2
λ is the scalar product of this representation by itself. Taking the formalism

of symmetric functions, its character is ln =
1
n

∑
d|n µ(d)pn/d

d (see [14, Chapter 8])

and thus 〈ln, ln〉 =
1

n2

∑
d|n µ(d)2

(
n
d

)
! dn/d, since 〈p

n/d

d , p
n/d

d 〉 =
(

n
d

)
! dn/d (see [12,

Chapter 1]), and since the pµ are mutually orthogonal. Thus the dimension of the

affine subspace of Lie idempotents is (n − 1)! − 1
n2

∑
d|n µ(d)2

(
n
d

)
! dn/d.

For n = 1 to 8, it is 0, 0, 1, 4, 19, 98, 617, 4404. In his thesis, the third author gives

the following approximation for the numbers 〈ln, ln〉:

1

n
(n − 1)! ≤ 〈ln, ln〉 ≤

1

n − 1
(n − 1)!.

Furthermore, if n is prime, 〈ln, ln〉 is the smallest integer ≥ 1
n

(n − 1)!, that is (n−1)! +1

n

by Wilson’s theorem, see [17, Korollar 5.3].

3 On Duchamp’s Computation of the Garsia Idempotent

In order to compute the Garsia idempotent gn, we follow the method of Gérard

Duchamp [6]. We take the alphabet {1, 2, 3, . . .} and consider each permutation

as a word in this alphabet. Then the set of multilinear Lie polynomials of degree n is

a left ideal Ln in QSn; similarly, the space Sn spanned by proper multilinear shuffles

of degree n is a left ideal in QSn (for example, 123 − 213 − 312 + 321 = [[1, 2], 3] is

a multilinear Lie polynomial, and 1 23 = 123 + 213 + 231 is a proper shuffle; the

reader may verify that they are indeed orthogonal with respect to the scalar product

which has Sn as orthonormal basis).

Recall that the shuffle u v of two words u, v is defined as the sum of all words

w having u as subword, and v as complementary subword, with multiplicities. We
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say that word w is a shuffle of words u and v if w appears in u v; furthermore,

we say that a word u is increasing, if for each i, its letter in i-th position is ≤ to its

letter in (i + 1)-th position; we shall consider in the sequel words which are shuffle of

two increasing words, and we consider the number of such shuffles, where we shall

distinguish between u v and v u. For example, 3142 has two decompositions as

shuffle of two increasing words, namely 34 12, and 12 34.

Furthermore, 21534 ∈ S5 is the shuffle of two increasing words, but 321 ∈ S3 is

not. It is a well-known fact, proved by Curtis Greene, that a permutation w is the

shuffle of two increasing words if and only if its shape, in the Robinson–Schensted

correspondence, is a partition with at most two parts; equivalently, w has no decreas-

ing subsequence of length 3 (i.e., for no subset I of cardinality 3, the mapping w | I is

decreasing); in other words, it is 321-avoiding. See [8, 15].

The idempotent gn is equal to π(12 . . . n), where π is the projection onto Ln with

kernel Sn. Indeed, since Ln and Sn are left ideals in QSn, π is left QSn-linear, so that

for any element P in QSn : π(P) = π(P(12 · · · n)) = Pπ(12 · · · n) = Pgn (product in

QSn).

Now, it is a well-known fact that the (n−1)! Lie polynomials r(σ), σ ∈ Sn, σ(n) =

n, form a basis of Ln, where r is the right-to-left bracketing mapping, that is,

r(i1 · · · in) = [i1, . . . , [in−1, in] · · · ]

(see e.g., [14, 5.6.2]). Hence, we may write gn =
∑

σ xσr(σ). Recall the notation 〈, 〉
for the scalar product for which Sn is an orthonormal basis. Then 12 · · ·n − gn is

orthogonal to Ln, hence to each r(α), and we have:

〈gn, r(α)〉 = 〈12 · · ·n, r(α)〉

for each α in Sn. This gives the system of (n − 1)! equations in the unknowns xσ :

∑

σ

xσ〈r(σ), r(α)〉 = δ12···n,α

with the conditions: α, σ ∈ Sn, α(n) = σ(n) = n, because 〈12 · · ·n, r(α)〉 = δ12···n,α.

This shows that (xσ) is the first row of the inverse of the matrix

(〈r(σ), r(α)〉)σ(n)=α(n)=n

of size (n − 1)! by (n − 1)!.

Duchamp [6, p. 238] gives a recursive procedure to compute the coefficients of

this matrix; as a byproduct, he obtains that each nonzero entry is a power of 2, cf.

Cor. 6.5.

Our aim here is to give an explicit combinatorial description of the coefficients of

this matrix. For this we consider the disjoint union S =
⋃

n≥0 Sn of all symmetric

groups; it is a monoid, with product Sn × Sp 7→ Sn+p, (u, v) 7→ w, where wi = ui if

i ≤ p, wi = vi−p if i > p. It is a well-known fact that S is a free monoid (see [4]). Its

free generators are the connected permutations: a permutation w is connected if w,

viewed as a mapping [n] → [n], does not stabilize any proper subinterval [i] of [n].
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Equivalently, w does not belong to any proper Young subgroup of Sn (a Young

subgroup is a subgroup of the form Si1
× · · · × Sik

, canonically embedded into Sn).

For later use, we note that u is connected if and only if:

(∗) ∀ j ∈ {1, . . . , n − 1}, ∃ i, k such that 1 ≤ i ≤ j < k ≤ n and ui > uk.

The length of an element α of the free monoid S is denoted L(α); if α ∈ Sn, it

is the biggest k such that α belongs to a Young subgroup of the form Si1
× · · · × Sik

(note that there is always a unique minimal Young subgroup containing α).

Coming back to our initial problem, note that the mapping r is left QSn-linear;

that is, for permutations α, σ in Sn, one has r(α ◦ σ) = α ◦ r(σ).

Now, the following theorem yields an explicit description of the coefficients of the

matrix (〈r(α), r(β)〉)α,β∈Sn,α(n)=β(n)=n.

Theorem 2

(1) Let w ∈ Sn with w(n) = n, i.e., w = un as word. Then 〈r(12 · · ·n), r(w)〉 is the

number of ways of writing u as the shuffle of two increasing words.

(2) Let u ∈ Sp be the shuffle of two increasing words (p ≥ 1). Then there are 2k ways

of writing u as shuffle of two increasing words, where k is the length of u in the free

monoid S.

Proof (1) The following formula is well-known:

r(12 · · · n) =

∑
(−1)|y|xny,

where the sum is taken over all words x, y such that xny is a permutation in Sn, that

x is increasing, y is decreasing, and where |y| is the length of the word y.

For example, r(1234) = [1, [2, [3, 4]]] = 1234 − 1243 − 1342 + 1432 − 2341 +

2431 + 3421 − 4321.
Likewise, if we take w = un as in the statement, and write u = u1 · · · un−1 as a

product of letters, then we have:

r(un) =

∑
(−1)qui1

· · · ui p
nu jq

· · · u j1
,

where the conditions of summation are: i1 < · · · < i p, j1 < · · · < jq, p + q =

n − 1, {i1, . . . , i p, j1, . . . , jq} = {1, . . . , n − 1}.

If we compare the two formulas, we find that the scalar product 〈r(12 . . . n), r(un)〉
is equal to the number of i1, . . . , i p, j1, . . . , jq satisfying the previous conditions, and

moreover ui1
< · · · < ui p

, u j1
< · · · < u jq

: in other words, it is the number of ways

of writing u as the shuffle of two increasing words.

(2) We call factorization of u a pair (r, s) of increasing words such that u is a shuffle

of r and s. We assume first that u is connected, that is, k = 1. We show, by induction

on the length (as word, not element of S!), that for each prefix x of u, proper and

nonempty, each factorization (r, s) of x has at most one extension to a factorization

(r ′, s ′) of a longer prefix x ′ of u (meaning that r is a prefix of r ′, and s a prefix of s ′).
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This will suffice since the prefix u1 of length 1 of u has exactly two factorizations

(u1, ε) and (ε, u1), with ε = empty word.

So, let (r, s) be a factorization of x. Let j be the length of x. In (∗), take the smallest

possible k. Let (r ′, s ′) be a factorization of the prefix x ′ of length k of u (if it exists).

Then ui appears in r for example; it implies that uk cannot appear in r ′, since ui > uk.

Hence uk appears in s ′. For k ′
= j+1, . . . , k−1, we have uk ′ > uk (otherwise uk ′ <

uk < ui , which contradicts the minimality of k). Hence s ′ = suk, r ′ = ru j+1 · · · uk−1,

which proves unicity of extension.

Suppose now that u is of length k in the free monoid S : u = v1v2 · · · vk, vi ∈ S

connected, and the product is taken in the monoid S. Each factorization of u deter-

mines a factorization of each vi , and conversely, a collection of factorizations of the

v ′
i s determines a factorization of u. This implies the theorem.

It is well-known that the number of 321-avoiding permutations in Sn is the Cata-

lan number Cn =
1

n+1

(
2n
n

)
. This shows that the number of nonzero elements in each

row, or column, of the matrix (〈r(σ), r(α)〉) considered by Duchamp, and above, is

the Catalan number.

We show that the previous computation has an equivalent formulation in the sym-

metric group algebra QSn−1; we consider Sn−1 as the subgroup of Sn of permutations

fixing n, and consequently QSn−1 as a subalgebra of QSn. We denote by x 7→ x̃ the

linear mapping QSn → QSn−1 fixing each permutation in Sn−1, and sending the

others to 0.

Recall that we had written gn =
∑

σ xσr(σ), where the sum is over all σ in Sn−1,

and xσ ∈ Q ; note that, as is well-known (it follows from the first formula in the proof

of Th. 2), r̃(σ) = σ, that is, the only permutation fixing n and appearing in r(σ) is σ
itself. Hence g̃n =

∑
σ xσσ, and if we know g̃n, we know the coefficients xσ , hence gn.

In fact, one has gn = g̃nωn in QSn where ωn = r(12 · · · n), by left equivariance of

r : gn =
∑

σ∈Sn−1

xσr(σ) =
∑

xσσr(12 · · ·n) = g̃nωn.

Theorem 3

(1) In QSn−1, g̃n is invertible and g̃n
−1

=
∑

σ∈Sn−1

〈r(12 · · ·n), r(σ)〉σ.

(2) In the algebra QSn−1, one has the equality g̃n
−1

= ω̃nω
−
n .

(3) The matrix (〈r(α), r(β)〉)α,β∈Sn−1
is the image of g̃n

−1
under the right regular rep-

resentation of Sn−1.

Proof

(1): We have to show that in QSn−1 the product of g̃n by

∑

σ∈Sn−1

〈r(12 · · ·n), r(σ)〉σ

is equal to 12 · · ·n. This product is equal to
∑

α,σ∈Sn−1

xα〈r(12 · · ·n), r(σ)〉ασ. The

coefficient of β in this product is

∑

ασ=β

xα〈r(12 · · ·n), r(σ)〉 =

∑

ασ=β

xα〈r(α), r(ασ)〉,
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by left equivariance of r; this is equal to

∑

α

xα〈r(α), r(β)〉 = δ12···n,β ,

by the system of equations satisfied by the xα. This proves that the product is equal

to 12 · · ·n.

(2): Note that for x, y ∈ QSn, x̃ ỹ = ˜̃xy, as is verified when x, y are permutations.

Hence we have g̃nω̃nω
−
n = ˜̃gnωnω

−
n . Now g̃nωn = gn, as is proved before the theorem.

Hence g̃nω̃nω
−
n = g̃nω

−
n = ˜(ωngn)− = 12 · · ·n, because ωngn = ωn, since ωn ∈

QSngn, and because the only permutation appearing in ωn and fixing n is 12 · · ·n.

(3): Let M(σ) denote the image of σ ∈ Sn−1 under the right regular representation

of Sn−1. In other words, M(σ)α,β = 1 if ασ = β, 0 otherwise.

The image of g̃n
−1

is therefore
∑

σ∈Sn−1

〈r(12 · · ·n), r(σ)〉M(σ). The (α, β)-entry

of this matrix is 〈r(12 · · ·n), r(σ)〉, where ασ = β. This is, by left equivariance of r,

equal to 〈r(α), r(β)〉, what was to be shown.

Remark Similar calculations show that g̃nωng̃−1
n = ω−

n . In other words, g̃n conju-

gates ωn and ω−
n , which illustrates the fact that ωn and ω−

n are idempotents that yield

the same character.

In order to prove this formula, recall that gn = g̃nωn and thus g̃n
−1

gn = ωn.

Furthermore, gn = g−n implies g̃n
−

= g̃n and (g̃n
−1

)− = g̃n
−1

. Hence g̃nωng̃n
−1

=

gng̃n
−1

= g−n (g̃n
−1

)− = (g̃−1
n gn)− = ω−

n .

4 Garsia Idempotent and Descent Algebra

All of the classical Lie idempotents are elements of the Solomon descent algebra Dn

(see [14, Chapter 8]). This algebra is the linear span in QSn of the elements

∆
D

=

∑

Des(π)=D

π

indexed by subsets D of {1, . . . , n−1}, where Des(π) = {i ≤ n−1 | π(i) > π(i +1)}
is the descent set of π ∈ Sn.

However, we have the following negative result, which is well known for small

values of n.

Theorem 4 The Garsia Lie idempotent gn does not lie in Dn for n ≥ 4.

Proof It follows from [1, Th. 1.2] that

gn∆
D

= (−1)|D|gn.

Comparing coefficients of the identity in Sn, gives

∑

Des(π−1)=D

kπ = (−1)|D| 1

n
,
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where gn =
∑

π∈Sn
kππ.

Assume for a contradiction that gn is constant on descent classes, then gn = g−n is

also constant on inverse descent classes, hence the above formula implies

kπ =
1

n

(−1)|D|

cD

for all π ∈ Sn with Des(π−1) = D, where cD denotes the number of permutations in

Sn with descent set D. However, the number of descents of π = 24135 · · ·n ∈ Sn is

1, while the number of descents of π−1
= 31425 · · ·n is 2, hence kπ−1 < 0 < kπ, a

contradiction.

Corollary The Garsia Lie idempotent gn does not lie in the coplactic algebra, for

n ≥ 4.

Proof The third author has shown that a Lie element in QSn, which is also in the

coplactic algebra (see [3, 13]), is necessarily contained in Dn, see [16]. Hence, the

corollary follows from the theorem.

5 Special Lie Idempotents

Motivated by Theorem 3, we say that a Lie idempotent e in QSn is special if

ẽ =

∑

σ∈Sn

σ(n)=n

eσσ

is invertible in QSn−1. Of course, the Garsia idempotent gn is special by Th. 3. More-

over, 1
n
ωn =

1
n

r(12 · · · n) (the idempotent of Dynkin–Specht–Wever) is special, since

ω̃n = 12 · · ·n, as already mentioned before Th. 3.

Recall that the canonical idempotent is 1
n
ρn, with

ρn =

∑

π∈Sn

(−1)des(π)

(
n−1

des(π)

) π,

where des(π) = # Des(π), see [14, Th. 8.16].

Then ρ4 is not special. Indeed, ρ̃4 = 123 − 1
3
(132 + 213 + 231 + 312) + 1

3
321. The

sum of its coefficients is 0, so ρ̃4 is in a proper ideal of QS3, and not invertible.

Special Lie idempotents are characterized by the following result.

Theorem 5 The following conditions are equivalent, for a Lie idempotent e:

(i) e is special;

(ii) {σe | σ ∈ Sn, σ(n) = n} is a basis of the space Ln of multilinear Lie polynomials.
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Proof We know that (i) and (ii) hold for ωn = r(12 · · ·n). Hence {σωn | σ(n) = n}
is a basis of Ln, which is of dimension (n−1)!. Since KSn−1 (considered as a subspace

of KSn) is also of dimension (n − 1)!, we see that the mapping KSn−1 → KSn, α 7→
αωn is injective.

Now, e is special if and only if KSn−1ẽ = KSn−1, that is: dim(KSn−1ẽ) = (n − 1)!.

On the other hand, (ii) holds for e if and only if dim(KSn−1e) = (n− 1)!; now, we

have e = ẽωn (by the same argument as for gn, before the proof of Th. 3), and since

the mapping above is injective, the latter condition is equivalent to dim(KSn−1ẽ) =

(n − 1)!, which ends the proof.

We may deduce a result already proved in [2].

Corollary The Klyachko Lie idempotent κn =
1
n

∑
π∈Sn

εmaj(π)π is special.

Here ε is a primitive n-th root of 1 and maj(π) is the sum of the descents of π, see

[9] or [14, Th. 8.17].

Proof It follows from Klyachko’s work that if C is a set of coset representatives of

Sn under right multiplication by the subgroup generated by the long cycle (12 · · ·n),

then {σκn | σ ∈ C} is a basis of the space of multilinear Lie elements, see [14, Cor.

8.20]. We may take C = {σ ∈ Sn | σ(n) = n}, hence κn is special by the theorem.

Note that the results of this section extend some of those of [10, Section 9], where

the authors use the supplementary hypothesis that e is in the descent algebra.
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