BROWN-HALMOS TYPE THEOREMS OF WEIGHTED TOEPLITZ OPERATORS

TAKAHIKO NAKAZI

ABSTRACT. The spectra of the Toeplitz operators on the weighted Hardy space \(H^2(Wd\beta/2\pi) \) and the Hardy space \(H^p(d\beta/2\pi) \), and the singular integral operators on the Lebesgue space \(L^p(d\beta/2\pi) \) are studied. For example, the theorems of Brown-Halmos type and Hartman-Wintner type are studied.

1. Introduction. Let \(m \) be the normalized Lebesgue measure on the unit circle \(T \) and let \(W \) be a non-negative integrable function on \(T \) which does not vanish identically. Suppose \(1 \leq p \leq \infty \). Let \(L^p(W) = L^p(Wd\beta) \) and \(\mathcal{P}(W) = L^p \) when \(W \equiv 1 \). Let \(\mathcal{H}^p(W) \) denote the closure in \(L^p(W) \) of the set \(\mathcal{P} \) of all analytic polynomials when \(p \neq \infty \). We will write \(\mathcal{H}^p(W) = \mathcal{H}^p \) when \(W \equiv 1 \), and then this is a usual Hardy space. \(\mathcal{H}^\infty \) denotes the weak \(\mathcal{P} \) closure of \(\mathcal{P} \) in \(L^\infty \). \(\mathcal{P} \) denotes the projection from the set \(C \) of all trigonometric polynomials to \(\mathcal{P} \). For \(1 \leq p < \infty \), \(\mathcal{P} \) can be extended to a bounded map of \(L^p(W) \) onto \(\mathcal{H}^p(W) \) if and only if \(W \) satisfies the condition

\[
(A_p) \quad \sup_I \left(\frac{1}{|I|} \int_I W \, dm \right) \left(\frac{1}{|I|} \int_I W^{-1/p} \, dm \right)^{p-1} < \infty
\]

where the supremum is over all intervals \(I \) of \(T \). This is the well known theorem of Hunt, Muckenhoupt and Wheeden [7], which is a generalization of the theorem of Helson and Szegő [6].

In this paper, we assume that the weight \(W \) satisfies the condition \((A_p)\). For \(\phi \) in \(L^\infty \), the Toeplitz operator \(T^W_\phi \) is defined as a bounded map on \(\mathcal{H}^p(W) \) by

\[
T^W_\phi f = \mathcal{P}(\phi f).
\]

For \(\alpha \) and \(\beta \) in \(L^\infty \), the singular integral operator \(S^W_{\alpha\beta} \) is defined as a bounded map on \(L^p(W) \) by

\[
S^W_{\alpha\beta} f = \alpha \mathcal{P}f + \beta (I - \mathcal{P})f
\]

where \(I \) is an identity operator. If \(W \equiv 1 \), we will write \(T^W_\phi = T_\phi \) and \(S^W_{\alpha\beta} = S_{\alpha\beta} \). Almost all results in this paper will be essentially shown using the following theorems. They are called the theorems of Widom, Devinatz and Rochberg (cf. [1], [10] and [9]).

Received by the editors October 16, 1996; revised March 26, 1997.
This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.
AMS subject classification: 47B35.
Key words and phrases: Toeplitz operator, singular integral operator, weighted Hardy space, spectrum.
THEOREM A. Suppose $1 < p < \infty$ and $W = |h|^p$ satisfies the condition (A_p), where h is an outer function in H_p. Then the following conditions on ϕ and W are equivalent.

1. T^W_ϕ is an invertible operator on $H_p(W)$.
2. $\phi = k(h_0^* / h_0)(h/h_0)$, where k is an invertible function in H^∞ and h_0 is an outer function in H_p with $|h_0|^p$ satisfying the condition (A_p).
3. $\phi = \gamma \exp(U - i\bar{V})$, where γ is constant with $|\gamma| = 1$, U is a bounded real function, V is a real function in L^1 and $V \exp(\xi V)$ satisfies (A_p).

THEOREM B. Suppose $1 < p < \infty$ and $W = |h|^p$ satisfies the condition (A_p), where h is an outer function in H_p. $S^W_{\alpha\beta}$ is invertible in $L^p(W)$ if and only if both α and β are invertible in L^∞ and $\alpha / \beta = \gamma \exp(U - i\bar{V})$, where γ is constant with $|\gamma| = 1$, U is a bounded real function, V is a real function in L^1 and $V \exp(\xi V)$ satisfies (A_p).

THEOREM C. Suppose T_ϕ and $S_{\alpha\beta}$ are on L^2, where ϕ, α and β are invertible functions in L^∞.

1. T_ϕ is invertible if and only if ϕ has the form: $\phi = |\phi| e^t$ where t is a real function in L^1 such that

$$||t||' = \inf\{||t - t' - t||_{L^\infty} : s \in L^\infty \text{ and } a \in R\} < \pi/2$$

2. $S_{\alpha\beta}$ is invertible if and only if α / β has the form: $\alpha / \beta = |\alpha / \beta| e^t$ where t is the same to that of (1). Hence $S_{\alpha\beta}$ is invertible if and only if $T_{\alpha / \beta}$ is invertible.

In this paper, we are interested in $\sigma(T^W_\phi)$ and $\sigma(S^W_{\alpha\beta})$, that is, the spectra of T^W_ϕ and $S^W_{\alpha\beta}$.

For $\alpha = \alpha_1 + i\alpha_2 \in C$ and $\beta = \beta_1 + i\beta_2 \in C$, put $\langle \alpha, \beta \rangle = \alpha_1 \beta_1 + \alpha_2 \beta_2$ and $\theta(\alpha, \beta) = \arccos((\langle \alpha, \beta \rangle / |\alpha||\beta|))$ for $\alpha \neq 0$ and $\beta \neq 0$. Set

$$\ell^*_\alpha = \{z \in C : \langle z, \alpha \rangle \geq 1\} \quad \text{and} \quad \ell_\alpha = \{z \in C : \langle z, \alpha \rangle \leq 1\}$$

and $E^i_{\alpha\beta}$ denotes $\ell^*_\alpha \cap \ell^j_\beta$ where $i = +$ or $-$ and $j = +$ or $-$. For each pair (α, β),

$$C = E^+_{\alpha\beta} \cup E^-_{\alpha\beta} \cup E^+_{\alpha\beta} \cup E^-_{\alpha\beta}$$

and if $\ell = -i$ and $m = -j$, then

$$\mathcal{E}^{(\ell, m)} = C \setminus \mathcal{E}^{(\ell, m)} \supset E^i_{\alpha\beta}$$

For any bounded subset E in C, there exists a pair (α, β) such that $E^i_{\alpha\beta} \supseteq E$ for some (i, j). In fact, there are a lot of such pairs (α, β). Now we can define a set which contains E and is important in this paper. When $|\theta(\alpha, \beta)| = \pi - 2t$ and $0 \leq t < \pi/2$, put

$$h^t(E) = \{t \in C : \mathcal{E}^{(\ell, m)} \supseteq E \text{ and } \ell = -i, m = -j\}$$

for a subset E in C. If $t < s$, then $h^t(E) \subseteq h^s(E)$. If $t = 0$, then $h^0(E)$ is the closed convex hull of E. For example, if $E = [a, b]$ then

$$h^t(E) = \Delta(c, r) \cap \Delta(\bar{c}, r)$$
Toeplitz operators on
shows the known result [11] such that if
\hat{u}
W
log
õ
piecewise continuous symbol u is a real function and \hat{u}
R
D
\hat{u}
when
A
the condition (2) and (3) of Theorem 1 is a theorem of Hartman and Wintner (cf. [2, Theorem 7.20]) showed that $\sigma(T_\phi) = h^0(\mathcal{R}(\phi))$. In this paper, for real symbols we try to describe the spectra of Toeplitz operators on $H^2(W)$ and H^p and for singular integral operators on L^2. When ϕ is a real function and T_ϕ is a Toeplitz operator on H^2, Hartman and Wintner (cf. [2, Theorem 7.20]) showed that $\sigma(T_\phi) = h^0(\mathcal{R}(\phi))$. In this paper, we study symbols ϕ such that $\sigma(T_\phi^W) = \sigma(T_\phi)$ for arbitrary weight W.

Now we collect the notations which will be used in this paper. R is the set of all real numbers and X_R denotes the set of the real parts of all elements in X. $|X|^{t}$ denotes the closure of X. D is the open unit disc. C is the set of all continuous functions on T. If v is a real function in L^1, then \bar{v} denotes the harmonic conjugate function with $v(0) = 0$.

2. Toeplitz operators on $H^2(W)$. In this section, we fix arbitrary weight W satisfying the condition (A2) or equivalently, a Helson-Szegö weight W. We call W a Helson-Szegö weight when $W = e^{a+\bar{v}}$, u and v are functions in L^∞_R and $\|v\|_\infty < \pi / 2$. For a Helson-Szegö weight $W = e^{a+\bar{v}}$, put

$$t_W = \|v\|' = \inf\{|v - s - a|_\infty ; s \in L^\infty_R, a \in R\}.$$

When $W = 1$, (1) of Theorem 1 is a theorem of Brown and Halmos (cf. [2, Corollary 7.19]) and (2) and (3) of Theorem 1 is a theorem of Hartman and Wintner (cf. [2, Theorem 7.20]).

When ϕ is a piecewise continuous function, $\sigma(T_\phi^W)$ is described when W is arbitrary weight [11]. The symbol ϕ in Corollary 2 and (3) of Corollary 3 is not necessarily piecewise continuous. It is known that $\sigma(T_\phi^W) \neq \sigma(T_\phi)$ for some weight W and some piecewise continuous symbol ϕ (cf. [4]). In Theorem 2, we determine weight W such that $\sigma(T_\phi^W) = \sigma(T_\phi)$ for arbitrary symbol ϕ in L^∞ and study symbols ϕ such that $\sigma(T_\phi^W) = \sigma(T_\phi)$ for arbitrary weight W. Spitkovsky [13] showed that the set of all weights W for which $\sigma(T_\phi^W) = \sigma(T_\phi)$ for all ϕ in L^∞ does not depend on p. (1) of Corollary 3 is related with a particular (corresponding to $p = 2$) case of [3, Theorem 6.1 and Corollary 6.2]. For if log $W \in VMO$ then log $W = u + \bar{v}$ for some real functions u and v in C. (2) of Corollary 3 shows the known result [11] such that if ϕ is continuous, then $\sigma(T_\phi^W) = \sigma(T_\phi)$ for arbitrary weight W.

Theorem 1. Let ϕ be a function in L^∞, let W be a Helson-Szegö weight and $t = t_W$.

1. $\mathcal{R}(\phi) \subseteq \sigma(T_\phi^W) \subseteq h^0(\mathcal{R}(\phi))$.

2. If ϕ is real valued, $a = \text{essinf} \phi$ and $b = \text{esssup} \phi$, then

$$\mathcal{R}(\phi) \subseteq \sigma(T_\phi^W) \subseteq \Delta(c, r) \cap \Delta(\bar{c}, r).$$
where \(c = \frac{a+b}{2} - i\frac{a-b}{2}\cos 2t \) and \(r = -\frac{a-b}{2}\sin 2t \).

(3) Suppose \(W = e^{it\phi} \) and \(\lambda \in [a, b] \cap \mathcal{R}(\phi) \) in (2). Then \(\frac{\phi - \lambda}{\frac{\pi}{2} - \lambda} = e^{it} \) and \(\ell = \pi(1 - \chi_E) \) for some measurable set \(E \) in \(T \) with \(0 < m(E) < 1 \). \(\lambda \in \sigma(T^W_\phi) \) if and only if

\[
\|\pi \chi_E - v\| \geq \frac{\pi}{2}.
\]

Proof. In (1) and (2), it is well known that \(\mathcal{R}(\phi) \subseteq \sigma(T^W_\phi) \). Suppose \(W = e^{it\phi} \), \(u \) and \(v \) are functions in \(L^\infty_R \) and \(\|v\|_\infty < \frac{\pi}{2} \), and \(g^2 = e^{it\phi + i(\tilde{u} - v)} \). Then \(W = |g|^2 \).

(1) By Theorem A in Introduction, for \(\lambda \in C \), \(T^W_{\phi - \lambda} \) is invertible if and only if

\[
T^W_{\frac{\phi - \lambda}{|\phi - \lambda|}} \text{ is invertible.}
\]

Suppose \(|\theta(\alpha, \beta)| = \pi - 2t \) and \(\mathcal{R}(\phi) \subseteq \mathcal{T}^U_{\alpha, \beta} \). If \(\lambda \in (\mathcal{T}^U_{\alpha, \beta})_0 \) with \(\ell = -i, m = -j \), then \(T^W_{\phi} \) is invertible. In fact, then \((\phi - \lambda)/|\phi - \lambda| = e^{ib} \) where \(0 \leq s_\lambda \leq \pi - 2\epsilon \) a.e. or \(-\pi + 2\epsilon + 2\epsilon \leq s_\lambda \leq 0 \) a.e. for some \(\epsilon > 0 \). Hence \(|s_\lambda - \frac{\pi}{2} + \epsilon| \leq \frac{\pi}{2} - \epsilon \) a.e. or \(|s_\lambda + \frac{\pi}{2} - t - \epsilon| \leq \frac{\pi}{2} - \epsilon \) a.e. Hence

\[
\frac{\phi - \lambda}{|\phi - \lambda|} g = e^{i(s_\lambda + \epsilon - \tilde{u})}
\]

and

\[
\|s_\lambda + v - \tilde{u}\| \leq \frac{\pi}{2} - \epsilon.
\]

Thus \(T^W_{\frac{\phi - \lambda}{|\phi - \lambda|}} \) is invertible by Theorem C and hence \(T^W_{\phi - \lambda} \) is invertible. If \(\lambda \notin \mathcal{R}(\phi) \), then by definition \(\lambda \in \cup \{ (\mathcal{T}^U_{\alpha, \beta})_0 : \mathcal{T}^U_{\alpha, \beta} \supseteq \mathcal{R}(\phi) \text{ and } \ell = -i, m = -j \} \) and \(|\theta(\alpha, \beta)| = \pi - 2t \). By what was just proved, \(\lambda \notin \mathcal{R}(\phi) \). (2) By (1), \(\sigma(T^W_\phi) \subseteq \mathcal{H}^t(\mathcal{R}(\phi)) \subseteq \mathcal{H}^t([a, b]) \) for \(t = t_W \). It is elementary to see that \(\mathcal{H}^t([a, b]) \subseteq \Delta(c, r) \cap \Delta(\tilde{c}, r) \). (3) The first part is clear. The second statement is a result of Theorems A and C.

Corollary 1. Suppose \(\phi = aX_E + bX_E \) where \(a \) and \(b \) are real numbers, \(a \neq b \) and \(0 < m(E) < 1 \). Let \(W = e^{it\phi} \), then \(\sigma(T^W_\phi) \subseteq [a, b] \) if and only if \(\|\pi \chi_E - v\| \geq \frac{\pi}{2} \).

Corollary 2. Let \(E \) be a measurable set with \(0 < m(E) < 1 \). Suppose \(W = e^{it\phi} \) and \(\phi \) satisfy the following (i) and (ii):

(i) \(W = e^{it\phi} \) where \(u \in T^\infty_R, \tilde{v} = d(\chi_E - \chi_E) + q \in C_R \) and \(d \) is a constant with \(0 < d < \frac{\pi}{2} \).

(ii) \(\phi = aX_E + bX_E \) where \(a \) and \(b \) are real numbers.

Then \(t_W = d \),

\[
\sigma(T^W_\phi) = \left\{ \lambda \in C : \text{arg} \left(\frac{a - \lambda}{b - \lambda} \right) = \pi - 2d \right\}.
\]

and

\[
\mathcal{H}^t(\mathcal{R}(\phi)) = \left\{ \lambda \in C : \text{arg} \left(\frac{a - \lambda}{b - \lambda} \right) = \pi - 2d \text{ or } \pi + 2d \right\}.
\]
PROOF. Put $v_0 = \frac{\pi}{2}(\chi_E - \chi_{E'})$, then $h^2 = e^{i\pi - i\theta}$ and $|h|^2 = e^\theta = i(\chi_E - \chi_{E'})$. If $\|\chi_E - \chi_{E'}\| < 1$, then $|h|^2 = e^{i\theta}$ is a Helson-Szegö weight and so $\|h|^2/z + H^\infty = 1$ (see [3, Chapter IV, Theorem 3.1]). On the other hand, $\|h|^2/z + H^\infty = \|i(\chi_E - \chi_{E'}) + zH^\infty\| = 1$. This contradiction shows that $\|\chi_E - \chi_{E'}\| = 1$. Thus

$$t_W = \inf \{\|\chi_E - \chi_{E'} - \bar{s} - a\|_\infty : s \in L^\infty_R, a \in R\}$$

$$= d \inf \{\|\chi_E - \chi_{E'} - \bar{s} - a\|_\infty : s \in L^\infty_R, a \in R\} = d.$$

Put $g^2 = e^{\alpha + i(v - \theta)}$, then $\bar{g}/g = e^{i(v - \theta)} = \exp i(\bar{s} - d(\chi_E - \chi_{E'}) - \theta)$. If $\lambda \not\equiv a$ and $\lambda \not\equiv b$, then

$$\frac{\phi - \lambda}{|\phi - \lambda|} = \frac{a - \lambda}{|a - \lambda|} \chi_E + \frac{b - \lambda}{|b - \lambda|} \chi_{E'}$$

$$= \exp i(\alpha \chi_E + b(\lambda) \chi_{E'})$$

where $a(\lambda) = \arg(a - \lambda)$ and $b(\lambda) = \arg(b - \lambda)$. Thus $\phi(\lambda) \bar{g}/|\phi - \lambda| g = \exp i(\alpha \chi_E + b(\lambda) \chi_{E'} + \bar{s} - d(\chi_E - \chi_{E'}) - \theta)$. Since $q \in C_R$, by the first part of the proof,

$$\inf \{\|a(\lambda) \chi_E + b(\lambda) \chi_{E'} - d(\chi_E - \chi_{E'}) + \bar{s} - a\|_\infty : s \in L^\infty_R, a \in R\}$$

$$= \frac{a(\lambda) - b(\lambda)}{2} - d \inf \{\|\chi_E - \chi_{E'} - \bar{s} - a\|_\infty : s \in L^\infty_R, a \in R\}$$

$$= \frac{a(\lambda) - b(\lambda)}{2} - d = \frac{1}{2} \arg \frac{a - \lambda}{b - \lambda} + 2d.$$

Thus, by (1) of Theorem 2, $W \not\equiv \sigma(T^W_\phi)$ if and only if $\arg \frac{a - \lambda}{b - \lambda} - 2d \not\equiv \pi$. If $\arg \frac{a - \lambda}{b - \lambda} > 0$, then $\arg \frac{a - \lambda}{b - \lambda} - 2d \not\equiv \pi$ because $d > 0$, and hence $\sigma(T^W_\phi) = \{\lambda \not\equiv C \cup \arg \frac{a - \lambda}{b - \lambda} = \pi - 2d\}$. The description of $h^d(R(\phi))$ is a result of (2) of Theorem 1.

THEOREM 2. Let ϕ be a function in L^∞ and let W be a Helson-Szegö weight.

1. $t_W = 0$ if and only if $\sigma(T^W_\phi) = \sigma(T_\phi)$ for arbitrary symbol ϕ in L^∞.

2. $\sigma(T_\phi) \supseteq \sigma(T^W_\phi)$ for arbitrary Helson-Szegö weight W if and only if for any $\lambda \not\equiv \sigma(T_\phi)$, $\frac{a - \lambda}{b - \lambda} = e^{i\theta}$ and $\|e^\theta\| = 0$.

PROOF. (1) Suppose $W = e^{i\theta}$, $t_W = 0$ and $g^2 = e^{i\alpha + i(v - \theta)}$. If $\lambda \not\equiv \sigma(T_\phi)$, then by Theorem 2, $\frac{a - \lambda}{b - \lambda} = e^{i\theta}$ and $\|e^\theta\| < \pi/2$. Hence

$$\frac{\phi - \lambda}{|\phi - \lambda|} g = \exp i(\ell + \bar{s} - \theta)$$

and since $t_W = 0$,

$$\inf \{\|\ell + \bar{s} - \theta - a\|_\infty : s \in L^\infty_R, a \in R\}$$

$$= \inf \{\|\ell - a\|_\infty : s \in L^\infty_R, a \in R\}$$

$$< \frac{\pi}{2}.$$
Thus $\lambda \not\in \sigma(T^W_\phi)$ by Theorems A and C. Similarly we can show that if $\lambda \not\in \sigma(T^W_\phi)$ then $\lambda \in \sigma(T_\phi)$. Suppose $\sigma(T^W_\phi) = \sigma(T_\phi)$ for arbitrary symbol ϕ in L^∞. If $t = t_0$ is nonzero and $W = e^{i\tau^t}$ is a Helson-Szegö weight, then T_ϕ is invertible where $\phi = e^{-ikv}$ and $k = \pi/2t - 1$. For inf $\{\|k\ell - \tilde{a}\|_{\infty} : s \in L^\infty_R$ and $a \in R\} = kt = \pi/2 - 1$. On the other hand, T^W_ϕ is not invertible. For

$$\frac{\bar{\phi}}{|\phi|} = \exp i(\tilde{a} - (k + 1)v)$$

and

$$\inf \{\|\tilde{a} - (k + 1)v - \tilde{a}\|_{\infty} : s \in L^\infty_R$ and $a \in R\} = (k + 1)t = \frac{\pi}{2}$$

where $\tilde{g}^2 = e^{i\tau^t(\tilde{a} - v)}$.

(2) Suppose for any $\lambda \not\in \sigma(T_\phi)$, $\frac{\bar{\phi}}{|\phi|} e^{it} = e^{it} \lambda$ and inf $\{\|\ell - \tilde{a}\|_{\infty} : s \in L^\infty_R$ and $a \in R\} = 0$. We will show that $\sigma(T_\phi) \geq \sigma(T^W_\phi)$ for arbitrary Helson-Szegö weight W. If $\lambda \not\in \sigma(T_\phi)$, $W = e^{i\tau^t}$ is a Helson-Szegö weight and $g^2 = e^{i\tau^t(\tilde{a} - v)}$, then

$$\frac{\phi - \lambda}{|\phi - \lambda|} = e^{i(t\tilde{a} - v)}$$

and inf $\{\|\ell + \tilde{a} - v - \tilde{a}\|_{\infty} : s \in L^\infty_R$ and $a \in R\} < \pi/2$ by the hypothesis. This implies that $\sigma(T^W_\phi) \not\in \lambda$. Conversely suppose that $\sigma(T_\phi) \supseteq \sigma(T^W_\phi)$ for arbitrary Helson-Szegö weight W. If $\lambda \not\in \sigma(T_\phi)$, then $\frac{\bar{\phi}}{|\phi|} e^{it} = e^{it} \lambda$ and $0 < m(E) < 1$ and $a, b \in C$ with $a \neq b$, then there exists a Helson-Szegö weight W such that $\sigma(T^W_\phi) \subseteq \sigma(T_\phi)$.

Proof. Since $tv = 0$ because $v \in \mathbb{C}_R$, (1) of Theorem 2 implies (1). Suppose ϕ is a function in C and $\lambda \not\in \sigma(T^W_\phi)$ for a Helson-Szegö weight $W = e^{i\tau^t}$. Since $R(\phi) \subset \sigma(T^W_\phi)$,

$$\frac{\phi - \lambda}{|\phi - \lambda|} e^{i\tau^t} e^{i(\tilde{a} - v)}$$

where m is an integer, $\ell \in \mathbb{C}_R$ and $g^2 = e^{i\tau^t(\tilde{a} - v)}$. By Theorems A and C, we can show $m = 0$. As $W^* = 1$, (2) of Theorem 2 implies that $\sigma(T_\phi) \supseteq \sigma(T^W_\phi)$ for arbitrary Helson-Szegö weight W. The converse is trivial. Suppose ϕ is a function in H^∞ and $\lambda \not\in \sigma(T^W_\phi)$ for a Helson-Szegö weight $W = e^{i\tau^t}$. Since $R(\phi) \subset \sigma(T^W_\phi)$, $\phi - \lambda$ is invertible in L^∞.
and so \(\phi - \lambda = qh \) where \(q \) is inner and \(h \) is invertible in \(H^p \). Since \(h = e^{i\ell\theta} \) and \(\ell = \log |h| \in L^\infty \),

\[
\frac{\phi - \lambda}{|\phi - \lambda|} = qe^{i\ell} e^{i(\bar{h} - v)}
\]

where \(g^2 = e^{i\phi + i|h|} \). By Theorems A and C, we can show that \(q \) is constant. As in case \(\phi \in C \), we can show \(\sigma(T^\phi_W) = \sigma(T^\phi) \) for arbitrary Helson-Szegő weight \(W \). This completes the proof of (2). Suppose \(\phi = a_X + b_XE \), \(0 < m(E) < 1 \) and \(a, b \in C \) with \(a \neq b \). To prove (3), without loss of generality, we may assume that \(a \) and \(b \) are real numbers. By a theorem of Hartman and Wintner (cf. [2, Theorem 7.20]), \(\sigma(T^\phi) = [a, b] \).

If \(\lambda \notin [a, b] \),

\[
\frac{\phi - \lambda}{|\phi - \lambda|} = \exp i\{a(\lambda)X + b(\lambda)X_E \}
\]

where \(a(\lambda) = \arg(a - \lambda) \) and \(b(\lambda) = \arg(b - \lambda) \). By the proof of Corollary 1,

\[
\inf\{\|a(\lambda)X + b(\lambda)X_E - \bar{s} - a\|_\infty : s \in L^\infty_R \text{ and } a \in R\} = \frac{1}{2} \arg \frac{a - \lambda}{b - \lambda} \neq 0
\]

and hence by (2) of Theorem 2, there exists a Helson-Szegő weight \(W \) such that \(\sigma(T^\phi_W) \subseteq \sigma(T^\phi) \).

3. **Toeplitz operators on \(H^p \).** For \(1 < p < \infty \), \(T^\phi \) denotes a Toeplitz operator on \(H^p \). We will write \(T^\phi = T^\phi \). By a theorem of Widom, Devinatz and Rochberg (cf. [8]), we know the invertibility of \(T^\phi \) and by a theorem of Widom (cf. [2, Corollary 7.46]), \(\sigma(T^\phi) \) is connected. If \(1 < q < 2 < p < \infty \), then \(A_q \subseteq A_2 \subseteq A_p \). It is more difficult to describe \(\sigma(T^\phi) \) than \(\sigma(T^\phi) \). In this paper, we study only \(\sigma(T^\phi) \). When \(p = 2 \), (1) of Theorem 3 is a theorem of Brown and Halmos and (2) is a theorem of Hartman and Wintner. (3) of Theorem 3 is known in [10] for arbitrary \(1 < p < \infty \). Our proof is different from it.

Theorem 3. Suppose \(p \geq 2 \) and \(t = (p - 2)\pi / 2p \).

1. If \(\phi \) is a function in \(L^\infty \), then \(\sigma(T^\phi) \subseteq h^t(\mathcal{R}(\phi)) \).

2. If \(\phi \) is a real function in \(L^\infty \), \(a = \text{essinf} \phi \) and \(b = \text{esssup} \phi \), then

\[
[a, b] \subseteq \sigma(T^\phi) \subseteq \Delta(c, r) \cap \Delta(\bar{c}, r)
\]

where \(c = \frac{a + b}{2} + i\frac{a - b}{2\sin t} \cot 2t \) and \(r = -\frac{a - b}{2\sin t} \). In particular, if \(p = 2 \), then \(t = 0 \) and hence \(\sigma(T^\phi) = [a, b] \).

3. If \(\phi \) is a function in \(C \), then \(\sigma(T^\phi) = \sigma(T^\phi) \).

Proof. (1) If \(\lambda \notin h^t(\mathcal{R}(\phi)) \), then by definition \(\lambda \in \bigcup \{ \mathcal{E}_{m\beta}^{ij} : \mathcal{E}_{m\beta} \supseteq \mathcal{R}(\phi) \text{ and } \ell = -i, m = -j \} \) and \(\theta(\alpha, \beta) = \pi - 2t \). Hence \((\phi - \lambda)/|\phi - \lambda| = e^{\ell\beta} \), where \(0 \leq s_\lambda \leq \pi - 2t - 2\varepsilon \) a.e. or \(-\pi + 2t + 2\varepsilon \leq s_\lambda \leq 0 \) for some \(\varepsilon > 0 \). Put \(v_\lambda = s_\lambda - \frac{\pi}{2} + t + \varepsilon \) or \(v_\lambda = s_\lambda + \frac{\pi}{2} - t - \varepsilon \), then \(\|v_\lambda\|_\infty \leq \frac{\pi}{2} - t - \varepsilon \). Put \(g^2 = e^{-\ell\beta} \), then \(g^2 \) is an outer function and \(|g|^2 = e^{-\ell\beta} \). Then \(\|\frac{1}{2}v_\lambda\|_\infty < \frac{\pi}{2} \) because \(\|v_\lambda\|_\infty < \frac{\pi}{2} - \frac{\pi - 2t}{2\varepsilon} \). Hence \(|g|^p \) satisfies \(A_2 \) condition and so \(|g|^p \) satisfies \(A_p \) condition by (cf. [3, Lemma 6.8]) because \(p > 2 \).
Since \((\phi - \lambda)/|\phi - \lambda| = \alpha(g/g)\) for some constant \(\alpha\) with \(|\alpha| = 1\), Theorem A implies (1).

(2) We may assume that \(\phi\) is not constant. By Theorem A, \(\mathcal{R}(\phi) \subseteq \sigma(T^p_\phi)\). Suppose \(\lambda \in [a, b]\) and \(\lambda \notin \mathcal{R}(\phi)\), then \((\phi - \lambda)/|\phi - \lambda| = 2\chi_E - 1\) for some measurable set \(E\) in \(T\). If \(\lambda \notin \sigma(T^p_\phi)\), then by Theorem A, there exists an outer function \(h_0\) in \(H^p\) such that \(2\chi_E - 1 = \bar{h}_0/h_0\). This implies that \(h_0^2\) is a real function in \(H^1\) because \(p \geq 2\). It is well known that only one real function in \(H^1\) is constant. Hence \(h_0\) is constant and this contradicts that \(\phi\) is not constant. Thus \([a, b] \subseteq \sigma(T^p_\phi)\). Now (1) implies (2).

(3) If \(\lambda \notin \mathcal{R}(\phi)\), then \((\phi - \lambda)/|\phi - \lambda|\) is a continuous function and hence
\[
\frac{\phi - \lambda}{|\phi - \lambda|} = z^\ell e^{i\nu}
\]
where \(\ell\) is an integer and \(\nu\) is a real function in \(C\). Put \(g^2 = e^{-\nu + i\ell}\), then \(|g|^2 = e^{-\nu}\). Since \(\nu\) is continuous, for any \(\epsilon > 0, \tilde{v} = s + t\) where both \(s\) and \(t\) are in \(C\) and \(|\ell| = \epsilon < \tilde{v}\). Suppose \(\ell = 0\). If \(\epsilon < \pi/|p|\), then \(|g|^2 = |s|^2 = \exp(-i\tilde{v}) = \exp(-i\tilde{s} - i\tilde{t})\) and \(|\tilde{g}l|_{\infty} < \tilde{s}\). Hence \(|g|^p\) satisfies \((A_2)\) condition and so \((A_p)\). By Theorem A, \(T^p_{\phi - \lambda}\) is invertible and so \(\lambda \notin \sigma(T^p_\phi)\). Suppose \(\ell \neq 0\). If \(T^p_{\phi - \lambda}\) is invertible, then by Theorem A
\[
\frac{\phi - \lambda}{|\phi - \lambda|} = z^\ell e^{i\nu} = \frac{|k|}{k} \frac{|h|^2}{h^2}
\]
where \(k\) and \(k^{-1}\) are in \(H^\infty\), and \(h\) is an outer function in \(H^p\) with \(|h|^p\) satisfying \((A_p)\) condition. Since \(z^\ell|g|^2 / g^2 = |kh|^2/h^2\), \(z^\ell f\) is a nonnegative function in \(H^{1/2}\) and hence it is constant. This contradicts that \(z^\ell\) is zero on the origin. If \(\ell < 0, z^\ell|1 + z^\ell|/(1 + z^\ell)^2 \geq 0\) and so \((1 + z^\ell)^2 f\) is a nonnegative function in \(H^{1/2}\) and so \(f = c(1 + z^\ell)^2\) for some constant \(c > 0\). This contradicts that \(f^- \notin H^{1/2}\).

4. **Singular integral operators on \(L^2\).** By Theorems A, B and C, we can expect that \(\sigma(S_{\alpha, \beta})\) is strongly related with \(\sigma(T_\alpha)\) and \(\sigma(T_\beta)\). (1) of Theorem 4 is an analogy of a theorem of Brown and Halmos, and (2) of Theorem 4 is an analogy of a theorem of Hartman and Wintner.

THEOREM 4. Suppose \(\alpha\) and \(\beta\) are functions in \(L^\infty\).

(1) \(\mathcal{R}(\alpha) \cup \mathcal{R}(\beta) \subseteq \sigma(S_{\alpha, \beta}) \subseteq \sigma(T_\alpha) \cup \sigma(T_\beta)\) where \(t = \pi/4\).

(2) If \(\alpha\) and \(\beta\) are real functions in \(L^\infty\),
\[
\{h(\mathcal{R}(\alpha)) \cap h(\mathcal{R}(\beta))\} \cup \{h^2(\mathcal{R}(\alpha)) \cap h^2(\mathcal{R}(\beta))\} \subseteq \sigma(S_{\alpha, \beta}) \subseteq \Delta(c, r) \cap \Delta(c, r)
\]
where \(a = \max\{\text{essinf} \alpha, \text{essinf} \beta\}, b = \max\{\text{esssup} \alpha, \text{esssup} \beta\}, c = \frac{ab}{b} - i\frac{ab}{b}\) and \(r = \frac{-ab}{2}\).

(3) If \(\beta\) is in \(C\),
\[
\sigma(T_\alpha) \cap \{\lambda \in C : i\langle \beta, \lambda \rangle = 0\} \cup \mathcal{R}(\beta) \subseteq \sigma(S_{\alpha, \beta}) \subseteq \sigma(T_\alpha) \cup \sigma(T_\beta).
\]
(4) If both α and β are in C, then $\sigma(S_{\alpha,\beta}) = \{\sigma(T_\alpha) \cup \sigma(T_\beta)\} \setminus \{\lambda \in C \mid i_\lambda(\alpha, \lambda) = i_\lambda(\beta, \lambda) \neq 0\}$.

(5) Suppose both α and β are in C. If β is a real function, then $\sigma(S_{\alpha,\beta}) = \sigma(T_\alpha) \cup h(R_{\alpha}(\beta))$ and hence if both α and β are real functions, then $\sigma(S_{\alpha,\beta}) = h[R_{\alpha}(\alpha)] \cup h[R_{\beta}(\beta)]$.

(6) If α and β are functions in H^∞, then $\sigma(S_{\alpha,\beta}) = [\alpha(D)]^1 \cup [\beta(D)]^1$.

(7) If α and β are functions in H^∞, then $\sigma(S_{\alpha,\beta}) = [\alpha(D)]^1 \cup [\beta(D)]^1 \setminus \{\lambda \notin R(\alpha) \cup R(\beta) : T_{\alpha,\beta} \text{ is invertible}\}$ where q_λ is the inner part of $\alpha - \lambda$ and p_λ is the inner part of $\beta - \lambda$.

(8) If α and β are inner functions, and $\text{sing } \alpha \neq \text{sing } \beta$, then $\sigma(S_{\alpha,\beta}) = [D]^1$, while $\text{sing } \alpha \text{ and sing } \beta$ denote the subsets of ∂D on which α and β can not be analytically extended, respectively.

Proof. (1) By Theorem B, it is clear that $R(\alpha) \cup R(\beta) \subseteq \sigma(S_{\alpha,\beta})$. If $\lambda \not\in h'(R(\alpha) \cup R(\beta))$, then $(\alpha - \lambda) / (\beta - \lambda) = e^{\phi_\lambda}$ and $(\beta - \lambda) / (\beta - \lambda) = e^{\phi_\lambda}$ where $0 \leq s_\lambda, t_\lambda \leq \pi/2$ and $\phi_\lambda = \lambda = \exp(U - i\tilde{V})$.

where $U = \log |\alpha - \lambda| - \log |\beta - \lambda|$ and $\tilde{V} = t_\lambda - s_\lambda$. Then U is bounded and $V = \exp \{t_\lambda - s_\lambda\}$ and $\|t_\lambda - s_\lambda\|_{\infty} \leq \pi/2 - \varepsilon$. By Theorem C, $S_{\alpha - \lambda, \beta - \lambda}$ is invertible.

(2) If α and β are real functions and $\lambda \in h(R(\alpha)) \cap h(R(\beta))$, then $\alpha - \lambda$ is a real function which is not nonnegative or nonpositive, and $\beta - \lambda$ is a nonnegative or nonpositive function which is bounded, $(\alpha - \lambda) / (\beta - \lambda)$ is a real function in L^∞ which is not nonnegative or nonpositive. If $S_{\alpha - \lambda, \beta - \lambda}$ is invertible, then by Theorems B and C both $\alpha - \lambda$ and $\beta - \lambda$ are invertible in L^∞, and

$$\frac{\alpha - \lambda}{\beta - \lambda} = e^{i\theta_{\lambda,\beta}}.$$

where $\inf \{\|t - a\|_{\infty} : s \in L^\infty$ and $a \in R\} < \pi/2$. Let $g = e^{\varepsilon t+i\theta_{\lambda,\beta}}$, then g is a real function in H^1. Since only one real function in H^1 is constant, g is constant and so it contradicts that $(\alpha - \lambda)(\beta - \lambda)/(\beta - \lambda)\alpha - \lambda$ is nonconstant. This implies that $h(R(\alpha)) \cap h(R(\beta)) \subseteq \sigma(S_{\alpha,\beta})$. The same method shows that $h(R(\alpha)) \cap h(R(\beta)) \subseteq \sigma(S_{\alpha,\beta})$. Since $R(\alpha) \cup R(\beta) \subseteq \{a, b\}$, by (1) $\sigma(S_{\alpha,\beta}) \subseteq h(R(\beta))$ where $t = \pi/4$. This implies (2).

(3) Suppose $\lambda \in \sigma(T_\alpha) \cap \{\lambda \in C \mid i_\lambda(\beta, \lambda) = 0\}$. Then $\beta - \lambda = |\beta - \lambda|e^{i\varphi}$ and $\varphi \in C$ because β is continuous. If $S_{\alpha - \lambda, \beta - \lambda}$ is invertible, then by Theorem B

$$\frac{\alpha - \lambda}{\beta - \lambda} = \gamma e^{(U-i\tilde{V})}$$

where γ is constant, U is a bounded real function, V is a real function in L^1 and $\exp V$ satisfies (A_2) condition. Hence

$$\alpha - \lambda = \gamma \exp(U + \log |\beta - \lambda| - i(V - \nu)),$$
U + log |β - λ| is in $L^∞$ and $e^{t^α}$ satisfies (A_2) condition because $v \in C$. By Theorem A, this implies that $λ \notin σ(T_α)$. This contradiction shows that $λ \in σ(S_{βλ})$ and hence $σ(T_α) \cap \{ λ \in C : i(β, λ) = 0 \} \cup \{ β \} \subseteq σ(S_{βλ})$. If $λ \notin σ(T_α) \cup σ(T_β)$, then by Theorem C and [2, Corollary 7.28] $α - λ = |α - λ| e^{it}$ and $β - λ = |β - λ| e^{it}$ where

$$\inf \{ \| t - s - a \|_∞ : s \in L^∞_R, and a \in R \} < \pi/2 and \ell \in C. Therefore$$

$$\frac{α - λ}{β - λ} = \frac{|α - λ|}{|β - λ|} e^{i(α - t)}$$

and hence by Theorem C λ $\not\in σ(S_{βλ})$.

(4) If $λ \notin R(α) \cup R(β)$ and $i(α, λ) ≠ i(β, λ)$, then $α - λ = |α - λ| e^{iu}$ and $β - λ = |β - λ| e^{iu}$ where u and v are in C, and $λ$ and t are integers with $t ≠ t$. Hence

$$\frac{α - λ}{β - λ} = \frac{|α - λ|}{|β - λ|} e^{i(u - v)}$$

and $λ - t ≠ 0$. By Theorem C, we can show that $λ \notin σ(S_{βλ})$. This implies that $σ(T_α) \cup σ(T_β) \subseteq σ(S_{βλ})$. If $λ \notin σ(T_α) \cup σ(T_β)$, then $α - λ = h$ and $β - λ = k$ where both h and k are invertible in $HF^α$. Hence $α - λ = h$ and $β - λ = k$ and so by Theorem C $λ \in σ(S_{βλ})$. This shows that $α(D) \setminus R(α) \cup R(β) \subseteq σ(S_{βλ})$. By the same method we can show that $β(D) \setminus R(α) \cup R(β) \subseteq σ(S_{βλ})$. By (1), $[α(D)]^α \cup [β(D)]^β \subseteq σ(S_{βλ})$. If $λ \notin [α(D)]^α \cup [β(D)]^β$, then $α - λ = h$ and $β - λ = k$ where both h and k are invertible in $HF^α$. By Theorem C, $λ \notin σ(S_{βλ})$.

(7) If $λ \in [α(D)]^α \setminus R(α) \cup R(β)$, then $α - λ = q_λ h_λ and β - λ = p_λ k_λ where both q_λ and p_λ are inner and both h_λ and k_λ are invertible in $HF^α$. Hence $(α - λ)/(β - λ) = q_λ h_λ/k_λ$. If $T_{q_λ h_λ}$ is not invertible, by Theorem C $λ \notin σ(S_{βλ})$. This implies that $[α(D)]^α \cup [β(D)]^β \setminus \{ λ \notin R(α) \cup R(β) : T_{q_λ h_λ} is invertible \} \subseteq σ(S_{βλ})$. If $λ \notin [α(D)]^α \cup [β(D)]^β$, then $λ \notin σ(S_{βλ})$ as in (6). If $λ \notin R(α) \cup R(β)$ and $T_{q_λ h_λ}$ is invertible, then by Theorem C $λ \notin σ(S_{βλ})$.

(8) $σ(S_{βλ}) \subseteq [D]^α$ by (7) and so if $λ \notin (R(α) \cup R(β)) \cap [D]^α$, then the inner part of $α - λ = q_λ/(1 - λα)$ and the inner part of $β - λ$ is $p_λ/(1 - λβ)$. Then $sing q_λ = sing q = sing p = sing p_λ$. By [6, Theorem 1], $T_{q_λ h_λ}$ is not invertible. By (7), this implies that $σ(S_{βλ}) = [α(D)]^α \cup [β(D)]^β = [D]^β$.

REFERENCES

3. I. Feldman, N. Krupnik and I. Spitkovsky, Norms of the singular integral operator with Cauchy kernel along certain contours.

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060 Japan