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The fundamental mechanisms of a hitherto unstudied approach to control the
crossflow-induced transition in a three-dimensional boundary layer employing
unsteady control vortices are investigated by means of direct numerical simulations.
Using a spanwise row of blowing/suction or volume-force actuators, subcritical
travelling crossflow vortex modes are excited to impose a stabilizing (upstream)
flow deformation (UFD). Volume forcing mimics the effects of alternating current
plasma actuators driven by a low-frequency sinusoidal signal. In this case the axes
of the actuators are aligned with the wave crests of the desired travelling mode
to maximize receptivity and abate the influence of other unwanted, misaligned
modes. The resulting travelling crossflow vortices generate a beneficial mean-flow
distortion reducing the amplification rate of naturally occurring steady or unsteady
crossflow modes without invoking significant secondary instabilities. It is found that
the stabilizing effect achieved by travelling control modes is somewhat weaker than
that achieved by the steady modes in the classical UFD method. However, the energy
requirements for unsteady-UFD plasma actuators would be significantly lower than
for steady UFD because the approach makes full use of the inherent unsteadiness of
the plasma-induced volume force with alternating-current-driven actuators. Also, the
input control amplitude can be lower since unsteady crossflow vortex modes grow
stronger in the flow.

Key words: boundary layer control, drag reduction, transition to turbulence

1. Introduction
Increasing energy efficiency by reducing aerodynamic drag is a challenging task for

the design and manufacture of future aircraft, wind turbines and turbomachinery. An
approach to enhance the aerodynamic efficiency is to extend the regions of laminar
boundary-layer flow on the aerodynamic surfaces (laminar flow control) to reduce the
skin-friction drag.

On swept aircraft wings and turbomachinery/wind-turbine blades a three-dimensional
boundary-layer flow develops due to the chordwise acceleration/deceleration of the
flow. Inside the boundary layer a crossflow (CF) velocity component perpendicular
to the local potential-flow direction arises. The CF velocity profile is inflectional,
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causing an inviscid instability and as a consequence exponential amplification of both
steady and travelling CF-vortex modes. At low free-stream turbulence conditions as
in free flight, steady CF vortices are most efficiently forced by surface roughness
and prevail in the linear and nonlinear stages of transition. The amplification rates of
travelling modes are higher than those of steady modes, and travelling CF vortices
dominate in environments with non-negligible free-stream turbulence conditions, for
example in turbomachinery and wind-turbine applications or in cases with other
unsteady excitation. Steady or travelling CF vortices generate localized high-shear
layers and trigger a (co-running) strong secondary instability, causing rapid transition
to turbulence. For details of CF-vortex-induced transition, see e.g. Bippes (1999),
Wassermann & Kloker (2002), Saric, Reed & White (2003), Wassermann & Kloker
(2003), Downs & White (2013), Li et al. (2014), Serpieri & Kotsonis (2016) or
Borodulin, Ivanov & Kachanov (2017).

In laminar flow control, a significant delay of transition can be achieved by
a reduction of the basic CF velocity using slot-panel or hole-panel suction systems.
Detailed overviews of experiments and flight campaigns are given by Joslin (1998a,b);
see Messing & Kloker (2010) for a summary. Saric, Carrillo & Reibert (1998)
proposed another method using distributed roughness elements. A spanwise row of
regularly distributed roughness elements is employed to excite steady ‘subcritical’
CF-vortex modes that are spaced more narrowly than the integrally most amplified
mode. Without causing significant secondary instability, the resulting steady, narrowly
spaced CF vortices induce a beneficial mean-flow distortion and hinder the growth of
the naturally most amplified modes. Hence, transition to turbulence is delayed. The
applicability of the technique to control transition induced by complex disturbance
fields that include both steady and travelling primary disturbances was shown
by Hosseini et al. (2013). The same concept, however named upstream flow
deformation (UFD) and not necessarily based on roughness elements, was proposed
by Wassermann & Kloker (2002) using direct numerical simulations (DNS). Their
detailed analysis showed that the three-dimensional part of the control vortices
weakens mainly the receptivity, whereas the mean-flow distortion reduces the growth
rate of amplified modes. Recently, this approach was implemented in an experiment
by Lohse, Barth & Nitsche (2016) employing pneumatic actuators with either weak
steady suction or blowing. Further experimental investigations were performed by
Borodulin et al. (2016) using complementary excitation of an acoustic field in
addition to distributed roughness elements and by Ivanov, Mischenko & Ustinov
(2018) using rows of oblique surface non-uniformities.

Interest in the application of plasma actuators for laminar flow control emerged in
the last decade. The alternating-current dielectric-barrier-discharge plasma actuator
is the most frequently used actuator type. Operated in a quasi-steady fashion
without modulation of the high-frequency driving, it generates a steady volume
force that locally accelerates the surrounding fluid, whereas unsteady operation
with driving-frequency modulation can excite (anti-phased) control disturbances of
appropriate frequency. Further details of the actuators’ working principle and ongoing
research are provided in recent overview articles, see e.g. Benard & Moreau (2014),
Kotsonis (2015) and Kriegseis, Simon & Grundmann (2016). Most of the works on
laminar flow control focused on two-dimensional, spanwise symmetric boundary-layer
flows. Various control approaches were applied, such as (i) the stabilization of the
(longitudinal) velocity profile, see e.g. Grundmann & Tropea (2007), Riherd & Roy
(2013), Dörr & Kloker (2015a), (ii) the active cancellation of Tollmien–Schlichting
waves, see e.g. Grundmann & Tropea (2008), Kotsonis et al. (2013), (iii) the damping
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of boundary-layer streaks, see Hanson et al. (2014), Riherd & Roy (2014), or (iv)
the spanwise modulation of the flow field, see Barckmann, Tropea & Grundmann
(2015), Dörr & Kloker (2018).

Three-dimensional boundary-layer control using plasma actuators began more
recently. Schuele, Corke & Matlis (2013) and Serpieri, Yadala Venkata & Kotsonis
(2017) excited ‘subcritical’ CF-vortex control modes by a spanwise row of plasma
actuators in experiments; however, no conclusive transition delay has been reported so
far with three-dimensional actuators. Note that the dielectric-barrier-discharge plasma
actuators used seem to cause an unsteady low-frequency component in the flow, even
if the driving frequency has been chosen high enough to lie outside the primarily
amplified frequency range (cf. Serpieri et al. 2017). A low-frequency component is
negligible for Tollmien–Schlichting instability but not for CF instability. Applying
DNS, successful delay of transition induced by steady CF vortices employing the
UFD technique was achieved by Dörr & Kloker (2017) using ‘classical’ plasma
actuators; Shahriari, Kollert & Hanifi (2018) investigated ring-type plasma actuators
based on the work by Choi & Kim (2018). Note that both DNS studies were
based on steady volume-force models. Similar to the application of homogeneous
suction, Dörr & Kloker (2015b) and Chernyshev et al. (2016) numerically investigated
plasma actuators to stabilize a three-dimensional boundary-layer flow by base-flow
manipulation: the plasma actuators are then used to reduce the basic CF velocity
and hence the growth of both steady and unsteady primary CF instabilities. Recently,
Yadala et al. (2018) showed the success of this approach employing two-dimensional
plasma actuators in experiments. Akin to the pinpoint-suction concept (Friederich
& Kloker 2012), Dörr & Kloker (2016) demonstrated that three-dimensional plasma
actuators can be used to directly attenuate nonlinear steady CF vortices. Positioning
the actuators at selected spanwise positions to weaken oncoming vortices and thus
the connected secondary instability, transition to turbulence is delayed; see also the
work of Wang, Wang & Fu (2017) who followed up the investigations by Dörr &
Kloker (2016).

In the current work the potential of plasma actuators operated unsteadily at low
frequency is investigated to control the CF-induced transition. Travelling CF-vortex
modes have not been considered so far as subcritical control modes for UFD, and here
the physical mechanisms of this approach are scrutinized. Effects of single travelling
control modes, excited by blowing/suction, on the flow instabilities are investigated
at first. Based on the findings from this fundamental study, an effective configuration
using plasma-actuator volume forcing is designed to control transition induced by both
steady or travelling CF vortices. The investigated base flow resembles the redesigned
DLR-Göttingen swept flat-plate experiment, a model flow for the three-dimensional
boundary-layer flow as it develops in the front region on the upper side of a swept
wing; see Lohse et al. (2016) and Barth, Hein & Rosemann (2017) for further details
of the set-up of the base flow.

The paper is structured as follows: § 2 describes the numerical set-up. Base-flow
characteristics and reference cases are presented in § 3. In § 4, the UFD method using
travelling control modes is discussed in detail.

2. Numerical set-up
2.1. Basic set-up

The DNS are performed with our compressible, high-order, finite-difference code
NS3D; see e.g. Dörr & Kloker (2015b) for details. The vector u= [u, v,w]T denotes
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FIGURE 1. (Colour online) Integration domain and coordinate systems.

the velocity components in the chordwise, wall-normal and spanwise directions x,
y and z, respectively. Velocities and length scales are normalized by the chordwise
reference velocity Ū∞ and the reference length L̄, respectively, with the overbar
denoting dimensional values; further, the reference density is ρ̄∞ and the reference
temperature T̄∞. In the experiments the Mach number based on the chordwise
free-stream velocity Ū∞,exp = 22.66 m s−1 is Ma∞,exp = 0.066. The reference length
is defined as L̄exp = 0.1 m. For the simulations a computationally non-prohibitive
Mach number Ma∞ = 0.2 is chosen, keeping the ambient conditions and the
Reynolds number range identical. The reference values in the simulations are then
Ū∞ = 68.871 m s−1, L̄ = 0.033 m, ρ̄∞ = 1.181 kg m−3 and T̄∞ = T̄wall = 295.0 K.
For details of the base-flow generation for the DNS, see Dörr & Kloker (2017); note
that the reference length L̄exp is not the length of the plate L̄plate,exp = 0.6 m in the
experiments.

A rectangular integration domain with a block-structured Cartesian grid is
considered for the simulations (see figure 1). The inflow and outflow are treated
with characteristic boundary conditions. In addition, sponge layers based on a
volume-forcing term and a spatial compact tenth-order low-pass filter are employed to
further minimize disturbances. To allow mass flow through the free-stream boundary
for the simulations including the plasma actuators, the conditions there are as
follows: the base-flow values for ρ and T are kept and du/dy|e = dw/dy|e = 0
allows ue and we to adapt, where the subscript e denotes the values at the upper
boundary of the domain; in addition, ve is calculated according to dv/dy|e =
−(d(ρeue)/dx+ d(ρewe)/dz)/ρe, assuming dρ/dy|e = 0. For more details, see Dörr &
Kloker (2016). At the lateral boundaries periodicity conditions are prescribed. The
fundamental spanwise wavelength is λz,0 = 0.180, corresponding to the fundamental
spanwise wavenumber γ0 = 2π/λz,0 = 35.0. Explicit finite differences of eighth
order are used for the discretization in the x-direction and y-direction, and a
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FIGURE 2. (Colour online) (a) Schematic of plasma actuator and planar volume-force
distribution. (b) Angle βPA for rotation about the wall-normal axis y; see Dörr & Kloker
(2017).

Fourier spectral ansatz is used for the z-direction. In the chordwise direction x,
an equally spaced grid with 2604 points is used, covering 0.173 6 x 6 4.078, with
1x= 1.5× 10−3. In the wall-normal direction y, a stretched grid with 152 points is
employed, 0.000 6 y 6 0.121, with 1ywall = 1.251 × 10−4 and 1ymax = 2.135 × 10−3.
The fundamental spanwise wavelength λz,0 is discretized with 64 points (K = 21
de-aliased Fourier modes), yielding 1z = 2.805 × 10−3. An explicit fourth-order
Runge–Kutta scheme is employed for the time integration. The fundamental angular
frequency is ω0 = 6.0, and the time step is 1t= 8.727× 10−6.

A disturbance strip at the wall with synthetic blowing and suction, centred at
x = 0.800, 0.766 6 x 6 0.835, and alternating in spanwise direction z, is employed
to excite the primary CF vortex disturbances (0, 2) or (1, +2); the double-spectral
notation (hω0, kγ0) is used. To initiate controlled laminar breakdown, two additional
disturbance strips are positioned farther downstream to excite pulse-like (background)
disturbances (h,±1), with h= 1–50. The disturbances are forced near x= 1.0, x= 2.0
and x= 2.5 with a strip extension of 0.045, respectively. Note that the modes |k|> 2
are nonlinearly generated at once by the primary modes.

2.2. Modelling of the plasma actuator
Based on the empirical model given by Maden et al. (2013), a non-dimensional wall-
parallel volume-force distribution f (x, y) in the plane perpendicular to the electrode
axis is prescribed. The three-dimensional distribution of the volume force f (x, y, z)
produced by a plasma actuator with electrode length lPA is then modelled by extrusion
of f (x, y) along the electrode axis, as sketched in figure 2. At the lateral edges a fifth-
order polynomial is imposed over a range of 10 % of the electrode length to smooth
the changeover from zero to maximum forcing. The angle βPA defines the clockwise
rotation of the actuator about the wall-normal axis through (xPA, zPA). According to
previous investigations by Dörr & Kloker (2015b) and Dörr & Kloker (2016), the
effect of the wall-normal force component is negligible.

Based on the alternating-current operation of plasma actuators, an unsteady volume
force with alternating direction (push and pull events with non-zero time mean) is
inherently induced. If the frequency of the operating voltage is set clearly above the
unstable frequency range of the boundary layer, the high-frequency unsteadiness can
be neglected, and only the steady mean force resulting from the asymmetric push
and pull events has to be taken into consideration. In the present study, in contrast,
we simulate plasma actuators with low-frequency operation and make full use of the
unsteady nature for the excitation of unsteady CF-vortex modes, resembling the direct-
frequency mode for active wave cancellation investigated by Kurz et al. (2012). To
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FIGURE 3. (Colour online) (a) Base-flow parameters in the streamline-oriented coordinate
system (the xs-direction points in the local potential-flow direction; see figure 1). Reynolds
number Reδ1,s is given on the right ordinate. (b) Spatial chordwise amplification rates αi

(coloured), wave-vector angle φα (spanned by the x-axis and the wave vector (αr, 0, γ )T,
dotted white lines) and n-factors (solid black lines) of unstable steady CF-instability
modes. Spatial chordwise amplification rate αi = d(ln A)/dx, where A is the disturbance
amplitude.

xPA lPA zPA βPA ωPA cs cu max{ f̄ } cµ,Lexp cµ,θs

0.50 0.4 0.00 0.06 0.12 143.0◦ 3.0 0.04 0.3 0.57 kN m−3 4.1× 10−6 3.5× 10−3

TABLE 1. Plasma-actuator volume-force parameters for the simulations presented;
f̄ = f (ρ̄∞Ū2

∞/L̄)= f (ρ̄2
∞Ū3

∞/Reµ̄∞), max{ f̄ } =max{[ f̄ 2
x + f̄ 2

z ]1/2}.

mimic the resulting unsteady volume force, f (x, y, z) is multiplied by a sinusoidal
modulating factor

Z(t)= cs + cu sin(ωPAt+ φPA), (2.1)

with angular frequency ωPA and phase φPA, yielding f (x, y, z, t) = f (x, y, z)Z(t). The
parameters cs and cu denote the amplitude of the steady and the unsteady component,
respectively. In fact, the unsteady fluctuating part can be up to about ten times the
steady mean value. See e.g. Benard & Moreau (2014) for further details about the
unsteady aspects of the plasma actuation.

The actuator parameters for the current investigations are provided in table 1.
To give additional information on the actuation strength, the maximal actuation
momentum coefficient cµ,Lexp based on the reference length L̄exp is calculated using
equations (3) and (4) in Dörr & Kloker (2016); cµ,θs based on the local momentum
thickness θ̄s in the streamline-oriented system is calculated as cµ,θs = cµ,Lexp L̄exp/θ̄s.
For further details of the volume-force model and a discussion on its limitations, see
Dörr & Kloker (2016) and Dörr & Kloker (2015a).

3. Base-flow characteristics and reference cases
3.1. Base-flow characteristics

Figure 3(a) shows the evolution of boundary-layer parameters. Note that the subscript
s denotes the variables in the streamline-oriented coordinate system. The flow is
strongly accelerated near the leading edge, with weak but continuous flow acceleration
over the whole length of the plate. The local angle of the external streamline φe
varies from 70.0◦ to 45.2◦. The Reynolds number Reδ1,s based on the streamwise
displacement thickness rises from 263 to 1180 and the shape factor H12,s is about 2.45.
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FIGURE 5. (Colour online) Spatial chordwise amplification rates αi (coloured) at (a) x=
1.0 and (b) x = 2.0 of unstable CF-instability modes as function of the spanwise wave
number γ and the angular frequency ω.

The stability properties with respect to the steady modes and low-frequency unsteady
modes with ω = 3 and ω = 6 resulting from linear stability analysis are shown in
figures 3(b) and 4, respectively. The investigated primary modes (0, 2) and (1, +2)
with γ = 70 are the integrally most amplified steady and unsteady modes, respectively.
A higher n-factor, n= ∫ x

x0
−αi dx, is found for the unsteady mode (1,+2), travelling

against the CF, i.e. travelling rightwards if looking downstream on a yz-plane.
For a successful UFD, the control CF vortices have to be (i) narrowly spaced

so that they possibly saturate with lower amplitude without invoking significant
secondary instability and (ii) strongly amplified at first so that they can dominate the
primary state and generate a beneficial mean-flow distortion. Among the candidates,
the narrowly spaced, rightward-travelling CF-vortex modes (0.5,+3) and (1,+3) are
strongly amplified in the leading-edge region but damped for x > 2.9 and x > 2.4,
respectively. The leftward-travelling modes (0.5,−3) and (1,−3) are amplified over
a longer distance but their maximal amplification rates are distinctly lower. For an
overview of the stability properties of the CF-vortex modes with higher frequencies,
the dependence of the spatial amplification rate αi on γ and ω at two chordwise
positions is shown in figure 5. The rightward-travelling modes are generally more
unstable. At x = 1.0 the highest amplification is found for ω ≈ 12 and γ ≈ 80.
Farther downstream at x = 2.0, the unstable wavenumber range shrinks stronger
with increasing frequency. As also proven by preliminary investigations using DNS,
the CF-vortex modes with higher frequencies are amplified only in a short region
and strongly damped downstream. Hence, the mean-flow distortion generated is
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FIGURE 6. (Colour online) Downstream development of modal ũ′s,(h,k) and ũ′s,(h) amplitudes
for (a) case REF-S and (b) case REF-U from Fourier analysis (maximum over y or y and
z, 6 6ω6 180, 1ω= 6).

Case Control actuator Designed control mode Test mode Background pulses

REF-S — — (0, 2), x= 0.8 x= 2.0, 2.5
REF-U — — (1,+2), x= 0.8 x= 2.0, 2.5
BS-UFD-R Blowing/suction (0.5,+3), x= 0.5 — x= 1.0, 2.0
BS-UFD-L Blowing/suction (0.5,−3), x= 0.5 — x= 1.0, 2.0
PA-UFD Volume forcing (0.5,+3), x= 0.5 — x= 1.0, 2.0
PA-UFD-S Volume forcing (0.5,+3), x= 0.5 (0, 2), x= 0.8 x= 1.0, 2.0
PA-UFD-U Volume forcing (0.5,+3), x= 0.5 (1,+2), x= 0.8 x= 1.0, 2.0

TABLE 2. Definition of investigated cases.

not sufficient to effectively stabilize the flow. Further findings of our preliminary
investigations of the influence of γ and ω are summarized at the end of § 4.1.

3.2. Reference cases
We provide two reference cases with a single steady or unsteady mode as primary
disturbance input, respectively. In both cases the plasma actuators are inactive.
Table 2 summarizes the disturbance inputs for the various cases presented in this
paper. For case REF-S the most amplified steady mode (0, 2) is excited by the
primary disturbance strip. In figure 6, the modal amplitude development of the
streamline-oriented disturbance velocity component ũ′s = u′s/uB,s,e = (us − uB,s)/uB,s,e is
shown. The amplitude of the mode (0, 2) surpasses 10 % of uB,s,e at x ≈ 2.2 while
the amplification rate progressively decreases proceeding further into the saturation
state. Convective secondary instability is triggered by the large-amplitude CF vortices
for x > 2.5. The strong secondary growth of the high-frequency mode ω = 90 is
followed by further amplification of higher-frequency unsteady components, leading
to the transition to turbulence. Figure 7(a) shows the vortical structures in the rotated
reference system (

xr
zr

)
=
(

cosΦr sinΦr
−sinΦr cosΦr

)(
x− x0
z− z0

)
, (3.1)
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FIGURE 7. (Colour online) Vortex visualization (snapshots, λ2 = −4, colour indicates y)
for case REF-S at t/T0 = 18 (a) and case REF-U at t/T0 = 17.25 (b), 17.5 (c), 17.75 (d)
and 18 (e). The rotated reference system according to (3.1) is used. Note the compression
of the xr-axis (zr : xr = 2 : 1).

with x0 = 0.4, z0 = 0 and Φ = 45◦. In the physical space, steady CF vortices
corresponding to the mode (0,2) appear, with axes nearly parallel to the potential-flow
streamlines. The finger-like high-frequency secondary structures emerge on the main
CF vortices and convect downstream, finally developing into turbulence spots.

In case REF-U the most amplified unsteady mode (1, +2) is excited as primary
disturbance. The forcing amplitude of the primary disturbance strip is chosen such that
the amplitude of the primary mode (1,+2) reaches the same level at x= 2.2 as that
of mode (0, 2) in REF-S; see figure 6(b). In accordance with results of linear stability
analysis, the amplification of the unsteady mode (1,+2) is significantly stronger, i.e.
only a smaller initial amplitude of the mode (1, +2) is required; (1, +2) saturates
earlier than (0, 2) in REF-S and triggers somewhat stronger secondary instability at
about the same x-position. The background disturbances rise explosively downstream
of their forcing, leading to rapid transition. In figure 7(b–e), snapshots of the vortical
structures at four time instances within a fundamental period T0 are presented. The CF
vortices are travelling in positive spanwise and xr direction. The finger-like structures
emerge on the main CF vortices and ride along them.

4. Investigations of control

The inherent unsteady force production of plasma actuators provides good
opportunities for exciting narrowly spaced travelling CF-vortex modes as UFD control
modes. However, whereas a comprehensive fundamental study of the mechanism
of the steady UFD technique has already been conducted by Wassermann &
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FIGURE 8. (Colour online) Like figure 6 but for (a) case BS-UFD-R and (b) case BS-
UFD-L.

Kloker (2002), the potential of the narrowly spaced, travelling CF-vortex modes
as UFD control modes has not been clarified so far. In § 4.1 we first investigate
the modification of the flow field by single travelling CF-vortex modes as UFD
modes, excited by blowing/suction, and the resulting stability properties of the
two-dimensional mean flow. Secondly, unsteady volume-force actuators are set
based on the findings of this fundamental study. The flow deformation by unsteady
volume forcing and its ability to delay the transition are discussed in §§ 4.2 and 4.3,
respectively.

4.1. Single travelling UFD modes excited by blowing/suction
In cases BS-UFD-R and BS-UFD-L, the actuator row for UFD is set at x = 0.5
by an additional blowing/suction strip extending over 0.481 6 x 6 0.520, exciting
the single control mode (0.5, +3) or (0.5, −3), respectively. The amplitude of the
blowing/suction is kept identical for both cases. To clarify the pure effect of the
travelling UFD modes, the strip for primary (‘test-mode’) disturbance input at x= 0.8
is deactivated. For indication of secondary instabilities that might possibly arise
farther upstream, (background) pulsing at x= 1.0 and x= 2.0 is introduced for both
cases.

4.1.1. Development of disturbance amplitudes
In case BS-UFD-R the rightward-travelling mode (0.5,+3) saturates at x≈ 1.6 with

an amplitude level of 21 %; see figure 8(a). Upstream of the secondary pulsing, the
superharmonics of (0.5,+3) are represented by the lower-frequency curves resulting
from the t-modal decomposition. In addition, a strong mean-flow distortion (0, 0) is
nonlinearly generated. According to linear stability analysis, the mode (0.5, +3) is
damped only downstream of x ≈ 2.9. However, due to the stabilizing effect of the
mean-flow distortion (0, 0) as discussed in § 4.1.3, the damping of (0.5,+3) occurs
earlier. It decays monotonically to an amplitude level of 0.3 % at the end of the
considered domain, whereas the mean-flow distortion (0, 0) is more persistent. Unlike
the reference cases REF-S and REF-U, no strong, persistent secondary instability
is triggered. At the end of the domain all unsteady modes fall far below 1 %. In
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FIGURE 9. (Colour online) Downstream development of modal ũ′s,m(l) amplitudes in
moving systems for (a) case BS-UFD-R and (b) case BS-UFD-L from Fourier analysis
(maximum over y and z, ωm = 0 and 5 6 ωm 6 179, 1ωm = 6). (c) Illustration of the
connection between the (t–z)-modal decomposition in the fixed system and the t-modal
decomposition in the Galilean-transformed system moving with the mode (0.5,+3) (left)
and (0.5,−3) (right), respectively. The frequency factor in the moving system is denoted
by l instead of h with ωm = lω0.

case BS-UFD-L, as shown in figure 8(b), the leftward-travelling mode (0.5, −3) is
amplified more weakly than (0.5,+3) and attains saturation with an amplitude of 25 %
at x ≈ 2.0, farther downstream than (0.5, +3). Nevertheless, the maximal amplitude
of the nonlinearly generated mean-flow distortion (0, 0) is significantly lower than in
case BS-UFD-R. Farther downstream, a significant growth of all unsteady disturbance
components is observed. Since both the superharmonics of the unsteady primary
mode and the secondarily unstable modes may contribute to this growth, secondary
instabilities cannot be clearly identified.

In order to unambiguously clarify the secondary instabilities triggered, we analyse
the amplitude development referring to a Galilean-transformed system (x, y, zm), see
Wassermann & Kloker (2003), zm = z − c(0.5,±3)t, where c(0.5,±3) = ±0.5ω0/(3γ0) is
the spanwise phase velocity of the primary mode (0.5, ±3). With respect to the
transformed moving system, the primary state becomes steady. The modal component
ωm= 0 consists of a spanwise mean (0, 0) and a purely three-dimensional component
(ωm=0)− (0,0) that can be recomposed by the primary mode and its superharmonics;
see figure 9(c). Furthermore, other (t–z)-modal components belonging to the same
secondary instability mode carried by the primary wave, i.e. on the same diagonal
as sketched in figure 9(c), are recombined. The secondary-instability behaviour is
directly indicated by the modal components ωm 6= 0.

For case BS-UFD-R (figure 9a), secondary instabilities are observed in a short
region downstream of the pulsing at x = 1.0. The leading mode ωm = 89 reaches
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an amplitude of 0.4 % at x = 2.1 and becomes virtually stable farther downstream.
For 2.0 < x < 3.0 a distinct secondary growth is found for the modes with higher
frequencies. At the end of the domain, the three-dimensional flow deformation
dies out, and almost all unsteady components are stable. Within the considered
domain, none of the secondary instability modes exceeds an amplitude of 0.5 %.
For case BS-UFD-L (figure 9b), some low-frequency modes undergo a strong
amplification. Farther downstream, the leading mode with ωm= 17 becomes nonlinear,
significantly alters the primary state downstream and possibly drives the filling
up of the perturbation spectrum. Compared to the rightward-travelling UFD mode
(0.5, +3) or the steady mode (0, 3), the mode (0.5, −3) seems more susceptible to
low-frequency secondary instability.

When examining the normalized modal u′r amplitude distribution in crosscuts in the
rotated moving system(

xr,m
zr,m

)
=
(

cosΦr sinΦr
−sinΦr cosΦr

)(
x− x0

z− c(0.5,±3)t− z0

)
, (4.1)

with x0 = 0.4, z0 = 0 and Φ = 45◦, the origin of the secondary instabilities becomes
transparent. For case BS-UFD-R at xr,m = 1.5 (x ≈ 1.4), as shown in figure 10(a), a
type-I or z-mode is found for ωm = 89 which attains the largest amplitude. Farther
downstream, this mode spreads upwards to the top region of the shear layer, likely
reflecting both z- and y-modes; see crosscut at xr,m = 3.0 (x ≈ 2.5) in figure 10(b).
The high-frequency component ωm = 149, being one of the most amplified secondary
instability modes at this position, reveals a typical amplitude distribution of a type-II
or y-mode; see figure 10(d). Once the three-dimensional deformation fades out, the
originally localized secondary modes are gradually smeared; see figure 10(c,e). In case
BS-UFD-L, the mode ωm= 17 is a typical type-III mode which is located in the near-
wall region at the updraft side of the main CF vortices (figure 10f,g). At xr,m=3.0, the
vortical structures in the near-wall region are strongly modified, leading to an increase
of the complexity of the shear layers.

4.1.2. Vortical structures
The snapshots of the vortical structures arising in cases BS-UFD-R and BS-UFD-

L are shown in figures 11(a) and 11(b), respectively. In both cases, the main CF
vortices triggered by blowing and suction are spaced more narrowly than those arising
in cases REF-S and REF-U. We note the misalignment between the orientation of the
main vortices in both cases. In accordance with the modal amplitude development, the
primary CF vortices in case BS-UFD-R die out downstream of xr= 3.9 (x≈ 3.1). The
finger-like secondary structures, left over from the high-frequency type-I and type-II
modes upstream, are distorted, and stretched in the spanwise direction. Unlike the
turbulent spots appearing in the reference cases, these structures are situated farther
away from the wall and cause no skin-friction increase (not shown). In case BS-
UFD-L, the main CF vortices are visible up to xr = 4.5 (x ≈ 3.5). Each main CF
vortex is accompanied by a counter-rotating CF vortex at the updraft side, which is
strongly modulated by the secondarily amplified modes downstream of the pulsing.
Since the secondary structures are mainly evolved from the low-frequency type-III
mode ωm = 17, their shapes are significantly different from the finger-like structures
arising on the top side of the main CF vortices in case BS-UFD-R. See Bonfigli &
Kloker (2007) for a detailed comparison between the vortical structures resulting from
different secondary instability modes.
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FIGURE 10. (Colour online) Crosscuts for (a–e) case BS-UFD-R and ( f,g) case BS-UFD-
L at various downstream positions in the rotated reference system moving spanwise with
the respective primary CF vortices. Dashed lines: λ2 isocontours (−12 to −2, ∆ = 2);
solid lines: ũr isocontours (0.05 to 0.95, ∆= 0.10); colour: normalized modal u′r amplitude
distribution.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.02
0.01y
0

5.0

0.5

0

0.1

0.2
1.0 1.5 2.0 2.5

xr

3.0 3.5 4.0 4.5 5.0

zr

0(a)

(b)

0.1

0.2

zr

FIGURE 11. (Colour online) Vortex visualization (snapshots, λ2=−2.5, colour indicates y)
for (a) case BS-UFD-R and (b) case BS-UFD-L at t/T0 = 18. Rotated (fixed) reference
system according to (3.1) is used. Note the compression of the xr-axis (zr : xr = 2 : 1).
Arrows indicate the travelling directions of the CF vortices.

4.1.3. Modification of mean-flow profiles and stability properties
For the classical UFD technique using a steady control mode it was demonstrated

that the growth attenuation of the primary modes is mainly based on the mean-flow
distortion (0, 0), which has a stabilizing effect similar to homogeneous suction; see
Wassermann & Kloker (2002). In order to verify whether the (0, 0) generated by
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FIGURE 12. Time- and spanwise-averaged (a) ũs,tzm and (b) w̃s,tzm profiles for case BS-
UFD-R in comparison to the corresponding base flow at various downstream positions (x=
0.8, 1.2, 1.8, 2.4, 3.0, 3.6 from left to right; the abscissa shift is 0.5 and 0.1, respectively).
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FIGURE 13. (Colour online) Spatial chordwise amplification rates αi of unstable CF-vortex
modes for case BS-UFD-R in comparison to the corresponding base-flow data (lines with
levels 0.0 to −4.2, ∆= 0.3). (a) Steady modes; the dashed lines mark the modes (0, 2)
(lower) and (0, 3) (upper). (b) Unsteady modes with ω = 6; the dashed lines mark the
modes (1,+2) (lower) and (1,+3) (upper).

unsteady control modes also has the same stabilizing effect, the streamwise and
crosswise velocity profiles are averaged in time and spanwise direction, and then
analysed in terms of the stability properties using linear stability calculations. Since
case BS-UFD-L shows transition to turbulence it is ruled out and in the following
we concentrate on case BS-UFD-R.

Figure 12 shows that the ũs,tzm profiles are S-shaped with increase in the near-wall
region and decrease farther away from the wall. The CF component w̃s,tzm is only
slightly reduced at x=1.2 and 1.8, and even increased farther downstream, questioning
a palpable stabilizing effect.

In figure 13, the stability diagrams for case BS-UFD-R are shown based on the
time-averaged flow and one-dimensional eigenfunction linear stability theory. Because
the wave vectors of the steady modes are nearly aligned with the zs-direction, the w̃s,tzm
profile plays a decisive role for the instability. In both Wassermann & Kloker (2002)
and Dörr & Kloker (2017), the stabilizing effect of the mean-flow distortion for steady
modes was explained as a consequence of the mean CF reduction. In fact, the possible
reduction of the maximum wall-normal gradient dw̃s,tzm/dy at the inflection point is a
cause for the attenuation of the inviscid instability. In figure 14(a) the wall-normal
gradients dw̃s,tzm/dy are shown at various x-positions.

The amplification of the unsteady modes with ω= 6 is more strongly reduced than
that of the steady modes. As the wave vectors of the unsteady modes are misaligned
with the zs-direction, the ũs,tzm profile comes into play. As shown by Gregory, Stuart &
Walker (1955), the stability properties of three-dimensional modes with a known wave-
vector orientation are linked to the velocity profile w̃eff ,tzm = w̃s,tzm cos φs + ũs,tzm sin φs,
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FIGURE 14. (a) Wall-normal gradient of w̃s,tzm for case BS-UFD-R in comparison to
the corresponding base flow at various downstream positions (x= 0.8, 1.2, 1.8, 2.4, 3.0,
3.6 from left to right; the abscissa shift is 20). (b) Deformation of the velocity profile
w̃eff ,tzm in the wave-vector direction of the travelling mode (1,+2) at x= 2.4 and (c) the
corresponding wall-normal gradients. Here w̃eff ,tzm = w̃s,tzm cos φs + ũs,tzm sin φs, where φs is
the angle between the wave vector and the zs-direction.

where φs is the angle between the wave vector and the zs-direction. In figure 14(b,c)
the deformation of the velocity profile w̃eff ,tzm regarding the mode (1,+2) at x= 2.4
and the corresponding wall-normal gradients are illustrated. Due to the S-formed ũs,tzm

profiles, the maximal gradient of w̃eff ,tzm is strongly reduced and the inflection point
is shifted distinctly closer to the wall. Hence, the unsteady mode (1, +2) is greatly
stabilized.

Note that based on the inflection point at the upper part of the ũs,tzm profiles arising
from the UFD, a strong amplification of streamwise-travelling Tollmien–Schlichting
waves is predicted by one-dimensional linear stability theory. However, they cannot be
observed in DNS results because their receptivity and growth are possibly significantly
attenuated due to the additional spanwise modulation by the UFD control mode.

In addition, various simulations were performed to examine the influence of the
frequency and the spanwise wavenumber of the UFD control mode. If the angular
frequency ω is increased from 3 to 6 or 9, both the leftward- and rightward-travelling
modes propagate faster in the spanwise direction. The shear layers induced inside
the boundary layer are more pronounced and the background disturbances are more
strongly amplified, counteracting the stabilizing effect of (0, 0). The unwanted
secondary amplification can be reduced by increasing the spanwise wavenumber of
the UFD mode. However, the CF vortices are then spaced closer so that they hinder
the vortical motion of each other and decay earlier. As a result, the nonlinearly
generated mean-flow distortion with frequency higher than ω = 3 is too weak to
stabilize the flow effectively.

4.2. Excitation of travelling UFD modes by unsteady volume forcing
Based on the results in § 4.1, the travelling mode (0.5,+3) is chosen as UFD control
mode since it causes no impeding secondary growth by itself. In the following,
three actuators per fundamental wavelength are located at x = 0.5, instead of the
blowing/suction strip for UFD as used in the former cases. For an optimal excitation
of the unsteady UFD mode, the most effective spatial distribution of the volume force
used by Dörr & Kloker (2017) for exciting steady CF-vortex modes is followed. The
force extends in the wall-normal direction nearly up to the boundary-layer edge. The
sinusoidal time signal Z(t) = 0.04 + 0.3 sin(3t) is used, i.e. the steady volume force
is modulated. Figure 15(a,b) shows the volume-force configuration in top view and
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FIGURE 15. (Colour online) (a) Plasma-actuator volume-force distribution for case
PA-UFD ( f10 % isosurfaces at the time of the maximal forcing, where f10 % = max{( f 2

x +
f 2
z )

1/2}/10 = 0.017; the colour indicates the wall-normal distance y). The dashed lines
show the local orientation of the wave fronts of the CF-vortex modes (0.5, +3) (blue)
and (0.5,−3) (red). (b) Crosscut along the dash-dotted line perpendicular to the electrode
axes shown in (a). The colour indicates f and the solid lines mark the f10 % isosurfaces
at the time of the maximal forcing. The inset shows the physical time signal within a
fundamental period. (c) Downstream development of modal ũ′s,(h,k) and ũ′s,(h) amplitudes
from Fourier analysis (maximum over y or y and z, 6 6 ω 6 180, 1ω = 6) for case
PA-UFD. The green rectangle indicates the chordwise position of the volume forcing.

in a crosscut. Analogous to the steady forcing, the steady mean of the volume force
cs f (x, y, z) excites steady CF-vortex modes. Meanwhile, the unsteady component
cu f (x, y, z) sin(ωPAt) imparts an oscillatory perturbation (push and pull events), which
excites pairs of leftward- and rightward-travelling waves with the same spanwise
wavenumber. Here, using a row of three actuators per fundamental wavelength,
operated with angular frequency ωPA = 3, a pair of travelling CF-vortex modes
(0.5, ±3) and a weak steady mode (0, 3) are simultaneously excited. Furthermore,
the orientation of the electrode axes of the plasma actuators has a significant effect
on the receptivity of each individual CF-vortex mode; see also Dörr & Kloker (2017),
case CMF. Employing actuators with sufficient length and aligned with the wave
front of the desired control mode, the initial amplitude of the corresponding mode
can be maximized and the formation of other misaligned modes can be hindered by
destructive interference. Therefore, the angle of the actuators, βPA, is adapted such
that the electrode axis is aligned with the axes of the travelling CF vortices arising
in case BS-UFD-R at x = 0.5 to ensure the best receptivity. For the most important
actuator parameters, see table 1. The actuators are equidistantly distributed in z with
identical volume-force set-up. The maximal momentum coefficient cµ,θs based on
the momentum thickness θs at x = 0.5 is 3.5 × 10−3, corresponding to 34 % of the
most efficient case ACF in Dörr & Kloker (2017). The time-averaged volume force
required for the unsteady UFD configuration is reduced to 4 % with respect to case
ACF.

To analyse the pure effect of the unsteady volume forcing, the primary disturbance
strip at x = 0.8 is inactive for case PA-UFD. Two secondary disturbance strips
at x = 1.0 and x = 2.0 are used to introduce unsteady (background) disturbances.
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FIGURE 16. (Colour online) Vortex visualization (snapshots, λ2 =−4, colour indicates y)
and the (active) volume-force set-up ( f10 % isosurface, dark) for case PA-UFD at t/T0 =
(a) 16.5, (b) 17, (c) 17.5 and (d) 18 in the rotated (fixed) reference system according
to (3.1). Note the compression of the xr-axis (zr : xr = 2 : 1). Here T0 = 2π/ω0 = 1.05,
ω0 = 6.

The modal amplitude development is shown in figure 15(c). As expected, the
modes (0.5, ±3) are simultaneously excited; however, the difference of their initial
amplitudes clearly reveals the receptivity discrepancy. The targeted rightward-travelling
mode (0.5, +3) dominates due to its higher receptivity and amplification rate. The
downstream development of (0.5, +3) and (0, 0) is qualitatively similar to that of
case BS-UFD-R. Also the behaviour of the secondary instability modes is virtually
identical. The initial amplitude of the steady mode (0, 3) is one order of magnitude
lower than that of the dominating mode (0.5, +3). The downstream growth of
both (0, 3) and (0.5, −3) is suppressed due to the stabilized mean flow. The weak
amplification of (0.5, −3) for x > 1.7 is most probably caused by a nonlinear
interaction: modes (0.5, +3) and (0, 3) lead to a contribution to (0.5, −3) for
example. Due to the low initial amplitude and growth rate, the leftward-travelling
mode plays however only a minor role. The interaction between the steady and
travelling modes seems not to be able to fill up the perturbation spectrum.

Figure 16(a–d) shows the vortical structures arising from the actuation at four
time instances within one full excitation cycle (ω = 3). The volume force attains
the maximum at t = 0.5T0. In the vicinity of the actuators, unsteady CF vortices
travelling in the positive z-direction are excited continuously. The vortex axes are
mainly parallel to the electrode axis of the actuators and hence aligned with the wave
front of the mode (0.5, +3). Downstream of the actuator row up to xr ≈ 2.5, the
vortical structures are quite similar to those in case BS-UFD-R due to the dominance
of (0.5, +3). Due to the growing steady mode (0, 2) superposed onto the travelling
mode, the main CF vortices break into isolated segments; see figure 16(a). Farther
downstream, the primary CF vortices disappear and only some secondary structures
far from the wall are visible.

The stability diagrams gained by the time- and spanwise-averaged mean flow are
shown in figure 17. Compared to case BS-UFD-R, the onset of the stabilizing effect

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

28
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.288


444 Z. Guo and M. J. Kloker

1 2
x

3 4

(a)

©

1 2
x

3 4

(b)
140

105

70

35
0

åi

-4.2 -3.0 -1.8 -0.6140

105

70

35

0

FIGURE 17. (Colour online) Spatial chordwise amplification rates αi of unstable CF-vortex
modes for case PA-UFD in comparison to the corresponding base-flow data (lines with
levels 0.0 to −4.2, ∆= 0.3). (a) Steady modes; the dashed lines mark the modes (0, 2)
(lower) and (0, 3) (upper). (b) Unsteady modes with ω = 6; the dashed lines mark the
modes (1,+2) (lower) and (1,+3) (upper).

occurs somewhat farther downstream due to the slightly lower initial amplitude of
the UFD mode (0.5,+3). Different from the steady actuation investigated by Dörr &
Kloker (2017), the unsteady volume force does not permanently counteract the CF.
Hence, a direct modification of the stability properties in the vicinity of the actuators
is not observed. Farther downstream, the stability properties basically coincide with
those for case BS-UFD-R. Additional simulations with higher actuation strength but
identical spatial force distribution (not shown) reveal enhanced stabilization for x< 1.7
but also higher amplitude level of the modes (0, 3) and (0.5,−3) downstream, which
possibly counteracts the UFD effect because of the stronger nonlinear interaction
between steady and unsteady modes. Therefore, the sensitivity of the unsteady
technique to detrimental ‘over’-actuation seems somewhat higher than that of the
steady approach.

4.3. Transition delay using travelling UFD modes excited by unsteady volume forcing
In cases PA-UFD-S and PA-UFD-U, the same volume-force actuation set-up as used
for case PA-UFD is now employed to cases REF-S and REF-U, respectively. As
shown in figures 18(a) and 19(a), for both cases, the downstream development of
the UFD modes (0.5, ±3) and (0, 3) and the mean-flow distortion (0, 0) agrees
exactly with that of case PA-UFD up to x ≈ 2.3. In case PA-UFD-S, the test mode
(0, 2) reaches an amplitude of 10 % only at x= 3.9, whereas this is at x= 2.2 in the
reference case REF-S. However, compared to the steady UFD approach investigated by
Dörr & Kloker (2017) for the identical base flow, the growth attenuation is somewhat
less effective. For x> 3.2, the low-frequency components of the perturbation spectrum
are filled up progressively due to the interaction between the actuation-induced modes
and the growing test mode (0,2) which attains a nonlinear amplitude. Compared to the
reference case REF-S, the strong growth of the high-frequency secondary instability
modes ω≈ 90 induced by the mode (0, 2) is distinctly attenuated, and the transition
does not occur in the considered domain. In case PA-UFD-U, the amplification of the
test mode (1,+2) is virtually completely suppressed, and consequently the secondary
instability.

In physical space, the vortical structures arising for case PA-UFD-S for xr < 2.5
are virtually identical to those appearing in case PA-UFD without test mode (not
shown). Farther downstream, as shown in figure 18(b,e), the oncoming CF vortices,
mainly associated with the dominating UFD mode (0.5,+3), are strongly detuned due
to the modulation by the nonlinear steady mode (0, 2). For xr > 3.5, a distinct CF
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FIGURE 18. (Colour online) (a) Downstream development of modal ũ′s,(h,k) and ũ′s,(h)
amplitudes from Fourier analysis (maximum over y or y and z, 6 6 ω 6 180, 1ω = 6)
for case PA-UFD-S. The green rectangle indicates the chordwise position of the volume
forcing. Open symbols denote the reference case. (b–e) Vortex visualization (snapshots,
λ2 =−4, colour indicates y) for case PA-UFD-S at t/T0 = (b) 16.5, (c) 17, (d) 17.5 and
(e) 18 in the rotated (fixed) reference system according to (3.1). Note the compression of
the xr-axis (zr : xr = 2 : 1).
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FIGURE 19. (Colour online) Like figure 18 but for case PA-UFD-U.

vortex A detaches from the oncoming CF vortex and keeps growing whereas other
primary structures fade out. Being supported by A, the complex secondary structures
in figure 18(c) at the end of the visualized region may finally evolve into turbulent
spots farther downstream. For case PA-UFD-U, as expected, the vortical structures are
identical to those of case PA-UFD due to the completely suppressed test mode; see
figure 19(b–e).

As for a combined steady/unsteady test-modes scenario the following holds. Once a
dominating mode becomes nonlinear (>5 %), the amplification of other primary modes
is suppressed; see Bonfigli & Kloker (1999). If both steady and unsteady modes reach
nonlinear amplitudes simultaneously, the transition is promoted by strong nonlinear
interaction. This complex scenario was investigated in detail by Bonfigli & Kloker
(2005). An additional simulation with the control actuator (case ‘PA-UFD-S+U’, not
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FIGURE 20. Downstream development of the (a,c) wall-normal gradient and (b,d)
chordwise direction integrated wall-normal gradient of the spanwise mean velocity
component in the direction of the oncoming flow at the wall. For the integration, the
maximum value over one fundamental period is used to account for a fully turbulent flow.

shown) reveals that also in this case the travelling mode (1,+2) is damped out by the
unsteady UFD and the resulting flow field is quite similar to that of case PA-UFD-S.

To quantify the reduction of the skin-friction drag achieved, the wall-normal
gradient of the mean velocity component in the direction of the oncoming flow at
the wall is calculated, which is proportional to the local skin-friction coefficient. The
mean velocity in the direction of the oncoming flow is denoted as u41◦ , where 41◦ is
the effective sweep angle of the plate. Results of the controlled cases are compared
with the corresponding steady or unsteady reference cases; see figures 20(a) and 20(c),
respectively. Due to the presence of the nonlinear UFD mode in the controlled cases,
the wall-normal gradient is increased in the upstream region. However, due to the
delayed transition, the sharp rise of the wall-normal gradient as found for case REF-S
at x ≈ 3.5 and for case REF-U at x ≈ 3.2 does not occur. The chordwise integrated
value at the end of the domain in both controlled cases is significantly lowered; see
figures 20(b) and 20(d), respectively.

5. Conclusions
An unsteady UFD technique to delay the CF-induced transition in a three-dimensional

swept-wing-type boundary layer has been investigated by DNS. Suction/blowing or
volume-force actuators have been employed, the latter mimicking alternating-current
dielectric-barrier-discharge plasma actuators. The volume force is varied by a
low-frequency sinusoidal modulating signal, imitating the inherent unsteadiness of
the plasma actuation, but also has a small steady part.

The effect of single travelling CF-vortex modes with a spanwise wavelength
two-thirds that of the most amplified mode (1, +2), excited by a blowing/suction
strip, has been investigated at first. It has been shown that the low-frequency modes
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(0.5, ±3) cause primary CF vortices travelling in opposite spanwise directions with
slightly different axis orientations. Different three-dimensional flow patterns result in
qualitatively different secondary instability behaviours of the background disturbances.
The rightward-travelling mode (0.5, +3) invokes only very limited growth of
high-frequency type-I and type-II modes in a short region. The low-frequency
type-III modes triggered by the leftward-travelling mode (0.5, −3) undergo a
strong amplification, altering the shear layers in the near-wall region and leading
to an unwanted strong increase of the disturbance level. We found that both modes
(0.5,±3) generate a beneficial mean-flow distortion, stabilizing the flow with respect
to the otherwise most amplified steady and unsteady CF-vortex modes. However,
control mode (0.5, −3), running with the basic CF, is ruled out because of giving
rise to detrimental secondary instability.

Using three volume-force actuators per fundamental wavelength operated with
a frequency of ωPA = 3, where ω = 6 is that of the most amplified mode, the
travelling CF-vortex modes (0.5, ±3) are simultaneously triggered in the boundary
layer. Turning the actuators’ axes to align with the wave crests of the target mode
(0.5,+3), its receptivity is maximized and the formation of other misaligned modes
is substantially abated. The unavoidable forcing of the steady mode (0, 3) could be
also minimized.

At controlling steady test modes, transition is significantly delayed by reducing the
primary growth of the integrally most amplified steady CF-vortex mode. Compared to
the steady UFD method using (0, 3) as control mode, the growth attenuation of the
test mode (0, 2) is somewhat weaker. The nonlinear interaction between the growing
steady test modes and the unsteady UFD mode diminishes the beneficial effect of
the UFD. The control of unsteady test modes turns out to be more effective, as the
primary growth of the test mode (1,+2) has been virtually completely suppressed.

If plasma actuators are used for CF transition control in the UFD mode, because
they can be seen as tunable ‘roughness’ with controllable strength and also possibly
controllable spanwise spacing, the energy consumption still may play a role. This
consumption can be significantly reduced with respect to the steady UFD approach
since the inherent unsteady fluctuating part of the plasma-induced volume force is
exploited; also, unsteady CF-vortex modes are more strongly amplified and need
smaller initial amplitudes. Furthermore, unlike the steady UFD approach, with these
actuators an operating frequency clearly outside the unstable frequency range of
the flow is not required. Hence, the unsteady approach may open opportunities for
employing plasma-based control devices at higher free-stream velocities.
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