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Mellin Transforms of Mixed Cusp Forms
Youngju Choie and Min Ho Lee

Abstract. We define generalized Mellin transforms of mixed cusp forms, show their convergence, and prove
that the function obtained by such a Mellin transform of a mixed cusp form satisfies a certain functional
equation. We also prove that a mixed cusp form can be identified with a holomorphic form of the highest
degree on an elliptic variety.

1 Introduction

Given nonnegative integers l and m, mixed cusp forms of type (l,m) for a discrete subgroup
Γ ⊂ SL(2,R) are defined using automorphy factors of the form J(γ, z)l J

(
χ(γ), ω(z)

)m
,

where J(γ, z) = cz + d for γ =

(
a b
c d

)
∈ Γ and ω is a map of the the Poincaré upper

half plane that is equivariant with respect to a homomorphism χ : Γ→ SL(2,R). Families
of abelian varieties parametrized by an arithmetic variety play an important role in the
theory of automorphic forms (see e.g. [11]). An elliptic variety is one of such families of
abelian varieties, and it is a fiber variety over a compact Riemann surface whose generic
fiber is isomorphic to the product of a finite number of elliptic curves. It is known that
mixed cusp forms of type (2,m) can be interpreted as holomorphic forms of the highest
degree on a certain type of elliptic variety (cf. [2], [6]). Various aspects of such cusp forms
were studied in a number of papers (see e.g. [7], [8]), and mixed automorphic forms of
several variables have also been investigated (cf. [9], [11], [10]). The goal of this paper is
to describe geometric interpretations of mixed cusp forms of one variable of type (l,m) for
an arbitrary integer l ≥ 2 and discuss the L-functions attached to such mixed cusp forms.

A classical automorphic form for a discrete subgroup of SL(2,R) has a Fourier expan-
sion of the form

∞∑
n=0

ane2πinz/h

at each cusp for some positive real number h, and is called a cusp form if a0 = 0 for all
cusps. To each cusp form f (z) we associate the Dirichlet series

D(s, f ) =
∞∑

n=1

ann−s,

where an’s are the Fourier coefficients of f (z) at the cusp infinity. If f (z) is a cusp form for
the group

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣ c ≡ 0(mod N)

}
,
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264 Mellin Transforms of Mixed Cusp Forms

then it is well-known that its Mellin transform

L(s, f ) =

∫ ∞
0

f (i y)ys−1 dy(1.1)

is equal to (2π)−sΓ(s)D(s, f ), where Γ(s) is the Γ-function. It is also known that L(s, f )
converges in some half plane, can be analytically continued to the whole complex plane as
an entire function, and satisfies a certain functional equation (see e.g. [12], [13] for details).

In this paper we construct a certain type of elliptic varieties and prove that the space of
holomorphic forms of the highest degree on such an elliptic variety is isomorphic to the
space of mixed cusp forms of type (l,m) for some l ≥ 2 (Theorem 3.1). We then introduce
a generalized Mellin transform

L2k,m
ω,χ (s, f ) =

∫ ∞
0

f (i y)ω(i y)s−k yk−1 dy

of a mixed cusp form f (z) of type (2k,m) associated to a discrete subgroupΓ of SL(2,R), a
holomorphic map ω of the Poincaré upper half plane and a group homomorphismχ : Γ→
SL(2,R), and prove that it converges (Theorem 4.2) and that L2k,m

ω,χ (s, f ) satisfies a func-
tional equation (Theorem 4.4) which generalizes the usual functional equation for L(s, f ).
For the proofs of these theorems we use the fact that a mixed cusp form f (z) of type (l,m)
associated to Γ, ω and χ can be written as a linear combination of functions of the form
f1(z) f2

(
ω(z)
)

, where f1 is a cusp form of weight l for Γ and f2 is a cusp form of weight m
for χ(Γ) (Proposition 2.4).

2 Mixed Automorphic Forms

Let Γ ⊂ SL(2,R) be a Fuchsian group of the first kind, and let χ : Γ → SL(2,R) a ho-
momorphism of groups. Thus both Γ and the image χ(Γ) of Γ under χ operate on the
Poincaré upper half plane H = {z ∈ C | Im z > 0} by linear fractional transformations.
Let ω : H → H be a Γ-equivariant holomorphic map, i.e., a holomorphic map that satis-
fies ω(gz) = χ(g)ω(z) for all g ∈ Γ and z ∈ H. We assume that the image of a parabolic
element of Γ under χ is a parabolic element in χ(Γ). Given a cusp s of Γ we set

∆s = {σ ∈ SL(2,R) | σ(∞) = s},

and let∆ be the union
⋃
∆s of∆s for all cusps s of Γ. We assume that the homomorphism

χ can be extended to a mapping χ : Γ ∪∆→ SL(2,R).
Given a pair of nonnegative even integers l and m, we set

Jl,m
ω,χ(g, z) = (cz + d)l

(
cχω(z) + dχ

)m

for

g =

(
a b
c d

)
∈ Γ ∪∆, χ(g) =

(
aχ bχ
cχ dχ

)
∈ SL(2,R).

Then Jl,m
ω,χ : (Γ ∪∆)×H→ C is a factor of automorphy, i.e., it satisfies the condition

Jl,m
ω,χ(gh, z) = Jl,m

ω,χ(g, hz) · Jl,m
ω,χ(h, z)
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for all g, h ∈ Γ and z ∈ H.
Let s be a cusp of Γ, and let σ be an element of SL(2,R) such that σ(∞) = s. We set

(
f | [σ]

)
(z) = Jl,m

ω,χ(σ, z)−1 f (σz).

Then∞ is a cusp of Γσ = σ−1Γσ, and we have the Fourier expansion of f | [σ] at∞ of
the form (

f | [σ]
)

(z) =
∑
n≥n0

ane2πinz/h,

which is called the Fourier expansion of f at s.

Definition 2.1 Let Γ, ω, and χ as above. A mixed automorphic form of type (l,m) as-
sociated to Γ, ω and χ is a holomorphic function f : H → C satisfying the following
conditions:

(i) f (γz) = Jl,m
ω,χ(γ, z) f (z) for all γ ∈ Γ.

(ii) The Fourier coefficients an of f at each cusp s satisfy the condition that n ≥ 0
whenever an 6= 0.

The holomorphic function f is a mixed cusp form if (ii) is replaced with the following
condition:

(ii) ′ The Fourier coefficients an of f at each cusp s satisfy the condition that n > 0
whenever an 6= 0.

We shall denote by Sl,m(Γ, ω, χ) the space of mixed cusp forms of type (l,m) associated
to Γ, ω and χ.

Remark 2.2 If Sk(Γ) denotes the space of cusp forms of weight k for Γ, then we have

Sl,0(Γ, ω, χ) = Sl(Γ), Sl,m(Γ, id, id) = Sl+m(Γ).

On the other hand for l = 0 the elements of S0,m(Γ, ω, χ) are generalized automorphic
forms of weight m in the sense of W. Hoyt and P. Stiller (see e.g. [15, p. 31]).

Now we discuss the interpretation of mixed cusp forms in terms of line bundles which
will be used in Section 4 to prove the convergence of Mellin transforms. Let Γ ⊂ SL(2,R),
ω : H → H and χ : Γ → SL(2,R) be as above, and let Σ be the the set of cusps of Γ.
Let H∗ = H ∪ Σ, and assume that Γ does not contain elements of finite order. Then the
quotient Γ \H∗ has the structure of a compact Riemann surface.

Let OH be the sheaf of holomorphic functions on H, and we extend OH to the sheaf
OH∗ on H∗ by defining the stalk at each cusp s ∈ Σ by

OH∗,s = { f ∈ ( j∗OH)s | f (σz) = O(|z|n) for some n ∈ Z},

where σ is an element of SL(2,R) with s = σ∞ and j : H→ H∗ is the inclusion map. Let
FH∗ be the subsheaf of the tensor product OH∗ ⊗ C2 of OH∗ and the constant sheaf C2

generated by the global section
(z

1

)
, i.e.,

FH∗ =

{
f (z)

(
z

1

) ∣∣∣ f ∈ OH∗

}
.
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266 Mellin Transforms of Mixed Cusp Forms

Then for γ =

(
a b
c d

)
∈ Γ we have

γ ·

(
f (z)

(
z

1

))
= f (γ−1z)

(
a(γ−1z) + b

c(γ−1z) + d

)

=
(
c(γ−1z) + d

)
f (γ−1z)

(
z

1

)
= (−cz + a) f (γ−1z)

(
z

1

)
;

hence FH∗ is Γ-invariant. Let OH∗(−Σ) be the sheaf of functions on H∗ which are holo-
morphic on H and zero on Σ. For each nonnegative integer m we set

Fm
H∗(−Σ) = Fm

H∗ ⊗ OH∗(−Σ),

where Fm
H∗ is the m-th tensor power of FH∗ , and denote by

Fm
Γ =
(
Fm

H∗(−Σ)
)Γ

the Γ-fixed sheaf of Fm
H∗(−Σ) on XΓ = Γ \H∗.

Proposition 2.3 The space Sm(Γ) of cusp forms of weight m for Γ is canonically isomorphic
to the space H0(XΓ,Fm

Γ ) of sections of Fm
Γ .

Proof See [2, Proposition 1.4] (see also [1]).
Let Γ ′ = χ(Γ) be the image of Γ under χ, and let Σ ′ be the set of cusps of Γ ′. Then for

each nonnegative integer n we can define the sheaf Fn
Γ ′ over the Riemann surface XΓ ′ =

Γ ′ \ (H ∪ Σ ′) whose sections are cusp forms of weight n for Γ ′. Let ωX : XΓ → XΓ ′ be the
morphism of complex algebraic curves induced by the holomorphic map ω : H→ H.

Proposition 2.4 The space Sl,m(Γ, ω, χ) of mixed cusp forms associated to Γ, ω and χ is
canonically isomorphic to the space H0(XΓ,Fl

Γ ⊗ ω
∗
XFm
Γ ′) of sections of the sheaf Fl

Γ ⊗ ω
∗
XFm
Γ ′

over XΓ.

Proof This proposition is an extension of Theorem 1.6 in [2]. By Proposition 2.3 each
section of the sheaf Fl

Γ ⊗ ω
∗
XFm
Γ ′ is a linear combination of sections of the form z 7→(

f1 ⊗ ( f2 ◦ ω)
)

(z) = f1(z) f2

(
ω(z)
)

with f1 ∈ Sl(Γ) and f2 ∈ Sm(Γ ′), and therefore
has the same transformation property as the one for an element in Sl,m(Γ, ω, χ). Now the
proposition follows from the fact that the Γ-cusps and Γ ′-cusps correspond via ω and χ,
since χmaps parabolic elements to parabolic elements.

3 Elliptic Varieties

In this section we describe the interpretation of mixed cusp forms as holomorphic forms on
certain families of abelian varieties. Let E be an elliptic surface in the sense of Kodaira [3].
Thus E is a compact smooth surface over C, and it is the total space of an elliptic fibration
π : E → X over a Riemann surface X whose generic fiber is an elliptic curve. Let E0 be
the union of the regular fibers of π, and let Γ ⊂ P SL(2,R) be the fundamental group
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of X0 = π(E0). Then Γ acts on the universal covering space H of X0 by linear fractional
transformations, and we have

X = Γ \H ∪ {Γ-cusps}.

For z ∈ X0, let Φ be a holomorphic 1-form on the fiber Ez = π
−1(z), and choose an

ordered basis {γ1(z), γ2(z)} for H1(Ez,Z) that depends on the parameter z in a continuous
manner. Consider the periods ω1 and ω2 of E given by

ω1(z) =

∫
γ1(z)
Φ, ω2(z) =

∫
γ2(z)
Φ.

Then ω1/ω2 is a many-valued function from X0 to H which can be lifted to a single-valued
function ω : H→ H on the universal cover of X0 such that

ω(γz) = χ(γ)ω(z)

for all γ ∈ Γ and z ∈ H, where χ : Γ → SL(2,Z) is the monodromy representation of the
elliptic fibration π : E→ X.

In order to discuss connections of elliptic varieties with mixed cusp forms we shall regard
Γ as a subgroup of SL(2,R). As in Section 2, we denote by S j+2,m(Γ, χ, ω) the space of
mixed cusp forms of type ( j + 2,m) associated to Γ, ω and χ. Let E(χ) (resp. E(1)) be an
elliptic surface over X whose monodromy representation is χ (resp. the inclusion map),
and let π(χ) : E(χ)→ X (resp. π(1) : E(1)→ X) be the associated elliptic fibration. We set

E(χ)0 = π(χ)−1(Γ \H), E(1)0 = π(1)−1(Γ \H),

and denote by (E j,m
χ,1 )0 the fiber product of j-copies of E(1)0 and m copies of E(χ)0 over

X corresponding to the maps π(1) and π(χ), respectively. The space (E j,m
χ,1 )0 can also be

constructed as below. Consider the semidirect product Γ 1,χ Z2 j × Z2m consisting of the
triples (γ, µ, ν) in Γ× Z2 j × Z2m whose multiplication law is defined as follows. Let

(γ, µ, ν), (γ ′, µ′, ν ′) ∈ Γ× Z2 j × Z2m

with

µ′ = (µ ′1, µ
′
2) = (µ ′11, . . . , µ

′
j1, µ

′
12, . . . , µ

′
j2) ∈ Z2 j ,

ν ′ = (ν ′1, ν
′
2) = (ν ′11, . . . , ν

′
m1, ν

′
12, . . . , ν

′
m2) ∈ Z2m,

γ =

(
a b
c d

)
∈ Γ, χ(γ) =

(
aχ bχ
cχ dχ

)
∈ SL(2,Z).

Then we have
(γ, µ, ν) · (γ ′, µ′, ν ′) =

(
γγ ′, γ · (µ ′, ν ′) + (µ, ν)

)
,
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268 Mellin Transforms of Mixed Cusp Forms

where γ · (µ ′, ν ′) = (µ ′′, ν ′ ′) with

µ ′ ′ = (aµ ′11 + bµ ′12, . . . , aµ
′
j1 + bµ ′j2, cµ

′
11 + dµ ′12, . . . , cµ

′
j1 + dµ ′j2) ∈ Z2 j ,

ν ′′ = (aχν
′
11 + bχν

′
12, . . . , aχν

′
m1 + bχν

′
m2, cχν

′
11 + dχν

′
12, . . . , cχν

′
m1 + dχν

′
m2) ∈ Z2m.

The group Γ 1,χ Z2 j × Z2m acts on the space H × C j × Cm by

(γ, µ, ν) · (z, ξ, ζ)

=
(
γz, (cz + d)−1(ξ + zµ1 + µ2),

(
cχω(z) + dχ

)−1(
ζ + ω(z)ν1 + ν2

))(3.1)

for γ ∈ Γ, z ∈ H, ξ ∈ C j , ζ ∈ Cm, µ = (µ1, µ2) ∈ Z2 j , and ν = (ν1, ν2) ∈ Z2m. Then we
have

(E j,m
1,χ )0 = Γ 1,χ Z2 j × Z2m \H × C j × Cm.(3.2)

Now we obtain the elliptic variety E j,m
1,χ by resolving the singularities of the compactification

of (E j,m
1,χ )0 (cf. [14]). The elliptic fibration π induces a fibration π j,m

1,χ : E j,m
1,χ → X whose

generic fiber is the product of ( j + m) elliptic curves.

Theorem 3.1 Let E j,m
1,χ be an elliptic variety described above. Then there is a canonical iso-

morphism
H0(E j,m

1,χ ,Ω
j+m+1) ∼= S j+2,m(Γ, ω, χ)

between the space of holomorphic ( j + m + 1)-forms on E j,m
χ,1 and the space of mixed cusp forms

of type ( j + 2,m).

Proof Let (E j,m
1,χ )0 be as in (3.2). Then a holomorphic ( j + m + 1)-form on E j,m

1,χ can be

regarded as a holomorphic ( j + m + 1)-form on H × C j × Cm that is invariant under the
operation of Γ 1,χ Z2 j × Z2m. Since the complex dimension of the space H × C j × Cm is
j + m + 1, a holomorphic ( j + m + 1)-form on H × C j × Cm is of the form

Θ = f̃ (z, ξ, ζ)dz ∧ dξ ∧ dζ,

where f̃ is holomorphic. For z0 ∈ H, the holomorphic form Θ descends to a holomor-
phic ( j + m)-form on the fiber (π j,m

1,χ )−1(z0). However, the dimension of the fiber is j + m,

and therefore the space of holomorphic ( j + m)-forms on (π j,m
1,χ )−1(z0) is one. Hence the

map (ξ, ζ) 7→ f̃ (z, ξ, ζ) is a holomorphic function on a compact complex manifold, and
consequently is a constant function. Thus we have f̃ (z, ξ, ζ) = f (z), where f is a holo-
morphic function on H. From (3.1) the action of (γ, µ, ν) ∈ Γ 1,χ Z2 j × Z2m on the form
Θ = f (z)dz ∧ dξ ∧ dζ is given by

Θ · (γ, µ, ν) = f (gz)d(gz) ∧ d
(
(cz + d)−1(ξ + zµ1 + µ2)

)

∧ d
((

cχω(z) + dχ
)−1(
ζ + ω(z)ν1 + ν2

))

= f (gz)(cz + d)−2(cz + d)− j
(
cχω(z) + dχ

)−m
dz ∧ dξ ∧ dζ.
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Thus it follows that f (z) satisfies the condition (i) of Definition 2.1, and it remains to show
that f satisfies the cusp condition. Using Theorem 3.1 in [5], we see that the differential
formΘ can be extended to E j,m

1,χ if and only if

∫
(E j,m

1,χ )0

Θ ∧ Θ̄ <∞.

From (3.1) it follows that a fundamental domain F in H × C j × Cm for the action of
Γ 1,χ Z2 j × Z2m can be chosen in the form

F = {(z, ξ, ζ) ∈ H × C j × Cm | z ∈ F0, ξ = s + tz, ζ = u + vω(z), s, t ∈ I j , u, v ∈ Im},

where F0 ⊂ H is a fundamental domain of Γ and I is the closed interval [0, 1] ⊂ R. Thus
we have

∫
(E j,m

1,χ )0

Θ ∧ Θ̄ =

∫
F
Θ ∧ Θ̄ =

∫
F
| f (z)|2 dz ∧ dξ ∧ dζ ∧ dz̄ ∧ dξ̄ ∧ dζ̄

= K

∫
F
| f (z)|2(Im z) j

(
Im ω(z)

)m
dz ∧ dz̄,

where K is a nonzero constant. Thus the integral
∫

F Θ ∧ Θ̄ is a nonzero constant multiple
of the Petersson inner product 〈 f , f 〉 described in Proposition 2.1 in [8]; hence it is finite if
and only if f satisfies the cusp condition, and the proof of the theorem is complete.

Remark 3.2 Theorem 3.1 is an extension of the results of [2, Theorem 1.2] and [6, Theo-
rem 3.2], where mixed cusp forms of types (2, 1) and (2,m), respectively, were considered
(see also [2, Theorem 1.6]).

4 Generalized Mellin Transforms

In this section, we define an L-function given by a generalized Mellin transform of a mixed
cusp form and prove that it satisfies a certain functional equation. Given any positive inte-
ger N , we set

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣ c ≡ 0(mod N)

}
,

νN =

(
0 −1/

√
N√

N 0

)
=

1
√

N

(
0 −1
N 0

)
∈ SL(2,R).

Then we have ν2
N = −1 and ν−1

N Γ0(N)νN = Γ0(N); hence we can form a discrete subgroup

Γ∗0 (N) = Γ0(N) ∪ Γ0(N)νN

of SL(2,R) (see [13, p. 27]).
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270 Mellin Transforms of Mixed Cusp Forms

Let Γ be a discrete subgroup of SL(2,R) that contains Γ∗0 (N), χ : Γ → SL(2,R) a ho-
momorphism, and ω : H → H a holomorphic map satisfying ω(gz) = χ(g)ω(z) for all
g ∈ Γ and z ∈ H as in Section 2. We assume that χ(νN ) = νNχ for some positive integer
Nχ. Thus, in particular, we can choose ω such that it satisfies

ω

(
−1

Nz

)
= ω(νN z) = χ(νN )ω(z) = νNχω(z) =

−1

Nχω(z)
(4.1)

for all z ∈ H. Given any holomorphic function f : H→ C, we set

f | [νN ]2k,m(z) = f (νN z) j(νN , z)−2k j
(
χ(νN ), ω(z)

)−m

for z ∈ H. Thus, using (4.3), we obtain

f | [νN ]2k,m(z) = f
(
−1/(Nz)

)
(
√

Nz)−2k
(√

Nχω(z)
)−m
.

In particular, we have

f | [νN ]2k,m(i y) = N−kN−m/2
χ f

(
i/(N y)

)
(i y)−2k

(
ω(i y)

)−m
(4.2)

for positive real numbers y.
Now we define the L-function L2k,m

ω,χ (s, f ) of a mixed cusp form f of type (2k,m) associ-
ated to Γ, ω and χ by

L2k,m
ω,χ (s, f ) =

∫ ∞
0

f (i y)ω(i y)s−k yk−1 dy.(4.3)

Remark 4.1 If k = 1 in (4.3), the integral defining L2,m
ω,χ becomes

∫ ∞
0

f (i y)ω(i y)s−1 dy,

where f is a mixed cusp form of type (2,m). Certain properties of such an integral for
s = 1, . . . ,m + 1 were investigated in [7].

In order to discuss the convergence of the integral in (4.3), we assume that the image
curve ω({i y | y ≥ 0}) of the vertical line {i y | y ≥ 0} under ω joining ω(0) and ω(∞) is
analytic at the end points in the sense of [4, p. 58]. Since the image of a translation of the
form z 7→ z + b under χ is a translation w 7→ w + bχ for some bχ ∈ R, we have ω(∞) =∞,
and the analyticity at the end points implies that the curve ω({i y | y ≥ 0}) is contained in
a vertical strip of finite width.

Theorem 4.2 Let Γ be a discrete subgroup of SL(2,R) that containsΓ∗0 (N), and assume that
χ(νN ) = νNχ for some positive integer Nχ. If f is a mixed cusp form of type (2k,m) associated
to Γ, ω and χ, then the integral in (4.3) defining the L-function L2k,m

ω,χ (s, f ) converges for all
s ∈ C.
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Proof Let a = N−1/2, and set

I1 =

∫ a

0
f (i y)ω(i y)s−k yk−1 dy, I2 =

∫ ∞
a

f (i y)ω(i y)s−k yk−1 dy,(4.4)

so that the integral defining L2k,m
ω,χ (s, f ) can be written in the form

∫ ∞
0

f (i y)ω(i y)s−k yk−1 dy = I1 + I2.

By Proposition 2.4 a mixed cusp form f (z) in S2k,m(Γ, ω, χ) can be written as a linear
combination of functions of the form

f1(z) f2

(
ω(z)
)

for all z ∈ H, where f1 ∈ S2k(Γ) and f2 ∈ Sm(Γ ′). Thus we have the Fourier expansions

f1(z) =
∑
n≥1

ane2πinz/h, f2

(
ω(z)
)
=
∑
n≥1

a ′ne2πinω(z)/h ′

for some positive real numbers h and h ′, and hence we obtain the estimations

| f1(i y)| = O(e−2πy/h), | f2

(
ω(i y)

)
| = O(e−2π Im(ω(i y))/h ′)

for y → ∞. On the other hand, since ω(i y) is contained in a vertical strip of finite width,
there is a real number B > 0 such that

|Re
(
ω(i y)

)
| ≤ B

for all y ≥ 0. Thus it follows that the integral I2 converges for each s ∈ C. As for the integral
I1, using the change of variable y 7→ 1/(N y), we obtain

I1 =

∫ a

∞
f

(
i

N y

)
ω

(
i

N y

)s−k( 1

N y

)k−1(
−1

N y2

)
dy.

On the other hand, using (4.1) and (4.2), we have

ω

(
i

N y

)
= ω

(
−1

N(i y)

)
=

−1

Nχω(i y)

and

f

(
i

N y

)
= NkNm/2

χ (i y)2kω(i y)m
(

f | [νN ]2k,m(i y)
)
.

Hence we see that

I1 =

∫ a

∞
NkNm/2

χ (i y)2kω(i y)m
(

f | [νN ]2k,m(i y)
)(
−Nχω(i y)

)−s+k
(N y)1−k(−N−1 y−2) dy

= (−1)sNm/2+k−s
χ

∫ ∞
a

(
f | [νN ]2k,m(i y)

)
ω(i y)(m+2k−s)−k yk−1 dy.

(4.5)

Now, using the argument similar to the one for the case of I2 above, we see that I1 also
converges.
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Remark 4.3 If ω is the identity map, then the integral in (4.3) is the usual Mellin trans-
form given in (1.1) of the function f up to a multiple depending on s. Thus it can be
considered as a generalized Mellin transform of f , and the function L2k,m

ω,χ (s, f ) is essentially
a generalization of the usual Dirichlet series of a classical cusp form described in Section 1
(see [12], [13]).

Theorem 4.4 Let Γ and Nχ be as in Theorem 4.2, and let f be a mixed cusp form of type
(2k,m) associated to Γ, ω and χ. Then the L-function L2k,m

ω,χ (s, f ) of f satisfies the functional
equation

L2k,m
ω,χ (s, f ) = (−1)sNm/2+k−s

χ L2k,m
ω,χ

(
2k + m− s, f | [νN ]2k,m

)
.(4.6)

Proof Let a = N−1/2, and let I1, I2 be as in (4.4). Then we have

L2k,m
ω,χ (s, f ) = I1 + I2,

and by (4.5) we obtain

I1 = (−1)sNm/2+k−s
χ

∫ ∞
a

(
f | [νN ]2k,m(i y)

)
ω(i y)(m+2k−s)−k yk−1 dy.

On the other hand, using the change of variable y 7→ 1/(N y) for a ≤ y <∞ and comput-
ing in a way similar to the case of I1 in the proof of Theorem 4.2, we have

I2 = (−1)sNm/2+k−s
χ

∫ a

0

(
f | [νN ]2k,m(i y)

)
ω(i y)(m+2k−s)−k yk−1 dy.

Hence it follows that

L2k,m
ω,χ (s, f ) = (−1)sNm/2+k−s

χ

∫ ∞
0

(
f | [νN ]2k,m(i y)

)
ω(i y)(m+2k−s)−k yk−1 dy

= (−1)sNm/2+k−s
χ L2k,m

ω,χ

(
2k + m− s, f | [νN ]2k,m

)
,

and the proof of the relation (4.6) is complete.
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[8] , Mixed cusp forms and Poincaré series. Rocky Mountain J. Math. 23(1993), 1009–1022.
[9] , Mixed Siegel modular forms and Kuga fiber varieties. Illinois J. Math. 38(1994), 692–700.
[10] , Mixed automorphic forms on semisimple Lie groups. Illinois J. Math. 40(1996), 464–478.
[11] , Mixed automorphic vector bundles on Shimura varieties. Pacific J. Math. 173(1996), 105–126.

https://doi.org/10.4153/CMB-1999-032-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-032-3


Youngju Choie and Min Ho Lee 273

[12] T. Miyake, Modular forms. Springer-Verlag, Heidelberg, 1989.
[13] G. Shimura, Introduction to the arithmetic theory automorphic functions. Princeton Univ. Press, Princeton,

1971.
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