BROWN-HALMOS TYPE THEOREMS OF WEIGHTED TOEPLITZ OPERATORS

TAKAHIKO NAKAZI

ABSTRACT. The spectra of the Toeplitz operators on the weighted Hardy space $H^2(Wd\theta/2\pi)$ and the Hardy space $H^p(d\theta/2\pi)$, and the singular integral operators on the Lebesgue space $L^2(d\theta/2\pi)$ are studied. For example, the theorems of Brown-Halmos type and Hartman-Wintner type are studied.

1. Introduction. Let *m* be the normalized Lebesgue measure on the unit circle *T* and let *W* be a non-negative integrable function on *T* which does not vanish identically. Suppose $1 \le p \le \infty$. Let $L^p(W) = L^p(Wdm)$ and $L^p(W) = L^p$ when $W \equiv 1$. Let $H^p(W)$ denote the closure in $L^p(W)$ of the set *P* of all analytic polynomials when $p \ne \infty$. We will write $H^p(W) = H^p$ when $W \equiv 1$, and then this is a usual Hardy space. H^∞ denotes the weak * closure of *P* in L^∞ . *P* denotes the projection from the set *C* of all trigonometric polynomials to *P*. For 1 ,*P* $can be extended to a bounded map of <math>L^p(W)$ onto $H^p(W)$ if and only if *W* satisfies the condition

$$(A_p) \qquad \qquad \sup_{I} \left(\frac{1}{|I|} \int_{I} W \, dm\right) \left(\frac{1}{|I|} \int_{I} W^{-\frac{1}{p-1}} \, dm\right)^{p-1} < \infty$$

where the supremum is over all intervals I of T. This is the well known theorem of Hunt, Muckenhoupt and Wheeden [7], which is a generalization of the theorem of Helson and Szegő [6].

In this paper, we assume that the weight W satisfies the condition (A_p) . For ϕ in L^{∞} , the Toeplitz operator T_{ϕ}^{W} is defined as a bounded map on $H^p(W)$ by

$$T^W_{\phi}f = P(\phi f).$$

For α and β in L^{∞} , the singular integral operator $S^{W}_{\alpha\beta}$ is defined as a bounded map on $L^{p}(W)$ by

$$S^{W}_{\alpha\beta}f = \alpha Pf + \beta(I - P)f$$

where *I* is an identity operator. If $W \equiv 1$, we will write $T_{\phi}^{W} = T_{\phi}$ and $S_{\alpha\beta}^{W} = S_{\alpha\beta}$. Almost all results in this paper will be essentially shown using the following theorems. They are called the *theorems of Widom, Devinatz and Rochberg (cf.* [1], [10] and [9]).

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education. AMS subject classification: 47B35.

196

Received by the editors October 16, 1996; revised March 26, 1997.

Key words and phrases: Toeplitz operator, singular integral operator, weighted Hardy space, spectrum. ©Canadian Mathematical Society 1998.

THEOREM A. Suppose $1 and <math>W = |h|^p$ satisfies the condition (A_p) , where h is an outer function in H^p . Then the following conditions on ϕ and W are equivalent.

(1) T^{W}_{ϕ} is an invertible operator on $H^{p}(W)$.

(2) $\phi = k(\bar{h}_0/h_0)(h/\bar{h})$, where k is an invertible function in H^{∞} and h_0 is an outer function in H^p with $|h_0|^p$ satisfying the condition (A_p) .

(3) $\phi = \gamma \exp(U - i\tilde{V})$, where γ is constant with $|\gamma| = 1$, U is a bounded real function, V is a real function in L^1 and $W \exp(\frac{p}{2}V)$ satisfies (A_p) .

THEOREM B. Suppose $1 and <math>W = |h|^p$ satisfies the condition (A_p) , where h is an outer function in H^p . $S^W_{\alpha\beta}$ is invertible on $L^p(W)$ if and only if both α and β are invertible in L^{∞} and $\alpha/\beta = \gamma \exp(U - i\tilde{V})$, where γ is constant with $|\gamma| = 1$, U is a bounded real function, V is a real function in L^1 and $W \exp(\frac{p}{2}V)$ satisfies (A_p) .

THEOREM C. Suppose T_{ϕ} and $S_{\alpha\beta}$ are on L^2 , where ϕ , α and β are invertible functions in L^{∞} .

(1) T_{ϕ} is invertible if and only if ϕ has the form: $\phi = |\phi|e^{it}$ where t is a real function in L^1 such that

$$|t||' = \inf\{||t - \tilde{s} - a||_{\infty}; s \in L^{\infty}_{R} \text{ and } a \in R\} < \pi/2$$

(2) $S_{\alpha\beta}$ is invertible if and only if α/β has the form: $\alpha/\beta = |\alpha/\beta|e^{it}$ where t is the same to that of (1). Hence $S_{\alpha\beta}$ is invertible if and only if $T_{\alpha/\beta}$ is invertible.

In this paper, we are interested in $\sigma(T_{\phi}^W)$ and $\sigma(S_{\alpha\beta}^W)$, that is, the spectra of T_{ϕ}^W and $S_{\alpha\beta}^W$.

For $\alpha = \alpha_1 + i\alpha_2 \in \mathbf{C}$ and $\beta = \beta_1 + i\beta_2 \in \mathbf{C}$, put $\langle \alpha, \beta \rangle = \alpha_1\beta_1 + \alpha_2\beta_2$ and $\theta(\alpha, \beta) = \arccos(\langle \alpha, \beta \rangle / |\alpha| |\beta|)$ for $\alpha \neq 0$ and $\beta \neq 0$. Set

$$\ell_{\alpha}^{+} = \{ z \in \mathbf{C} ; \langle z, \alpha \rangle \geq 1 \} \text{ and } \ell_{\alpha}^{-} = \{ z \in \mathbf{C} ; \langle z, \alpha \rangle \leq 1 \}$$

and $E_{\alpha\beta}^{ij}$ denotes $\ell_{\alpha}^{i} \cap \ell_{\beta}^{j}$ where i = + or - and j = + or -. For each pair (α, β) ,

$$\mathbf{C} = E_{\alpha\beta}^{++} \cup E_{\alpha\beta}^{+-} \cup E_{\alpha\beta}^{-+} \cup E_{\alpha\beta}^{-+}$$

and if $\ell = -i$ and m = -j, then

$$\overline{(E^{\ell m})^c} = \overline{\mathbf{C} \setminus E^{\ell m}} \supset E^{ij}_{lphaeta}$$

For any bounded subset *E* in **C**, there exists a pair (α, β) such that $E_{\alpha\beta}^{ij} \supseteq E$ for some (i, j). In fact, there are a lot of such pairs (α, β) . Now we can define a set which contains *E* and is important in this paper. When $|\theta(\alpha, \beta)| = \pi - 2t$ and $0 \le t < \pi/2$, put

$$h^t(E) = \cap \{ \overline{(E^{\ell m}_{\alpha\beta})^c} ; E^{lj}_{\alpha\beta} \supseteq E \text{ and } \ell = -i, m = -j \}$$

for a subset *E* in **C**. If t < s, then $h^t(E) \subseteq h^s(E)$. If t = 0, then $h^0(E)$ is the closed convex hull of *E*. For example, if E = [a, b] then

$$h^t(E) = \triangle(c, r) \cap \triangle(\bar{c}, r)$$

 $c = \frac{a+b}{2} - i\frac{a-b}{2} \cot 2t$ and $r = -\frac{a-b}{2\sin 2t}$ where $\triangle(c, r)$ denotes the circle of center c and radius r. If $E = \triangle(0, 1)$, then $h^t(E) = \triangle(0, 1/\cos t)$. When T_{ϕ} is a Toeplitz operator on H^2 , Brown and Halmos (*cf.* [2, Corollary 7.19]) showed that $\sigma(T_{\phi}) \subseteq h^0(R(\phi))$ where $R(\phi)$ is the essential range of ϕ . In this paper we show this type results for Toeplitz operators on $H^2(W)$ and H^p and for singular integral operators on L^2 . When ϕ is a real function and T_{ϕ} is a Toeplitz operator on H^2 , Hartman and Wintner (*cf.* [2, Theorem 7.20]) showed that $\sigma(T_{\phi}) = h^0(R(\phi))$. In this paper, for real symbols we try to describe the spectra of Toeplitz operators on $H^2(W)$ and H^p , and singular integral operators on L^2 . When ϕ is a continuous function, $\sigma(T_{\phi})$ is described using $R(\phi)$ and the winding number of the curve determined by $\phi(cf. [2, Corollary 7.28])$. In this case it is known that $\sigma(T_{\phi}^W) = \sigma(T_{\phi}^P)$ for arbitrary weight W satisfying the condition (A_2) , and for any p with $1 , <math>T_{\phi}^p$ denotes the Toeplitz operator on H^p . In this paper, we study symbols ϕ such that $\sigma(T_{\phi}^W) = \sigma(T_{\phi})$ for arbitrary weight W.

Now we collect the notations which will be used in this paper. *R* is the set of all real numbers and X_R denotes the set of the real parts of all elements in *X*. $[X]^{c\ell}$ denotes the closure of *X*. *D* is the open unit disc. *C* is the set of all continuous functions on *T*. If *v* is a real function in L^1 , then \tilde{v} denotes the harmonic conjugate function with v(0) = 0.

2. Toeplitz operators on $H^2(W)$. In this section, we fix arbitrary weight *W* satisfying the condition (*A*₂) or equivalently, a Helson-Szegő weight *W*. We call *W* a Helson-Szegő weight when $W = e^{u+\tilde{v}}$, *u* and *v* are functions in L_R^∞ and $||v||_\infty < \pi/2$. For a Helson-Szegő weight $W = e^{u+\tilde{v}}$, put

$$t_W = \|v\|' = \inf\{\|v - \tilde{s} - a\|_{\infty} ; s \in L^{\infty}_R, a \in R\}.$$

When $W \equiv 1$, (1) of Theorem 1 is a theorem of Brown and Halmos (*cf.* [2, Corollary 7.19]) and (2) and (3) of Theorem 1 is a theorem of Hartman and Wintner (*cf.* [2, Theorem 7.20]). When ϕ is a piecewise continuous function, $\sigma(T_{\phi}^W)$ is described when W is arbitrary weight [11]. The symbol ϕ in Corollary 2 and (3) of Corollary 3 is not necessarily piecewise continuous. It is known that $\sigma(T_{\phi}^W) \neq \sigma(T_{\phi})$ for some weight W and some piecewise continuous symbol ϕ (*cf.* [4]). In Theorem 2, we determine weight W such that $\sigma(T_{\phi}^W) = \sigma(T_{\phi})$ for arbitrary symbol ϕ in L^{∞} and study symbols ϕ such that $\sigma(T_{\phi}^W) = \sigma(T_{\phi})$ for arbitrary weight W. Spitkovsky [13] showed that the set of all weights W for which $\sigma(T_{\phi}^W) = \sigma(T_{\phi})$ for all ϕ in L^{∞} does not depend on p. (1) of Corollary 3 is related with a particular (corresponding to p = 2) case of [3, Theorem 6.1 and Corollary 6.2]. For if log $W \in VMO$ then log $W = u + \tilde{v}$ for some real functions u and v in C. (2) of Corollary 3 shows the known result [11] such that if ϕ is continuous, then $\sigma(T_{\phi}^W) = \sigma(T_{\phi})$ for arbitrary weight W.

THEOREM 1. Let ϕ be a function in L^{∞} , let W be a Helson-Szegő weight and $t = t_W$. (1) $R(\phi) \subseteq \sigma(T^W_{\phi}) \subseteq h^t(R(\phi))$.

(2) if ϕ is real valued, $a = \operatorname{essinf} \phi$ and $b = \operatorname{esssup} \phi$, then

$$\boldsymbol{R}(\phi) \subseteq \sigma(T_{\phi}^{W}) \subseteq \triangle(c,r) \cap \triangle(\bar{c},r)$$

where $c = \frac{a+b}{2} - i\frac{a-b}{2}\cos 2t$ and $r = -\frac{a-b}{2\sin 2t}$. (3) Suppose $W = e^{u+\tilde{v}}$ and $\lambda \in [a,b] \cap R(\phi)^c$ in (2). Then $\frac{\phi-\lambda}{|\phi-\lambda|} = e^{i\ell}$ and $\ell = \pi(1-\chi_E)$

(3) Suppose $W = e^{\alpha + \ell}$ and $\lambda \in [a, b] \cap \mathbf{R}(\phi)^{\epsilon}$ in (2). Then $\frac{1}{|\phi - \lambda|} = e^{\epsilon}$ and $\ell = \pi(1 - 2)$ for some measurable set E in T with 0 < m(E) < 1. $\lambda \in \sigma(T_{\phi}^{W})$ if and only if

 $\|\pi\chi_E - v\|' \ge \pi/2.$

PROOF. In (1) and (2), it is well known that $R(\phi) \subseteq \sigma(T_{\phi}^{W})$. Suppose $W = e^{u+\tilde{v}}$, u and v are functions in L_{R}^{∞} and $\|v\|_{\infty} < \pi/2$, and $g^{2} = e^{u+\tilde{v}+i(\tilde{u}-v)}$. Then $W = |g|^{2}$.

(1) By Theorem A in Introduction, for $\lambda \in \mathbb{C}$, $T^{W}_{\phi-\lambda}$ is invertible if and only if

$$\Gamma_{\frac{\phi-\lambda}{|\phi-\lambda|}\frac{\tilde{g}}{a}}$$
 is invertible.

Suppose $|\theta(\alpha, \beta)| = \pi - 2t$ and $R(\phi) \subseteq E_{\alpha\beta}^{ij}$. If $\lambda \in (E_{\alpha\beta}^{\ell m})^0$ with $\ell = -i, m = -j$, then T_{ϕ}^W is invertible. In fact, then $(\phi - \lambda)/|\phi - \lambda| = e^{is_{\lambda}}$ where $0 \le s_{\lambda} \le \pi - 2t - 2\varepsilon$ a.e. or $-\pi + 2t + 2\varepsilon \le s_{\lambda} \le 0$ a.e. for some $\varepsilon > 0$. Hence $|s_{\lambda} - \frac{\pi}{2} + t + \varepsilon| \le \frac{\pi}{2} - t - \varepsilon$ a.e. or $|s_{\lambda} + \frac{\pi}{2} - t - \varepsilon| \le \frac{\pi}{2} - t - \varepsilon$ a.e. Hence

$$\frac{\phi - \lambda}{|\phi - \lambda|} \frac{\bar{g}}{g} = e^{i(s_{\lambda} + \nu - \tilde{u})}$$

and

$$\|s_{\lambda}+v-\tilde{u}\|'\leq \frac{\pi}{2}-\varepsilon.$$

Thus $T_{\frac{\phi-\lambda}{|\phi-\lambda|}\frac{\delta}{g}}$ is invertible by Theorem C and hence $T_{\phi-\lambda}^W$ is invertible. If $\lambda \notin h^t(R(\phi))$, then by definition $\lambda \in \bigcup\{(E_{\alpha\beta}^{\ell m})^0 ; E_{\alpha\beta}^{ij} \supseteq R(\phi) \text{ and } \ell = -i, m = -j\}$ and $|\theta(\alpha, \beta)| = \pi - 2t$. By what was just proved, $\lambda \notin \sigma(T_{\phi}^W)$. (2) By (1), $\sigma(T_{\phi}^W) \subseteq h^t(R(\phi)) \subseteq h^t([a, b])$ for $t = t_W$. It is elementary to see that $h^t([a, b]) \subseteq \triangle(c, r) \cap \triangle(\bar{c}, r)$. (3) The first part is clear. The second statement is a result of Theorems A and C.

COROLLARY 1. Suppose $\phi = a\chi_E + b\chi_{E^c}$ where a and b are real numbers, $a \neq b$ and 0 < m(E) < 1. Let $W = e^{u+\tilde{v}}$, then $\sigma(T_{\phi}^W) \supseteq [a, b]$ if and only if $\|\pi\chi_E - v\|' \ge \pi/2$.

COROLLARY 2. Let E be a measurable set with 0 < m(E) < 1. Suppose W and ϕ satisfy the following (i) and (ii):

(i) $W = e^{u+\tilde{v}}$ where $u \in L_R^{\infty}$, $\tilde{v} = d(\chi_E - \chi_{E^c}) + q$, $q \in C_R$ and d is a constant with $0 < d < \pi/2$.

(ii) $\phi = a\chi_E + b\chi_{E^c}$ where a and b are real numbers.

Then $t_W = d$,

$$\sigma(T_{\phi}^{W}) = \Big\{\lambda \in \mathbf{C} \text{ ; } \arg \frac{a-\lambda}{b-\lambda} = \pi - 2d \Big\}.$$

and

$$h^d(\mathbf{R}(\phi)) = \left\{\lambda \in \mathbf{C} ; \arg \frac{a-\lambda}{b-\lambda} = \pi - 2d \text{ or } -\pi + 2d\right\}.$$

PROOF. Put $v_0 = \frac{\pi}{2}(\chi_E - \chi_{E^c})$, then $h^2 = e^{\tilde{v}_0 - iv_0}$ and $|h|^2/h^2 = e^{iv_0} = i(\chi_E - \chi_{E^c})$. If $\|\chi_E - \chi_{E^c}\|' < 1$, then $|h|^2 = e^{\tilde{v}_0}$ is a Helson-Szegő weight and so $\||h|^2/h^2 + zH^{\infty}\| < 1$ (see [3, Chapter IV, Theorem 3.1]). On the other hand, $\||h|^2/h^2 + zH^{\infty}\| = \|i(\chi_E - \chi_{E^c}) + zH^{\infty}\| = 1$. This contradiction shows that $\|\chi_E - \chi_{E^c}\|' = 1$. Thus

$$t_{W} = \inf\{\|d(\chi_{E} - \chi_{E^{c}}) - \tilde{s} - a\|_{\infty} ; s \in L^{\infty}_{R}, a \in R\}$$

= $d \inf\{\|\chi_{E} - \chi_{E^{c}} - \tilde{s} - a\|_{\infty} ; s \in L^{\infty}_{R}, a \in R\}$
= $d.$

Put $g^2 = e^{u+\tilde{v}+i(\tilde{u}-v)}$, then $\bar{g}/g = e^{i(\tilde{u}-v)} = \exp i\{\tilde{u} - d(\chi_E - \chi_{E^c}) - q\}$. If $\lambda \neq a$ and $\lambda \neq b$, then

$$egin{array}{ll} \displaystyle rac{\phi-\lambda}{|\phi-\lambda|} &= \displaystyle rac{a-\lambda}{|a-\lambda|}\chi_E + \displaystyle rac{b-\lambda}{|b-\lambda|}\chi_{E^c} \ &= \displaystyle \exp i\{a(\lambda)\chi_E + b(\lambda)\chi_{E^c}\} \end{array}$$

where $a(\lambda) = \arg(a - \lambda)$ and $b(\lambda) = \arg(b - \lambda)$. Thus $(\phi - \lambda)\overline{g}/|\phi - \lambda|g = \exp i\{a(\lambda)\chi_E + b(\lambda)\chi_{E^c} + \overline{u} - d(\chi_E - \chi_{E^c}) - q\}$. Since $q \in C_R$, by the first part of the proof,

$$\inf\{\|a(\lambda)\chi_E + b(\lambda)\chi_{E^c} - d(\chi_E - \chi_{E^c}) + \tilde{u} - q - \tilde{s} - a\|_{\infty} ; s \in L^{\infty}_R, a \in R\}$$
$$= \left|\frac{a(\lambda) - b(\lambda)}{2} - d\right| \inf\{\|\chi_E - \chi_{E^c} - \tilde{s} - a\|_{\infty} ; s \in L^{\infty}_R, a \in R\}$$
$$= \left|\frac{a(\lambda) - b(\lambda)}{2} - d\right| = \frac{1}{2} \left|\arg\frac{a - \lambda}{b - \lambda} - 2d\right|.$$

Thus, by (1) of Theorem C $\lambda \notin \sigma(T_{\phi}^{W})$ if and only if $\left|\arg \frac{a-\lambda}{b-\lambda} - 2d\right| \neq \pi$. If $\arg \frac{a-\lambda}{b-\lambda} > 0$, then $\left|\arg \frac{a-\lambda}{b-\lambda} - 2d\right| \neq \pi$ because d > 0, and hence $\sigma(T_{\phi}^{W}) = \{\lambda \notin \mathbf{C} : \arg \frac{a-\lambda}{b-\lambda} = \pi - 2d\}$. The description of $h^{d}(\mathbf{R}(\phi))$ is a result of (2) of Theorem 1.

THEOREM 2. Let ϕ be a function in L^{∞} and let W be a Helson-Szegő weight. (1) $t_W = 0$ if and only if $\sigma(T_{\phi}^W) = \sigma(T_{\phi})$ for arbitrary symbol ϕ in L^{∞} . (2) $\sigma(T_{\phi}) \supseteq \sigma(T_{\phi}^W)$ for arbitrary Helson-Szegő weight W if and only if for any

 $\lambda \notin \sigma(T_{\phi}), \frac{\phi-\lambda}{|\phi-\lambda|} = e^{i\ell} and ||\ell||' = 0.$

PROOF. (1) Suppose $W = e^{u+\tilde{\nu}}$, $t_W = 0$ and $g^2 = e^{u+\tilde{\nu}+i(\tilde{u}-\nu)}$. If $\lambda \notin \sigma(T_{\phi})$, then by Theorem C $\frac{\phi-\lambda}{|\phi-\lambda|} = e^{i\ell}$ and $\|\ell\|' < \pi/2$. Hence

$$\frac{\phi - \lambda}{|\phi - \lambda|} \frac{\bar{g}}{g} = \exp i(\ell + \tilde{u} - v)$$

and since $t_W = 0$,

$$\inf\{\|\ell + \tilde{u} - v - \tilde{s} - a\|_{\infty} ; s \in L^{\infty}_{R} \text{ and } a \in R\}$$
$$= \inf\{\|\ell - \tilde{s} - a\|_{\infty} ; s \in L^{\infty}_{R} \text{ and } a \in R\}$$
$$< \frac{\pi}{2}.$$

Thus $\lambda \notin \sigma(T_{\phi}^{W})$ by Theorems A and C. Similarly we can show that if $\lambda \notin \sigma(T_{\phi}^{W})$ then $\lambda \in \sigma(T_{\phi})$. Suppose $\sigma(T_{\phi}^{W}) = \sigma(T_{\phi})$ for arbitrary symbol ϕ in \mathbb{L}^{∞} . If $t = t_{W}$ is nonzero and $W = e^{u+\tilde{v}}$ is a Helson-Szegő weight, then T_{ϕ} is invertible where $\phi = e^{-ikv}$ and $k = \pi/2t - 1$. For $\inf\{\|kv - \tilde{s} - a\|_{\infty}; s \in L_{R}^{\infty} \text{ and } a \in R\} = kt = \pi/2 - 1$. On the other hand, T_{ϕ}^{W} is not invertible. For

$$\frac{\phi}{|\phi|}\frac{\bar{g}}{g} = \exp i\{\tilde{u} - (k+1)v\}$$

and

$$\inf\{\|\tilde{u}-(k+1)v-\tilde{s}-a\|_{\infty}; s\in L^{\infty}_R \text{ and } a\in R\}=(k+1)t=\frac{\pi}{2}$$

where $g^2 = e^{u + \tilde{v} + i(\tilde{u} - v)}$.

(2) Suppose for any $\lambda \notin \sigma(T_{\phi})$, $\frac{\phi-\lambda}{|\phi-\lambda|} = e^{i\ell}$ and $\inf\{\|\ell - \tilde{s} - a\|_{\infty} ; s \in L_{R}^{\infty} \text{ and } a \in R\} = 0$. We will show that $\sigma(T_{\phi}) \supseteq \sigma(T_{\phi}^{W})$ for arbitrary Helson-Szegő weight W. If $\lambda \notin \sigma(T_{\phi}), W = e^{u+\tilde{v}}$ is a Helson-Szegő weight and $g^{2} = e^{u+\tilde{v}+i(\tilde{u}-v)}$, then

$$\frac{\phi - \lambda}{|\phi - \lambda|} \frac{\bar{g}}{g} = e^{i(\ell + \tilde{u} - v)}$$

and $\inf \{ \|\ell + \tilde{u} - v - \tilde{s} - a\|_{\infty} ; s \in L_R^{\infty}, a \in R \} < \pi/2$ by the hypothesis. This implies that $\sigma(T_{\phi}^W) \not\supseteq \lambda$. Conversely suppose that $\sigma(T_{\phi}) \supseteq \sigma(T_{\phi}^W)$ for arbitrary Helson-Szegő weight *W*. If $\lambda \notin \sigma(T_{\phi})$, then $\frac{\phi - \lambda}{|\phi - \lambda|} = e^{i\ell}$ and $b = \inf \{ \|\ell - \tilde{s} - a\|_{\infty} ; s \in L_R^{\infty}, a \in R \} < \pi/2$. If $b \neq 0$, put $W = e^{k\tilde{\ell}}$ and $g^2 = e^{k\tilde{\ell} - ik\ell}$ where $k = \frac{\pi}{2b} - 1$, then *W* is a Helson-Szegő weight. However T_{ϕ}^W is not invertible and so $\lambda \in \sigma(T_{\phi}^W)$. This contradiction implies that b = 0.

COROLLARY 3. Let ϕ be a function in L^{∞} .

(1) If $W = e^{u+\tilde{v}}$, u and v are real functions in L^{∞} and C respectively, then $\sigma(T_{\phi}^{W}) = \sigma(T_{\phi})$ for arbitrary symbol ϕ in L^{∞} .

(2) If ϕ is a function in C or H^{∞} , then $\sigma(T_{\phi}^{W}) = \sigma(T_{\phi})$ for arbitrary Helson-Szegő weight W.

(3) If $\phi = a\chi_E + b\chi_{E^c}$, 0 < m(E) < 1 and $a, b \in \mathbb{C}$ with $a \neq b$, then there exists a Helson-Szegő weight W such that $\sigma(T_{\phi}^W) \subset \sigma(T_{\phi})$.

PROOF. Since $t_W = 0$ because $v \in C_R$, (1) of Theorem 2 implies (1). Suppose ϕ is a function in C and $\lambda \notin \sigma(T_{\phi}^{W'})$ for a Helson-Szegő weight $W' = e^{u+\tilde{v}}$. Since $R(\phi) \subseteq \sigma(T_{\phi}^{W'})$,

$$\frac{\phi - \lambda}{|\phi - \lambda|} \frac{\bar{g}}{g} = z^m e^{i\ell} e^{i(\tilde{u} - v)}$$

where *m* is an integer, $\ell \in C_R$ and $g^2 = e^{u+\tilde{\nu}+i(\tilde{u}-\nu)}$. By Theorems A and C, we can show m = 0. As $W' \equiv 1$, (2) of Theorem 2 implies that $\sigma(T_{\phi}) \supseteq \sigma(T_{\phi}^W)$ for arbitrary Helson-Szegő weight *W*. The converse is trivial. Suppose ϕ is a function in H^{∞} and $\lambda \notin \sigma(T_{\phi}^{W'})$ for a Helson-Szegő weight $W' = e^{u+\tilde{\nu}}$. Since $R(\phi) \subseteq \sigma(T_{\phi}^{W'})$, $\phi - \lambda$ is invertible in L^{∞}

and so $\phi - \lambda = qh$ where q is inner and h is invertible in H^{∞} . Since $h = e^{\ell + i\tilde{\ell}}$ and $\ell = \log |h| \in L^{\infty}$,

$$\frac{\phi - \lambda}{|\phi - \lambda|} \frac{\bar{g}}{g} = q e^{i\tilde{\ell}} e^{i(\tilde{u} - \nu)}$$

where $g^2 = e^{u+\tilde{v}+i(\tilde{u}-v)}$. By Theorems A and C, we can show that q is constant. As in case $\phi \in C$, we can show $\sigma(T_{\phi}^W) = \sigma(T_{\phi})$ for arbitrary Helson-Szegő weight W. This completes the proof of (2). Suppose $\phi = a\chi_E + b\chi_{E^c}$, 0 < m(E) < 1 and $a, b \in \mathbb{C}$ with $a \neq b$. To prove (3), without loss of generality, we may assume that a and b are real numbers. By a theorem of Hartman and Wintner (*cf.* [2, Theorem 7.20]), $\sigma(T_{\phi}) = [a, b]$. If $\lambda \notin [a, b]$,

$$\frac{\phi - \lambda}{|\phi - \lambda|} = \exp i \{ a(\lambda)\chi_E + b(\lambda)\chi_{E^c} \}$$

where $a(\lambda) = \arg(a - \lambda)$ and $b(\lambda) = \arg(b - \lambda)$. By the proof of Corollary 1,

$$\inf\{\|a(\lambda)\chi_E + b(\lambda)\chi_{E^c} - \tilde{s} - a\|_{\infty}; s \in L^{\infty}_R \text{ and } a \in R\} = \frac{1}{2}\left|\arg\frac{a-\lambda}{b-\lambda}\right| \neq 0$$

and hence by (2) of Theorem 2, there exists a Helson-Szegő weight *W* such that $\sigma(T_{\phi}^W) \subset \sigma(T_{\phi})$.

3. Toeplitz operators on H^p . For $1 , <math>T^p_{\phi}$ denotes a Toeplitz operator on H^p . We will write $T^2_{\phi} = T_{\phi}$. By a theorem of Widom, Devinatz and Rochberg (*cf.* [8]), we know the invertibility of T^p_{ϕ} and by a theorem of Widom (*cf.* [2, Corollary 7.46]), $\sigma(T^p_{\phi})$ is connected. If $1 < q < 2 < p < \infty$, then $A_q \subset A_2 \subset A_p$. It is more difficult to describe $\sigma(T^q_{\phi})$ than $\sigma(T^p_{\phi})$. In this paper, we study only $\sigma(T^p_{\phi})$. When p = 2, (1) of Theorem 3 is a theorem of Brown and Halmos and (2) is a theorem of Hartman and Wintner. (3) of Theorem 3 is known in [10] for arbitrary 1 . Our proof is different from it.

THEOREM 3. Suppose $p \ge 2$ and $t = (p-2)\pi/2p$.

(1) If
$$\phi$$
 is a function in L^{∞} , then $\sigma(T^{p}_{\phi}) \subseteq h^{t}(R(\phi))$

(2) If ϕ is a real function in L^{∞} , $a = essinf \phi$ and $b = esssup \phi$, then

$$[a,b] \subseteq \sigma(T^p_{\phi}) \subseteq \triangle(c,r) \cap \triangle(\bar{c},r)$$

where $c = \frac{a+b}{2} - i\frac{a-b}{2}\cot 2t$ and $r = -\frac{a-b}{2\sin 2t}$. In particular, if p = 2, then t = 0 and hence $\sigma(T_{\phi}^p) = [a, b]$.

(3) If ϕ is a function in C, then $\sigma(T_{\phi}^{p}) = \sigma(T_{\phi})$.

PROOF. (1) If $\lambda \notin h^t(\mathcal{R}(\phi))$, then by definition $\lambda \in \bigcup\{(\mathcal{E}_{\alpha\beta}^{\ell_m})^0 ; \mathcal{E}_{\alpha\beta}^{i_j} \supseteq \mathcal{R}(\phi)$ and $\ell = -i, m = -j\}$ and $|\theta(\alpha, \beta)| = \pi - 2t$. Hence $(\phi - \lambda)/|\phi - \lambda| = e^{is_\lambda}$ where $0 \le s_\lambda \le \pi - 2t - 2\varepsilon$ a.e. or $-\pi + 2t + 2\varepsilon \le s_\lambda \le 0$ a.e. for some $\varepsilon > 0$. Put $v_\lambda = s_\lambda - \frac{\pi}{2} + t + \varepsilon$ or $v_\lambda = s_\lambda + \frac{\pi}{2} - t - \varepsilon$, then $\|v_\lambda\|_{\infty} \le \frac{\pi}{2} - t - \varepsilon$. Put $g^2 = e^{-\tilde{v}_\lambda + iv_\lambda}$, then g^2 is an outer function and $|g|^2 = e^{-\tilde{v}_\lambda}$. Then $\|\frac{\varrho}{2}v_\lambda\|_{\infty} < \frac{\pi}{2}$ because $\|v_\lambda\|_{\infty} < \frac{\pi}{2} - \frac{(p-2)\pi}{2p}$. Hence $|g|^p$ satisfies (A_2) condition and so $|g|^p$ satisfies (A_p) condition by (*cf.* [3, Lemma 6.8]) because p > 2.

202

Since $(\phi - \lambda)/|\phi - \lambda| = \alpha(\bar{g}/g)$ for some constant α with $|\alpha| = 1$, Theorem A implies (1).

(2) We may assume that ϕ is not constant. By Theorem A, $R(\phi) \subseteq \sigma(T_{\phi}^{p})$. Suppose $\lambda \in [a, b]$ and $\lambda \notin R(\phi)$, then $(\phi - \lambda)/|\phi - \lambda| = 2\chi_{E} - 1$ for some measurable set E in T. If $\lambda \notin \sigma(T_{\phi}^{p})$, then by Theorem A, there exists an outer function h_{0} in H^{p} such that $2\chi_{E} - 1 = \overline{h}_{0}/h_{0}$. This implies that h_{0}^{2} is a real function in H^{1} because $p \geq 2$. It is well known that only one real function in H^{1} is constant. Hence h_{0} is constant and this contradicts that ϕ is not constant. Thus $[a, b] \subseteq \sigma(T_{\phi}^{p})$. Now (1) implies (2).

(3) If $\lambda \notin R(\phi)$, then $(\phi - \lambda)/|\phi - \lambda|$ is a continuous function and hence

$$\frac{\phi - \lambda}{|\phi - \lambda|} = z^{\ell} e^{i\nu}$$

where ℓ is an integer and v is a real function in *C*. Put $g^2 = e^{-\tilde{v}+iv}$, then $|g|^2 = e^{-\tilde{v}}$. Since v is continuous, for any $\varepsilon > 0$, $\tilde{v} = s + \tilde{t}$ where both s and t are in *C* and $||t||_{\infty} < \varepsilon$. Suppose $\ell = 0$. If $\varepsilon < \pi/p$, then $|g|^p = |g^2|^{\frac{p}{2}} = \exp(-\frac{p}{2}\tilde{v}) = \exp(-\frac{p}{2}s - \frac{p}{2}\tilde{t})$ and $||\frac{p}{2}t||_{\infty} < \frac{\pi}{2}$. Hence $|g|^p$ satisfies (*A*₂) condition and so (*A_p*). By Theorem A, $T^p_{\phi-\lambda}$ is invertible and so $\lambda \notin \sigma(T^p_{\phi})$. Suppose $\ell \neq 0$. If $T^p_{\phi-\lambda}$ is invertible, then by Theorem A

$$\frac{\phi - \lambda}{|\phi - \lambda|} = z^{\ell} e^{i\nu} = \frac{|k|}{k} \frac{|h|^2}{h^2}$$

where k and k^{-1} are in H^{∞} , and h is an outer function in H^p with $|h|^p$ satisfying (A_p) condition. Since $z^{\ell}|g|^2/g^2 = |kh^2|/kh^2$, $z^{\ell}f \ge 0$ a.e. where $f = kh^2/g^2$. If $\ell > 0$, $z^{\ell}f$ is a nonnegative function in $H^{1/2}$ and hence it is constant. This contradicts that z^{ℓ} is zero on the origin. If $\ell < 0$, $z^{\ell}|1 + \overline{z}^{\ell}|/(1 + \overline{z}^{\ell})^2 \ge 0$ and so $(1 + \overline{z}^{\ell})^2 f \ge 0$ a.e. Thus $(1 + \overline{z}^{\ell})^2 f$ is a nonnegative function in $H^{1/2}$ and so $f = c(1 + \overline{z}^{\ell})^2$ for some constant c > 0. This contradicts that $f^{-1} \in H^{1/2}$.

4. Singular integral operators on L^2 . By Theorems A, B and C, we can expect that $\sigma(S_{\alpha\beta})$ is strongly related with $\sigma(T_{\alpha})$ and $\sigma(T_{\beta})$. (1) of Theorem 4 is an analogy of a theorem of Brown and Halmos, and (2) of Theorem 4 is an analogy of a theorem of Hartman and Wintner.

THEOREM 4. Suppose α and β are functions in L^{∞} .

(1) $R(\alpha) \cup R(\beta) \subseteq \sigma(S_{\alpha\beta}) \subseteq h^t(R(\alpha) \cup R(\beta))$ where $t = \pi/4$.

(2) If α and β are real functions in L^{∞} ,

$$\left\{h\left(R\left(\alpha\right)\right)\cap h\left(R\left(\beta\right)\right)^{c}\right\}\cup\left\{h\left(R\left(\alpha\right)\right)^{c}\cap h\left(R\left(\beta\right)\right)\right\}\subseteq\sigma(S_{\alpha\beta})\subseteq\triangle(c,r)\cap\triangle(\bar{c},r)$$

where $a = \min\{\operatorname{essinf} \alpha, \operatorname{essinf} \beta\}, b = \max\{\operatorname{esssup} \alpha, \operatorname{esssup} \beta\}, c = \frac{a+b}{2} - i\frac{a-b}{2}$ and $r = -\frac{a-b}{2}$.

(3) If β is in C,

$$\sigma(T_{\alpha}) \cap \{\lambda \in \mathbf{C} ; i_t(\beta, \lambda) = 0\} \cup \mathbf{R}(\beta) \subseteq \sigma(S_{\alpha\beta}) \subseteq \sigma(T_{\alpha}) \cup \sigma(T_{\beta}).$$

TAKAHIKO NAKAZI

(4) If both α and β are in C, then $\sigma(S_{\alpha\beta}) = \{\sigma(T_{\alpha}) \cup \sigma(T_{\beta})\} \setminus \{\lambda \in \mathbb{C} : i_t(\alpha, \lambda) = i_t(\beta, \lambda) \neq 0\}.$

(5) Suppose both α and β are in C. If β is a real function, then $\sigma(S_{\alpha\beta}) = \sigma(T_{\alpha}) \cup h(\mathbf{R}(\beta))$ and hence if both α and β are real functions, then $\sigma(S_{\alpha\beta}) = h(\mathbf{R}(\alpha)) \cup h(\mathbf{R}(\beta))$.

(6) If α and $\overline{\beta}$ are functions in H^{∞} , then $\sigma(S_{\alpha\beta}) = [\alpha(D)]^{cl} \cup [\overline{\beta}(D)]^{cl}$.

(7) If α and β are functions in H^{∞} , then $\sigma(S_{\alpha\beta}) = [\alpha(D)]^{cl} \cup [\beta(D)]^{cl} \setminus \{\lambda \notin R(\alpha) \cup R(\beta); T_{q_{\lambda}\bar{p}_{\lambda}} \text{ is invertible}\}$ where q_{λ} is the inner part of $\alpha - \lambda$ and p_{λ} is the inner part of $\beta - \lambda$.

(8) If α and β are inner functions, and $\operatorname{sing} \alpha \neq \operatorname{sing} \beta$, then $\sigma(S_{\alpha\beta}) = [D]^{\text{cl}}$, where $\operatorname{sing} \alpha$ and $\operatorname{sing} \beta$ denote the subsets of ∂D on which α and β can not be analytically extended, respectively.

PROOF. (1) By Theorem B, it is clear that $R(\alpha) \cup R(\beta) \subseteq \sigma(S_{\alpha\beta})$. If $\lambda \notin h^t(R(\alpha) \cup R(\beta))$, then $(\alpha - \lambda)/|\alpha - \lambda| = e^{is_\lambda}$ and $(\beta - \lambda)/|\beta - \lambda| = e^{it_\lambda}$ where $0 \leq s_\lambda, t_\lambda \leq \frac{\pi}{2} - \varepsilon$ a.e. or $-\frac{\pi}{2} + \varepsilon \leq s_\lambda, t_\lambda \leq 0$ a.e. for some $\varepsilon > 0$. Therefore

$$\frac{\alpha - \lambda}{\beta - \lambda} = \exp(U - i\tilde{V})$$

where $U = \log |\alpha - \lambda| - \log |\beta - \lambda|$ and $\tilde{V} = t_{\lambda} - s_{\lambda}$. Then *U* is bounded and $\exp V = \exp -(t_{\lambda} - s_{\lambda})^{\sim}$ and $||t_{\lambda} - s_{\lambda}||_{\infty} \leq \frac{\pi}{2} - \varepsilon$. By Theorem C, $S_{\alpha - \lambda, \beta - \lambda}$ is invertible.

(2) If α and β are real functions and $\lambda \in h(\mathbf{R}(\alpha)) \cap h(\mathbf{R}(\beta))^c$, then $\alpha - \lambda$ is a real function which is not nonnegative or nonpositive, and $\beta - \lambda$ is a nonnegative or nonpositive function which is invertible in L^{∞} . $(\alpha - \lambda)/(\beta - \lambda)$ is a real function in L^{∞} which is not nonnegative or nonpositive. If $S_{\alpha-\lambda,\beta-\lambda}$ is invertible, then by Theorems B and C both $\alpha - \lambda$ and $\beta - \lambda$ are invertible in L^{∞} , and

$$\frac{\alpha - \lambda}{\beta - \lambda} = \left| \frac{\alpha - \lambda}{\beta - \lambda} \right| e^{it}$$

where $\inf\{\|t - \tilde{s} - a\|_{\infty} : s \in L_R^{\infty} \text{ and } a \in R\} < \pi/2$. Let $g = e^{-\tilde{t}+it}$, then g is a real function in H^1 . Since only one real function in H^1 is constant, g is constant and so it contradicts that $(\alpha - \lambda)|\beta - \lambda|/(\beta - \lambda)|\alpha - \lambda|$ is nonconstant. This implies that $h(R(\alpha)) \cap h(R(\beta))^c \subseteq \sigma(S_{\alpha\beta})$. The same method shows that $h(R(\alpha))^c \cap h(R(\beta)) \subseteq \sigma(S_{\alpha\beta})$. Since $R(\alpha) \cup R(\beta) \subseteq [a, b]$, by (1) $\sigma(S_{\alpha\beta}) \subseteq h^t([a, b])$ where $t = \pi/4$. This implies (2).

(3) Suppose $\lambda \in \sigma(T_{\alpha}) \cap \{\lambda \in \mathbb{C} : i_t(\beta, \lambda) = 0\}$. Then $\beta - \lambda = |\beta - \lambda|e^{i\nu}$ and $\nu \in C$ because β is continuous. If $S_{\alpha - \lambda, \beta - \lambda}$ is invertible, then by Theorem B

$$\frac{\alpha - \lambda}{\beta - \lambda} = \gamma e^{(U - i\tilde{V})}$$

where γ is constant, U is a bounded real function, V is a real function in L^1 and exp V satisfies (A₂) condition. Hence

$$\alpha - \lambda = \gamma \exp\{U + \log|\beta - \lambda| - i(\tilde{V} - v)\},\$$

 $U + \log |\beta - \lambda|$ is in L^{∞} and $e^{V - \tilde{v}}$ satisfies (A_2) condition because $v \in C$. By Theorem A, this implies that $\lambda \notin \sigma(T_{\alpha})$. This contradiction shows that $\lambda \in \sigma(S_{\alpha\beta})$ and hence $\sigma(T_{\alpha}) \cap \{\lambda \in \mathbb{C} ; i_t(\beta, \lambda) = 0\} \cup \mathbb{R}(\beta) \subseteq \sigma(S_{\alpha\beta})$. If $\lambda \notin \sigma(T_{\alpha}) \cup \sigma(T_{\beta})$, then by Theorem C and [2, Corollary 7.28] $\alpha - \lambda = |\alpha - \lambda|e^{it}$ and $\beta - \lambda = |\beta - \lambda|e^{i\ell}$ where $\inf\{\|t - \tilde{s} - a\|_{\infty}; s \in L^{\infty}_R \text{ and } a \in R\} < \pi/2$ and $\ell \in C$. Therefore

$$\frac{\alpha - \lambda}{\beta - \lambda} = \frac{|\alpha - \lambda|}{|\beta - \lambda|} e^{i(t-\ell)}$$

and hence by Theorem C $\lambda \notin \sigma(S_{\alpha\beta})$.

(4) If $\lambda \notin R(\alpha) \cup R(\beta)$ and $i_t(\alpha, \lambda) \neq i_t(\beta, \lambda)$, then $\alpha - \lambda = |\alpha - \lambda| z^{\ell} e^{iu}$ and $\beta - \lambda = |\beta - \lambda| z^{\ell} e^{iv}$ where *u* and *v* are in *C*, and ℓ and *t* are integers with $\ell \neq t$. Hence

$$\frac{\alpha - \lambda}{\beta - \lambda} = \frac{|\alpha - \lambda|}{|\beta - \lambda|} z^{\ell - t} e^{i(u - \nu)}$$

and $\ell - t \neq 0$. By Theorem C, we can show that $\lambda \notin \sigma(S_{\alpha\beta})$. This implies that $\{\sigma(T_{\alpha}) \cup \sigma(T_{\beta})\} \setminus \{\lambda \in \mathbb{C} : i_t(\alpha, \lambda) = i_t(\beta, \lambda) \neq 0\} \subseteq \sigma(S_{\alpha\beta})$. If $\lambda \notin \{\sigma(T_{\alpha}) \cup \sigma(T_{\beta})\} \setminus \{\lambda \in \mathbb{C} : i_t(\alpha, \lambda) = i_t(\beta, \lambda) \neq 0\}$, then $\alpha - \lambda = |\alpha - \lambda| z^\ell e^{iu}$ and $\beta - \lambda = |\beta - \lambda| z^\ell e^{i\nu}$ where *u* and *v* are in *C*, and ℓ is an integer. Hence $(\alpha - \lambda)/(\beta - \lambda) = (|\alpha - \lambda|/|\beta - \lambda|)e^{i(u-\nu)}$. By Theorem C, $\lambda \notin \sigma(S_{\alpha\beta})$. This completes the proof of (4). (5) is a result of (4).

(6) If $\lambda \in \alpha(D) \setminus \mathbb{R}(\alpha) \cup \mathbb{R}(\beta)$, then $\alpha - \lambda = qh$ and $\beta - \lambda = \bar{p}\bar{k}$ where q and p are inner, and h and k are invertible in H^{∞} . Hence $(\alpha - \lambda)/(\beta - \lambda) = qph/\bar{k}$ and so by Theorem C $\lambda \in \sigma(S_{\alpha\beta})$. This shows that $\alpha(D) \setminus \mathbb{R}(\alpha) \cup \mathbb{R}(\beta) \subseteq \sigma(S_{\alpha\beta})$. By the same method we can show that $\beta(D) \setminus \mathbb{R}(\alpha) \cup \mathbb{R}(\beta) \subseteq \sigma(S_{\alpha\beta})$. By (1), $[\alpha(D)]^{\text{cl}} \cup [\bar{\beta}(D)]^{\text{cl}} \subseteq \sigma(S_{\alpha\beta})$. If $\lambda \notin [\alpha(D)]^{\text{cl}} \cup [\bar{\beta}(D)]^{\text{cl}}$, then $\alpha - \lambda = h$ and $\beta - \lambda = \bar{k}$ where both h and k are invertible in H^{∞} . By Theorem C, $\lambda \notin \sigma(S_{\alpha\beta})$.

(7) If $\lambda \in [\alpha(D)]^{cl} \setminus R(\alpha) \cup R(\beta)$, then $\alpha - \lambda = q_{\lambda}h_{\lambda}$ and $\beta - \lambda = p_{\lambda}k_{\lambda}$ where both q_{λ} and p_{λ} are inner and both h_{λ} and k_{λ} are invertible in H^{∞} . Hence $(\alpha - \lambda)/(\beta - \lambda) = q_{\lambda}\bar{p}_{\lambda}h_{\lambda}/k_{\lambda}$. If $T_{q_{\lambda}\bar{p}_{\lambda}}$ is not invertible, by Theorem C $\lambda \in \sigma(S_{\alpha\beta})$. This implies that $\{[\alpha(D)]^{cl} \cup [\beta(D)]^{cl}\} \setminus \{\lambda \notin R(\alpha) \cup R(\beta) ; T_{q_{\lambda}\bar{p}_{\lambda}} \text{ is invertible }\} \subseteq \sigma(S_{\alpha\beta})$. If $\lambda \notin [\alpha(D)]^{cl} \cup [\beta(D)]^{cl}$, then $\lambda \notin \sigma(S_{\alpha\beta})$ as in (6). If $\lambda \notin R(\alpha) \cup R(\beta)$ and $T_{q_{\lambda}\bar{p}_{\lambda}}$ is invertible, then by Theorem C $\lambda \notin \sigma(S_{\alpha\beta})$.

(8) $\sigma(S_{\alpha\beta}) \subseteq [D]^{\text{cl}}$ by (7) and so if $\lambda \notin (R(\alpha) \cup R(\beta)) \cap [D]^{\text{cl}}$, then the inner part of $\alpha - \lambda$ is $q_{\lambda} = (\alpha - \lambda)/(1 - \bar{\lambda}\alpha)$ and the inner part of $\beta - \lambda$ is $p_{\lambda} = (\beta - \lambda)/(1 - \bar{\lambda}\beta)$. Then sing $q_{\lambda} = \text{sing } q \neq \text{sing } p = \text{sing } p_{\lambda}$. By [6, Theorem 1], $T_{q_{\lambda}\bar{p}_{\lambda}}$ is not invertible. By (7), this implies that $\sigma(S_{\alpha\beta}) = [\alpha(D)]^{\text{cl}} \cup [\beta(D)]^{\text{cl}} = [D]^{\text{cl}}$.

REFERENCES

- 1. A. Devinatz, Toeplitz operators on H² spaces. Trans. Amer. Math. Soc. 112(1964), 304–317.
- 2. R. G. Douglas, Banach Algebra Techniques In Operator Theory. Academic Press, New York, 1972.
- **3.** I. Feldman, N. Krupnik and I. Spitkovsky, *Norms of the singular integral operator with Cauchy kernel along certain contours.*
- 4. J. B. Garnett, Bounded analytic functions. Academic Press, New York, 1981.

TAKAHIKO NAKAZI

- 5. I. Gohberg and N. Krupnik, *One-dimensional Linear Singular Integral Equations*. Vol. I and Vol. II, Birkhäuser, 1992.
- 6. H. Helson and G. Szegő, A problem in prediction theory. Ann. Mat. Pura Appl. 51(1960), 107–138.
- 7. R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Amer. Math. Soc. 176(1973), 227–251.
- 8. M. Lee and D. Sarason, The spectra of some Toeplitz operators. J. Math. Anal. Appl. 33(1971), 529–543.
- 9. T. Nakazi, Toeplitz operators and weighted norm inequalities. Acta Sci. Math. (Szeged) 58(1993), 443–452.
- 10. R. Rochberg, Toeplitz operators on weighted H^p spaces. Indiana Univ. Math. J. 26(1977), 291–298.
- 11. I. Spitkovsky, Singular integral operators with PC symbols on the spaces with general weights. J. Funct. Anal. 105(1992), 129–143.
- 12. _____ On multipliers having no effect on factorizability. Dokl. Akad. Nauk SSSR 231(1976), 1733–1738.
- 13. _____, Multipliers that do not influence factorability. Math. Notes 27(1980), 145–149.

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060 Japan

206