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A CONSISTENT MARKOV PARTITION PROCESS
GENERATED FROM THE PAINTBOX PROCESS

HARRY CRANE,∗ University of Chicago

Abstract

We study a family of Markov processes on P (k), the space of partitions of the natural
numbers with at most k blocks. The process can be constructed from a Poisson point
process on R

+ × ∏k
i=1 P (k) with intensity dt ⊗ �

(k)
ν , where �ν is the distribution of the

paintbox based on the probability measure ν on Pm, the set of ranked-mass partitions
of 1, and �

(k)
ν is the product measure on

∏k
i=1 P (k). We show that these processes possess

a unique stationary measure, and we discuss a particular set of reversible processes for
which transition probabilities can be written down explicitly.
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1. Introduction

Markov processes on the space of partitions appear in a variety of situations in the scientific
literature, such as, but not limited to, physical chemistry, astronomy, and population genetics.
See [1] for a relatively recent overview of this literature. Well-behaved mathematically tractable
models of random partitions are of interest to probabilists as well as statisticians and scientists;
see [10], [12], [13], and [15]. Ewens [10] first introduced the Ewens’ sampling formula in the
context of theoretical population biology. Kingman’s [12] coalescent model was introduced as
a model for population genetics, still its most natural setting. However, since the seminal works
of Ewens and Kingman, random partitions have appeared in areas ranging from classification
models, as in [7] and [15], to probability theory (see [3] and [17]). McCullagh [13] described
how Ewens’ model can be used in the classical problem of estimating the number of unseen
species, introduced by Fisher [11] and later studied by many, including Efron and Thisted [9].

Berestycki [2] studied a family of partition processes, called exchangeable fragmentation-
coalescence (EFC) processes, whose paths are generated by a combination of independent
coalescent and fragmentation processes. The mathematical tractability of coalescent and
fragmentation processes has led to the development of many results for EFC processes and has
led to interest in more complex models. For a sample of these results and relevant references,
see [3], [16], and [17]. The study of processes, such as the EFC process, which admit a more
general study of partition-valued processes is of interest from a theoretical as well as applied
perspective. In this paper, we study a family of processes which is similar in spirit to the EFC
process, but whose sample paths are quite different.
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2. Preliminaries

Throughout this paper, P denotes the space of set partitions of the natural numbers N. We
regard an element B of P as a collection of disjoint nonempty subsets, called blocks, written
B = {B1, B2, . . .}, such that

⋃
i Bi = N. The blocks are unordered, but, where necessary,

they are listed in the order of their least element. We write B = (B1, B2, . . .) whenever we
wish to emphasize that blocks are listed in a particular order. For B ∈ P and b ∈ B, #B is
the number of blocks of B and #b is the number of elements of b. For any A ⊂ N, let B|A
denote the restriction of B to A. Wherever necessary, P (k) denotes the space of partitions of N

with at most k blocks, i.e. P (k) := {B ∈ P : #B ≤ k}. For fixed n ∈ N, P[n] and P (k)
[n] are the

restrictions to [n] := {1, . . . , n} of P and P (k), respectively.
It is sometimes convenient to regard a partition B as either an equivalence relation defined by

B(i, j) = 1 ⇔ i ∼B j or an n × n symmetric Boolean matrix whose (i, j)th entry is B(i, j).
These three representations are equivalent and we use the same notation to refer to any one of
them.

For each π, π ′ ∈ P , we define the metric d : P × P → R such that

d(π, π ′) = 1

max{n ∈ N : π|[n] = π ′|[n]}
.

The space (P , d) is compact [5].
In addition, we define the projection Dm,n : P[n] → P[m] for each n ≥ m ≥ 1 by Dm,nB[n] =

B[n]|[m]. In the matrix representation, Dm,nB is the leading m × m submatrix of B. We seek
processes B := (Bt , t ≥ 0) on P such that, for each n ∈ N, the restriction of B to [n], B|[n],
is finitely exchangeable and consistent. That is,

• σ(B|[n]) ∼ B|[n] for each σ ∈ Sn, the symmetric group acting on [n]; and

• B[n]|[m] ∼ B|[m] for each m < n.

It is more convenient to work with P as the state space of our process than the space Pm =
{(s1, s2, . . .) : s1 ≥ s2 ≥ · · · ≥ 0,

∑
i si ≤ 1} of ranked-mass partitions of x ∈ [0, 1]. In

accordance with the notation for set partitions, let P (k)
m := {s ∈ Pm : sj = 0 for all j > k,∑k

i=1 si = 1} denote the ranked k-simplex. There is an intimate relationship between exchange-
able processes on P and processes on Pm through the paintbox process.

For s ∈ Pm, let X := (X1, X2, . . .) be independent random variables with distribution

Ps(Xi = j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sj , j ≥ 1,

1 −
∞∑
i=1

si, j = −i,

0, otherwise.

The partition �(X) generated by s through X satisfies i ∼�(X) j if and only if Xi = Xj . The
distribution of �(X) is written �s and �(X) is called the paintbox based on s. For a measure ν

on Pm, the paintbox based on ν is the ν-mixture of paintboxes, written �ν(·) := ∫
Pm

�s(·)ν(ds).
Any partition obtained in this way is an exchangeable random partition of N and every infinitely
exchangeable partition admits a representation as the paintbox generated by some ν. See [5]
and [17] for more details on the paintbox process.
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We are particularly interested in exchangeable Markovian transition probabilities (pn),
where, for every n, pn is a transition probability on P[n] which satisfies

pn(B, B ′) =
∑

B ′′∈D−1
n,n+1(B

′)

pn+1(B
∗, B ′′) (2.1)

for each B, B ′ ∈ P[n] and B∗ ∈ D−1
n,n+1(B). Burke and Rosenblatt [8] showed that (2.1) is

necessary and sufficient for (pn) to be consistent under selection from N.
Likewise, for a continuous-time Markov process, (Bn(t), t ≥ 0)n∈N, where Bn(t) is a

process on P[n] with infinitesimal generator Qn, it is sufficient that the entries of Qn satisfy
(2.1) for there to be a Markov process on P with those finite-dimensional transition rates.

3. The �ν-Markov chain on P (k)

Let n, k ∈ N, and let ν be a probability measure on the ranked k-simplex P (k)
m , so that

the paintbox based on ν is obtained by a conditionally independent and identically distributed
(i.i.d.) sample from ν, i.e. given s ∼ ν, X1, X2, . . . are i.i.d. with Ps(Xi = j) = sj for each
j = 1, . . . , k. For convenience, we write B ∈ P (k) as an ordered list (B1, . . . , Bk), where
Bi corresponds to the ith block of B in order of appearance for i ≤ #B and Bi = ∅ for
i = #B + 1, . . . , k.

Consider the following Markov transition operation B �→ B ′ on P (k). Let B = (B1, . . . ,

Bk)∈ P (k) and, independently of B, generate C1, C2, . . . which are i.i.d. according to �ν .
For each i, we write Ci := (Ci1, . . . , Cik)∈ P (k). Independently of B, C1, C2, . . . , gen-
erate σ1, σ2, . . ., which are independent uniform random permutations of [k]. Given σ :=
(σ1, σ2, . . . , σk), we arrange B, C1, . . . , Ck in matrix form as follows:

⎛
⎜⎜⎜⎝

C.1 C.2 · · · C.k
B1 C1,σ1(1) ∩ B1 C1,σ1(2) ∩ B1 · · · C1,σ1(k) ∩ B1
B2 C2,σ2(1) ∩ B2 C2,σ2(2) ∩ B2 · · · C2,σ2(k) ∩ B2
...

...
...

. . .
...

Bk Ck,σk(1) ∩ Bk Ck,σk(2) ∩ Bk · · · Ck,σk(k) ∩ Bk

⎞
⎟⎟⎟⎠ =: B ∩ Cσ .

Here B ∩ Cσ is a matrix with row totals corresponding to the blocks of B and column totals
C.j = ⋃k

i=1(Ci,σi (j) ∩ Bi). Finally, B ′ is obtained as the collection of nonempty blocks of
(C.1, . . . , C.k). The nonempty entries of B ∩ Cσ form a partition in P (k2) which corresponds
to the greatest lower bound B ∧ B ′.

Proposition 3.1. The above description gives rise to finite-dimensional transition probabilities
on P (k)

[n] :

pn(B, B ′; ν) = k!
(k − #B ′)!

∏
b∈B

(k − #B ′|b)!
k! �ν(B

′|b). (3.1)

Proof. Let A ∈ P (k). Fix n, k ∈ N, and set B := A|[n]∈ P (k)
[n] . Let C1, . . . , Ck be i.i.d.

�ν-distributed partitions, and let σ := (σ1, . . . , σk) be i.i.d. uniform random permutations of
[k] as described above. Let B ′ be the set partition obtained from the column totals of the matrix
B ∩ Cσ in the above construction.

From the matrix construction, it is clear that, for each i = 1, . . . , k, the restriction B ′|Bi
is

equal to the set partition in P (k)
[n] associated with Ci[Bi] := (Ci1∩Bi, . . . , Cik∩Bi). Conversely,
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the transition B �→ B ′ occurs only if the collection (C1, . . . , Ck) is such that, for each Bi ∈ B,
Ci[Bi] = B ′|Bi

. By consistency of the paintbox process, for each i = 1, . . . , k, Ci[Bi] has
probability

�ν(Ci[Bi]) = �ν(B
′|Bi

).

Independence of the Ci implies that the probability of B ∧ B ′ given B is∏
b∈B

�ν(B
′|b).

Finally, each uniform permutation σi has probability 1/k! and there are (k!/(k − #B ′)!) ×∏
b∈B(k − #B ′|b)! collections σ1, . . . , σ#B such that the column totals of B ∩Cσ correspond to

the blocks of B ′. This completes the proof.

For fixed n, (3.1) depends only on B and B ′ through �ν and the number of blocks of B

and B ′, and is, therefore, finitely exchangeable. We appeal to (2.1) to establish consistency.

Proposition 3.2. For any measure ν on P (k)
m , let (pn(·, ·; ν))n≥1 be the collection of transition

probabilities on P (k)
[n] defined in (3.1). Then (pn) is a consistent family of transition probabilities.

Proof. Fix n, k ∈ N, and let B, B ′ ∈ P (k)
[n] . To establish consistency, it is enough to verify

condition (2.1) from Theorem 1 of [8], i.e. for each ν and B∗ ∈ D−1
n,n+1(B),

pn+1(B
∗, D−1

n,n+1(B
′); ν) = pn(B, B ′; ν).

We assume without loss of generality that B∗ ∈ D−1(B) is obtained from B by the operation
n + 1 �→ B1 ∈ B and we write B∗

1 := B1 ∪ {n + 1}. Likewise, for B ′′ ∈ D−1
n,n+1(B

′) obtained
by n + 1 �→ B ′

i ∈ B ′ ∪ {∅}, write B ′∗
i := B ′

i ∪ {n + 1}. So either n + 1 ∈ B ′∗
i for some

i = 1, . . . , #B ′ or n + 1 is inserted in B ′ as a singleton.
The change to B ∩ Cσ that results from inserting n + 1 into B1 ∈ B and B ′

i ∈ B ′ is
summarized by the following matrix (note that B ′

j = ∅ for j > #B ′):

⎛
⎜⎜⎜⎝

B ′
1 B ′

2 · · · B ′∗
i · · · B ′

k

B∗
1 B ′

1 ∩ B1 B ′
2 ∩ B1 · · · (B ′

i ∩ B1) ∪ {n + 1} · · · B ′
k ∩ B1

B2 B ′
1 ∩ B2 B ′

2 ∩ B2 · · · B ′
i ∩ B2 · · · B ′

k ∩ B2
...

...
...

. . .
...

. . .
...

Bk B ′
1 ∩ Bk B ′

2 ∩ Bk · · · B ′
i ∩ Bk · · · B ′

k ∩ Bk

⎞
⎟⎟⎟⎠.

Here, the blocks of B are listed in any order, with empty sets inserted as needed, and the blocks
of B ′ are listed in order of least elements, with k − #B ′ empty sets at the end.

Given B ′, the set of compatible partitions D−1
n,n+1(B

′) consists of three types depending on
the subset B1 ⊂ [n] and the block of B ′ into which {n + 1} is inserted. Let B ′′ ∈ D−1

n,n+1(B
′)

be the partition of [n + 1] obtained by inserting n + 1 in B ′. Either

(i) n + 1 is inserted into a block B ′
i such that B ′

i ∩ B1 �= ∅, implying that #B ′′
|B∗

1
= #B ′|B1

;

(ii) n + 1 is inserted into a block B ′
i �= ∅ such that B ′

i ∩ B1 = ∅, implying that #B ′′
|B∗

1
=

#B ′|B1
+ 1; or

(iii) n + 1 is inserted into B ′ as a singleton block, implying that #B ′′
|B∗

1
= #B ′|B1

+ 1 and
#B ′′ = #B ′ + 1; we denote this partition by B ′

∅
.
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There are k − #B ′ empty columns in which {n + 1} can be inserted as a singleton in B ′, as in
(iii). For B ′′ obtained by (ii), the restriction of B ′′ to B∗

1 coincides with the restriction of B ′
∅

to
B∗

1 , so each of these restrictions has the same probability under �ν . For notational convenience
in the following calculation, let D1 be those elements of D−1

n,n+1(B
′) which satisfy condition

(i) above and D2 those which satisfy condition (ii).
We have

pn+1(B
∗, D−1

n,n+1(B
′); ν)

=
∑

B ′′∈D−1
n,n+1(B

′)

k!
(k − #B ′′)!

∏
b∈B∗

(k − #B ′′|b)!
k! �ν(B

′′|b) (3.2)

= k!
(k − #B ′)!

∏
b∈B

(k − #B ′|b)!
k!

×
[ ∑

B ′′∈D1

∏
b∈B∗

�ν(B
′′|b)

+
∑

B ′′∈D2

1

k − #B ′|B1

∏
b∈B∗

�ν(B
′′|b) + k − #B ′

k − #B ′|B1

∏
b∈B∗

�ν(B
′
∅|b)

]
(3.3)

= k!
(k − #B ′)!

∏
b∈B

(k − #B ′|b)!
k!

∏
{b∈B∗ : b �=B∗

1 }
�ν(B

′|b)

×
[ ∑

B ′′∈D1

�ν(B
′′
|B∗

1
) +

∑
B ′′∈D2

1

k − #B ′|B1

�ν(B
′′
|B∗

1
) + k − #B ′

k − #B ′|B1

�ν(B
′
∅|B∗

1
)

]

= k!
(k − #B ′)!

∏
b∈B

(k − #B ′|b)!
k!

∏
{b∈B : b �=B∗

1 }
�ν(B

′|b)
[ ∑

B ′′∈D1

�ν(B
′′
|B∗

1
) + �ν(B

′
∅|B∗

1
)

]
(3.4)

= k!
(k − #B ′)!

∏
b∈B

(k − #B ′|b)!
k!

∏
{b∈B : b �=B∗

1 }
�ν(B

′|b)
[ ∑

B ′′∈D−1
#B1,#B1+1(B

′|B1
)

�ν(B
′′)

]
(3.5)

= k!
(k − #B ′)!

∏
b∈B

(k − #B ′|b)!
k!

∏
{b∈B : b �=B∗

1 }
�ν(B

′|b)[�ν(B
′|B1

)] (3.6)

= k!
(k − #B ′)!

∏
b∈B

(k − #B ′|b)!
k!

∏
b∈B

�ν(B
′|b)

= pn(B, B ′; ν).

Here, (3.3) is obtained from (3.2) by factoring (k!/(k − #B ′)!) ∏
b∈B(k − #B ′|b)!/k! out of the

sum and using observations (i), (ii), and (iii). In (3.4), we use the fact that, for any B ′′ ∈ D2,
B ′′

|B∗
1

= B ′
∅|B∗

1
, and there are #B ′ − #B ′|B1

elements in D2 according to (ii). Line (3.5) follows

by observing that each B ′′ ∈ D1 corresponds to an element of D−1
#B1,#B1+1(B

′|B1
) and B ′

∅|B∗
1

is

the element of D−1
#B1,#B1+1(B

′|B1
) obtained by inserting {n + 1} as a singleton in B ′|B1

. Finally,
(3.6) follows from (3.5) by consistency of the paintbox process. This completes the proof.
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The following result is immediate by finite exchangeability, consistency of (3.1) for every n,
and Kolmogorov’s extension theorem (see [6, Theorem 36.1]).

Theorem 3.1. There exists a transition probability p(·, ·; ν) on (P (k), σ (
⋃

n P (k)
[n] )) whose

finite-dimensional restrictions are given by (3.1).

We call the discrete-time process governed by p(·, ·; ν) the �ν-Markov chain with state
space P (k).

3.1. Equilibrium measure

From (3.1), it is clear that, for each n, k ∈ N and B, B ′ ∈ P (k)
[n] , pn(B, B ′; ν) is strictly

positive provided ν is such that ν(s) > 0 for some s = (s1, . . . , sk) ∈ P (k)
m with sk > 0.

Under this condition, the finite-dimensional chains are aperiodic and irreducible on P (k)
[n] , and,

therefore, have a unique stationary distribution. In fact, the finite-dimensional chains based
on ν are aperiodic and irreducible provided ν is not degenerate at (1, 0, . . . , 0) ∈ P (k)

m . The
existence of a unique stationary distribution for each n implies that there is a unique stationary
probability measure on (P (k), σ (

⋃
n P (k)

[n] )) for p(·, ·; ν) from Theorem 3.1.

Proposition 3.3. Let ν be a measure on P (k)
m such that ν is nondegenerate at (1, 0, . . . , 0) ∈

P (k)
m . Then there exists a unique stationary distribution θn(·; ν) for pn(·, ·; ν) for each n ≥ 1.

Proof. Fix n ∈ N, and let ν be any measure on P (k)
m other than that which puts unit mass at

(1, 0, . . . , 0). For B = (B1, . . . , Bm)∈ P (k)
[n] , (3.1) gives the transition probability

pn(B, B; ν) = k!
(k − m)!

m∏
i=1

1

k
�ν(Bi)

and �ν(Bi) = �ν([#Bi]) > 0 for each i = 1, . . . , m. Hence, pn(B, B; ν) > 0 for every
B ∈ P (k)

[n] and the chain is aperiodic.
To see that the chain is irreducible, let B, B ′ ∈ P (k)

[n] and let 1n denote the one block partition
of [n]. Then

pn(B, 1n; ν) = k
∏
b∈B

1

k
�ν([#b]) > 0

and, since ν is not degenerate at (1, 0, . . . , 0), there exists a path 1n �→ B ′ by recursively
partitioning 1n until it coincides with B ′. For instance, let B ′ := (B ′

1, . . . , B
′
m) ∈ P (k). One

such path from 1n to B ′ is

1n →
(

B ′
1,

m⋃
i=2

B ′
i

)
→

(
B ′

1, B
′
2,

m⋃
i=3

)
→ · · · → B ′,

which has positive probability for any nondegenerate ν. Hence, pn(·, ·; ν) is irreducible, which
establishes the existence of a unique stationary distribution for each n.

Theorem 3.2. Let ν be a measure on P (k)
m such that ν((1, 0, . . . , 0)) < 1. Then there exists a

unique stationary probability measure θ(·; ν) for the �ν-Markov chain on P (k).

Proof. For ν satisfying this condition, Proposition 3.3 shows that a stationary distribution
exists for each n ≥ 1. Let (θn(·; ν), n ≥ 1) be the collection of stationary distributions for the
finite-dimensional transition probabilities (pn(·, ·; ν), n ≥ 1). We now show that the θn are
consistent and finitely exchangeable for each n.
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Fix n ∈ N, and let B ∈ P (k)
[n] . Then stationarity of θn(·; ν) implies that∑

B ′∈P (k)
[n]

θn(B
′; ν)pn(B

′, B; ν) = θn(B; ν).

Now write θn(·) ≡ θn(·; ν) and pn(·, ·) ≡ pn(·, ·; ν) for convenience, and let B ′ ∈ P (k)
[n] . We

have ∑
B ′′∈D−1

n,n+1(B
′)

θn+1(B
′′)

︸ ︷︷ ︸
(θn+1D

−1
n,n+1)(B

′)

=
∑

B ′′∈D−1
n,n+1(B

′)

∑
B∗∈P (k)

[n+1]

θn+1(B
∗)pn+1(B

∗, B ′′)

=
∑

B∗∈P (k)
[n+1]

θn+1(B
∗)

[ ∑
B ′′∈D−1

n,n+1(B
′)

pn+1(B
∗, B ′′)

]

=
∑

B∈P (k)
[n]

∑
B∗∈D−1

n,n+1(B)

θn+1(B
∗)[pn(B, B ′)]

=
∑

B∈P (k)
[n]

pn(B, B ′)
∑

B∗∈D−1
n,n+1(B)

θn+1(B
∗)

=
∑

B∈P (k)
[n]

pn(B, B ′)(θn+1D
−1
n,n+1)(B).

So θn+1D
−1
n,n+1 is stationary for pn, which implies that θn ≡ θn+1D

−1
n,n+1 by uniqueness and θn

is consistent for each n.
Let σ be a permutation of [n]. Then, for any B, B ′ ∈ P (k)

[n] , pn(σ (B), σ (B ′)) = pn(B, B ′)
by exchangeability of pn. It follows that θn is finitely exchangeable for each n since∑

B∈P (k)
[n]

θn(σ (B))pn(σ (B), σ (B ′)) = θn(σ (B ′))

by stationarity, and pn(σ (B), σ (B ′)) = pn(B, B ′) implies that∑
B∈P (k)

[n]

θn(σ (B))pn(B, B ′) = θn(σ (B ′)).

Hence, θn ◦ σ is stationary for pn and θn ≡ θn ◦ σ by uniqueness.
Kolmogorov consistency implies that there exists a unique exchangeable stationary prob-

ability measure θ on P (k) whose restriction to [n] is θn for each n ∈ N. This completes the
proof.

4. The �ν-Markov process in continuous time

Let λ > 0, let ν be a measure on P (k)
m , and, for each n ∈ N, define Markovian infinitesimal

jump rates for a Markov process on P (k)
[n] by

qn(B, B ′; ν) =
{

λpn(B, B ′; ν), B �= B ′,
0, otherwise,

(4.1)

where pn is as in (3.1). The infinitesimal generator, Qν
n, of the process on P (k)

[n] governed by
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qn has entries

Qν
n(B, B ′) = λ ×

{
pn(B, B ′; ν), B �= B ′,
pn(B, B; ν) − 1, B = B ′.

(4.2)

We now construct a Markov process B := (B(t), t ≥ 0) in continuous time whose finite-
dimensional transition rates are given by (4.1).

Definition 4.1. A process B := (B(t), t ≥ 0) on P (k) is a �ν-Markov process if, for each
n ∈ N, B|[n] is a Markov process on P (k)

[n] with Q-matrix Qν
n as in (4.2).

A process on P (k) whose finite-dimensional restrictions are governed by Qν
n can be con-

structed according to the matrix construction from Section 3 by permitting only transitions
B �→ B ′ for B ′ �= B, where B, B ′ ∈ P (k)

[n] , and adding a hold time which is exponentially
distributed with mean −1/Qν

n(B, B).

Proposition 4.1. For a measure ν on P (k)
m , let (Qν

n)n∈N be the collection of Q-matrices in (4.2).
For every n ∈ N, the entries of Qν

n satisfy (2.1).

Proof. Fix n ∈ N, and let B, B ′ ∈ P (k)
[n] such that B �= B ′. Then

Qν
n(B, B ′) =

∑
B ′′∈D−1

n,n+1(B
′)

Qν
n+1(B∗, B ′′)

for all B∗ ∈ D−1
n,n+1(B) by the consistency of pn from Proposition 3.2.

For B ′ = B and B∗ ∈ D−1
n,n+1(B), we have∑

B ′′∈D−1
n,n+1(B)

Qν
n+1(B∗, B ′′) = Qν

n+1(B∗, B∗) +
∑

B ′′∈D−1
n,n+1(B)\{B∗}

Qν
n+1(B∗, B ′′)

= λ

[
pn+1(B∗, B∗; ν) − 1 +

∑
B ′′∈D−1

n,n+1(B)\{B∗}
pn+1(B∗, B ′′; ν)

]

= λ

[ ∑
B ′′∈D−1

n,n+1(B)

pn+1(B∗, B ′′; ν) − 1

]

= λ(pn(B, B; ν) − 1)

= Qν
n(B, B).

Theorem 4.1. For each measure ν on P (k)
m , there exists a Markov process (B(t), t ≥ 0) on

P (k) which has finite-dimensional transition rates given in (4.1).

Proof. Let ν be a measure on P (k)
m , and let (B|[n](t), t ≥ 0)n∈N be the collection of

restrictions of a �ν-Markov process with consistent Q-matrices (Qν
n)n∈N as in (4.2). For

each n, Qν
n is finitely exchangeable and consistent with Qν

n+1 by Proposition 4.1, which is
sufficient for B|[n] to be consistent with B|[n+1] for every n. Kolmogorov’s extension theorem
implies that there exist transition rates, Qν , on P (k) such that, for every B, B ′ ∈ P (k)

[n] ,

Qν
n(B, B ′) = Qν(B∗, {B ′′ ∈ P (k) : B ′′|[n] = B ′})

for every B∗ ∈ {B ′′ ∈ P (k) : B ′′|[n] = B}.
Finally, for every B ∈ P (k)

[n] , Qν
n(B, P (k)

[n] \{B}) = λ(1 − pn(B, B; ν)) < ∞ so that the
sample paths of B|[n] are càdlàg for every n, which implies that B is càdlàg.
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Corollary 4.1. For ν which satisfies the condition of Theorem 3.2, the continuous-time process
B := (B(t), t ≥ 0) with finite-dimensional rates qn(·, ·; ν) in (4.1) has unique stationary
distribution θ(·; ν) from Theorem 3.2.

Proof. For each n ∈ N, let θn(·; ν) be the unique finite-dimensional stationary distribution
of pn(·, ·; ν) from (3.1). It is easy to verify that, for each n ∈ N, �ν

n := (θn(B; ν), B ∈ P (k)
[n] )

satisfies
(�ν

n)
tQν

n = 0,

which establishes that �ν
n is stationary for Qν

n for every n. The rest of the proof follows by
Theorem 3.2.

4.1. Poissonian construction

From the matrix construction at the beginning of Section 3, a consistent family of finite-
dimensional Markov processes with transition rates as in (4.1) can be constructed by a Poisson
point process on R

+ × ∏k
i=1 P (k) as follows. Let

P = {(t, C1, . . . , Ck)} ⊂ R
+ ×

k∏
i=1

P (k)

be a Poisson point process with intensity measure dt ⊗ λ�
(k)
ν for some measure ν on P (k)

m and
λ > 0, where �

(k)
ν is the product measure �ν ⊗ · · · ⊗ �ν on

∏k
i=1 P (k).

Construct an exchangeable process B := (B(t), t ≥ 0) on P (k) by taking π ∈ P (k) to be
some exchangeable random partition and setting B(0) = π .

For each n ∈ N, set B|[n](0) = π|[n] and

• if t is not an atom time for P then B|[n](t) = B|[n](t−);

• if t is an atom time for P so that (t, C1, . . . , Ck) ∈ P then, independently of (B(s),

s < t) and (t, C1, . . . , Ck), generate σ1, . . . , σk i.i.d. uniform random permutations of
[k] and construct B ′ from the set partition induced by the column totals (C.1, . . . , C.k)
of ⎛

⎜⎜⎜⎝

C.1 C.2 · · · C.k
B1 C1,σ1(1) ∩ B1 C1,σ1(2) ∩ B1 · · · C1,σ1(k) ∩ B1
B2 C2,σ2(1) ∩ B2 C2,σ2(2) ∩ B2 . . . C2,σ2(k) ∩ B2
...

...
...

. . .
...

Bk Ck,σk(1) ∩ Bk Ck,σk(2) ∩ Bk . . . Ck,σk(k) ∩ Bk

⎞
⎟⎟⎟⎠ =: B ∩ Cσ ,

where (B1, . . . , Bk) are the blocks of B = B|[n](t−) listed in order of their least element,
with k − #B empty sets at the end of the list.

• If B ′ �= B then B|[n](t) = B ′.

• If B ′ = B then B|[n](t) = B|[n](t−).

Proposition 4.2. The above process B is a Markov process on P (k) with transition matrix Qν

defined by Theorem 4.1.

Proof. This is clear from the consistency of both the paintbox process �ν and the Qν
n-matrices

for every n and the fact that, by this construction, for any n such that B|[n](t) = π , then
B[n]|[m](t) = Dm,n(π) for all m < n and B|[p](t) ∈ D−1

n,p(π) for all p > n.
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Let Pt be the semigroup of a �ν-Markov process B(·), i.e. for any continuous ϕ : P (k) → R,

Pt ϕ(π) := Eπ ϕ(B(t)),

the expectation of ϕ(B(t)) given B(0) = π .

Corollary 4.2. A �ν-Markov process has the Feller property, i.e.

• for each continuous function ϕ : P (k) → R and each π ∈ P , we have

lim
t↓0

Pt ϕ(π) = ϕ(π);

• for all t > 0, π �→ Pt ϕ(π) is continuous.

Proof. The proof follows the same program as the proof of [2, Corollary 6].
Let

Cf := {f : P (k) → R : there exists n ∈ N such that π|[n] = π ′|[n] ⇒ f (π) = f (π ′)}
be a set of functions which is dense in the space of continuous functions from P (k) → R. It is
clear that, for g ∈ Cf , limt↓0 Pt g(π) = g(π) since the first jump time of B(·) is an exponential
variable with finite mean. The first point follows for all continuous functions P (k) → R by the
denseness of Cf .

For the second point, let π, π ′ ∈ P (k) be such that d(π, π ′) < 1/n and use the same Poisson
point process P to construct two �ν-Markov processes, B(·) and B ′(·), with starting points π

and π ′, respectively. By the construction, B|[n] = B ′|[n] and d(B(t), B ′(t)) < 1/n for all t ≥ 0.
It follows that, for any continuous g, π �→ Pt g(π) is continuous.

This allows us to characterize the �ν-Markov process in terms of its infinitesimal generator.
Let B := (B(t), t ≥ 0) be the �ν-Markov process on P (k) with transition rates characterized
by (qn)n∈N as in (4.1). The infinitesimal generator, A, of B is given by

A(f )(π) =
∫

P (k)

(f (π ′) − f (π))Qν(π, dπ ′)

for every f ∈ Cf .

5. Asymptotic frequencies

Definition 5.1. A subset A ⊂ N is said to have asymptotic frequency λ if

λ := lim
n→∞

#{i ≤ n : i ∈ A}
n

exists, and a random partition B := (B1, B2, . . .) ∈ P is said to have asymptotic frequencies
if each block of B has an asymptotic frequency almost surely.

Adopting the notation of [2], let 
(B) = (‖B1‖, ‖B2‖, . . .)↓ be the decreasing arrangement
of asymptotic frequencies of a partition B = (B1, B2, . . .) ∈ P which possesses asymptotic
frequencies, some of which could be 0.

According to Kingman’s representation theorem (see Theorem 2.2 of [17]), any exchangeable
random partition of N possesses asymptotic frequencies. Intuitively, this is a consequence of
generating an exchangeable random partition of N by the paintbox process.
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The process described in Section 3 assigns only positive probability to transitions involving
two partitions with at most k blocks. From the Poissonian construction of the transition rates in
Section 4.1, it is evident that the states of B = (B(t), t ≥ 0) will have at most k blocks almost
surely. Moreover, the description of the transition rates in terms of the paintbox process allows
us to describe the associated measure-valued process of B := (B(t), t ≥ 0) characterized by
λ and ν.

5.1. Poissonian construction

Consider the following Poissonian construction of a measure-valued process X := (X(t),

t ≥ 0) on P (k)
m . For any k ∈ N, λ > 0, and ν as above, let P ′ = {(t, P ′

1, . . . , P
′
k)} ⊂

R
+ × ∏k

i=1 P (k)
m be a Poisson point process with intensity measure dt ⊗ λν(k), where ν(k) is

the product measure ν ⊗ . . . ⊗ ν on
∏k

i=1 P (k)
m .

Construct a process X := (X(t), t ≥ 0) on P (k)
m by generating p0 from some probability

distribution on P (k)
m . Set X(0) = p0 and

• if t is not an atom time for P ′ then X(t) = X(t−);

• if t is an atom time for P ′ so that (t, P ′
1, . . . , P

′
k) ∈ P ′, with P ′

j = (P
j
1 , . . . , P

j
k ) for

each j = 1, . . . , k, and X(t−) = (x1, . . . , xk) ∈ P (k)
m , then, independently of (X(s),

s < t) and (t, P ′
1, . . . , P

′
k), generate σ1, . . . , σk i.i.d. uniform random permutations of

[k] and construct X(t) from the marginal column totals of

⎛
⎜⎜⎜⎜⎝

P .
1 P .

2 · · · P .
k

x1 x1P
1
σ1(1) x1P

1
σ1(2) · · · x1P

1
σ1(k)

x2 x2P
2
σ2(1) x2P

2
σ2(2) · · · x2P

2
σ2(k)

...
...

...
. . .

...

xk xkP
k
σk(1) xkP

k
σk(2) · · · xkP

k
σk(k)

⎞
⎟⎟⎟⎟⎠,

i.e. set X(t) = (P .
1, P

.
2, . . . , P

.
k)

↓ := (
∑k

i=1 xiP
i
σi (j), 1 ≤ j ≤ k)↓.

Theorem 5.1. Let X := (X(t), t ≥ 0) be the process constructed above. Then X
d= 
(B),

where B := (B(t), t ≥ 0) is the �ν-Markov process from Theorem 4.1, and ‘
d=’denotes equality

in distribution.

Proof. Fix k ∈ N, and let ν(·) be a measure on P (k)
m .

In the description of the sample paths of B in Section 4, note that generating (C1, . . . , Ck) ∼
�

(k)
ν is equivalent to first generating si ∼ ν independently for each i = 1, . . . , k, and then

generating random partitions Ci by sampling from si for each i = 1, . . . , k. Finally, B ′
i is set

equal to the marginal total of column i of the matrix B∩Cσ , where σ := (σ1, . . . , σk) is an i.i.d.
collection of uniform random permutations of [k]. Hence, we can couple the two processes X

and B together using the Poisson point process P ′ described above.
Let X evolve according to the Poisson point process P ′ on R

+ × ∏k
i=1 P (k)

m as described
above. Let B evolve by the modification that if t is an atom time of P ′ then we obtain partitions
(C1, . . . , Ck) by sampling Xi := (Xi

1, X
i
2, . . .) i.i.d. from P ′

i for each i = 1, . . . , k, i.e.

P(Xi
1 = j | P ′

i ) = P i
j ,

and defining the blocks of Ci as the equivalence classes of Xi . Constructed in this way,
‖Cij‖= P i

j almost surely for each i, j = 1, . . . , k and (C1, . . . , Ck) ∼ �
(k)
ν .
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After obtaining the Ci , generate, independently of B, C1, . . . , Ck, P
′, i.i.d. uniform permu-

tations σ1, . . . , σk of [k] and proceed as in the construction of Section 4.1 where B, C1, . . . , Ck

are arranged in the matrix B ∩ Cσ and the blocks of B ′ are obtained as the marginal column
totals of B∩Cσ . The (i, j)th entry of B∩Cσ is Ci,σi (j)∩Bi for which we have ‖Ci,σi (j)∩Bi‖=
‖Ci,σi (j)‖‖Bi‖= xiP

i
σi (j) almost surely.

By this construction, B(t) is constructed according to a Poisson point process with the same
law as that described in Section 4.1, and B(t) possesses ranked asymptotic frequencies which
correspond to X(t) almost surely for all t ≥ 0.

Corollary 5.1. X(t) := (
(B(t)), t ≥ 0) exists almost surely.

5.2. Equilibrium measure

Just as the process (B(t), t ≥ 0) on P (k) converges to a stationary distribution, so does its
associated measure-valued process (X(t), t ≥ 0) from Section 5.1.

Theorem 5.2. The associated measure-valued process X for a �ν-Markov process with unique
stationary measure θ(·; ν) has equilibrium measure θ̃ (·; ν), the distribution of the ranked
frequencies of a θ(·; ν)-partition.

Proof. Proposition 1.4 of [5] states that if a sequence of exchangeable random partitions
converges in law on P to π∞ then its sequence of ranked asymptotic frequencies converges in
law to |π∞|↓. Hence, from Corollary 4.1 we find that X has equilibrium distribution given by
the ranked asymptotic frequencies of a θ(·; ν)-partition.

6. The (α, k)-Markov process

Pitman [17] discussed a two-parameter family of infinitely exchangeable random partitions
called the (α, θ)-process which has finite-dimensional distributions

pn(B; α, θ) := (θ/α)↑#B

θ↑n

∏
b∈B

−(−α)↑#b

for (α, θ) satisfying either

• α = −κ < 0 and θ = mκ for some m = 1, 2, . . .; or

• 0 ≤ α ≤ 1 and θ > −α.

For k ∈ N and α > 0, a (−α, kα)-partition has finite-dimensional distributions

ρn(B; α, k) = k!
(k − #B)!

∏
b∈B �(α + #b)/�(α)

�(kα + n)/�(kα)
(6.1)

whose support is P (k)
[n] .

The distribution of the ranked asymptotic frequencies of an (α, θ)-partition is called the
Poisson–Dirichlet distribution with parameter (α, θ), written PD(α, θ).

For notational convenience, introduce the α-permanent [14] of an n × n matrix K ,

perα K =
∑
σ∈Sn

α#σ
n∏

i=1

Ki,σ(i),

where #σ is the number of cycles of the permutation σ , and note that, when B ∈ P[n] is regarded
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as a matrix,

perα B =
∏
b∈B

perα B|b =
∏
b∈B

�(α + #b)

�(α)
, (6.2)

which allows us to write (6.1) as

ρn(B; α, k) = k!
(k − #B)!

perα B

(kα)↑n
,

where (β)↑n = β(β + 1) · · · (β + n − 1).
We now consider a specific subfamily of reversible �ν-Markov processes for which the

transition probabilities can be written down explicitly. For k ∈ N and α > 0, let ν be the
PD(−α/k, α) distribution on P (k)

m and define transition probabilities according to the matrix
construction based on ν as in Section 3. We call this process the (α, k)-Markov process.

Proposition 6.1. The (α, k)-Markov process has finite-dimensional transition probabilities

pn(B, B ′; α, k) = k!
(k − #B ′)!

∏
b∈B

∏
b′∈B ′ �(α/k + #(b ∩ b′))/�(α/k)

�(α + #b)/�(α)
(6.3)

= k!
(k − #B ′)!

perα/k(B ∧ B ′)
perα B

. (6.4)

Proof. Theorem 3.2 and Definition 3.3 of [17] shows that the distribution of B ∼ �ν , where
ν = PD(−α/k, α), is

ρn

(
B; α

k
, k

)
= k!

(k − #B)!
perα/k B

(α)↑n
.

Combining this and (3.1) yields (6.3); (6.4) follows from (6.2).

Proposition 6.2. For each (α, k) ∈ R
+ ×N and n ∈ N, pn(·, ·; α, k) defined in Proposition 6.1

is reversible with respect to (6.1) with parameter (α, k).

Proof. Let ρn(·; α, k) be the distribution with parameter (α, k) defined in (6.1), and let
pn(·, ·; α, k) be as defined in (6.3). For any B, B ′ ∈ P (k)

[n] , it is immediate that

ρn(B; α, k)pn(B, B ′; α, k) = ρn(B
′; α, k)pn(B

′, B; α, k),

which establishes reversibility.

Bertoin [4] discussed some reversible EFC processes which have PD(α, θ) distribution as
their equilibrium measure, for 0 < α < 1 and θ > −α. Here we have shown reversibility with
respect to PD(α, θ) for α < 0 and θ = −mα for m ∈ N.

The construction of the continuous-time process is a special case of the procedure in
Section 4. The measure-valued process (X(t), t ≥ 0) based on the (α, k)-Markov process
has unique stationary measure PD(−α, kα), the distribution of the ranked frequencies of a
partition with finite-dimensional distributions as in (6.1) with parameter (α, k).

7. Discussion

The paths of the �ν-Markov process discussed above are confined to P (k). Unlike the EFC
process [2], which has a natural interpretation as a model in certain physical sciences, the
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�ν-Markov process has no clear interpretation as a physical model. However, the matrix con-
struction introduced in Section 3 leads to transition rates which admit a closed-form expression
in the case of the (α, k)-Markov process.

The (α, k) class of models could be useful as a statistical model for relationships among
statistical units which are known to fall into one of k classes. In statistical work, it is important
that any observation has positive probability under the specified model. The (α, k)-process
assigns positive probability to all possible transitions and so any observed sequence of partitions
in P (k)

[n] will have positive probability for any choice of α > 0. In addition, the model is
exchangeable, consistent, and reversible, particularly attractive mathematical properties which
could have a natural interpretation in certain applications. Future work is intended to explore
applications for this model, as well as develop some of the tools necessary for its use in statistical
inference.
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