Proceedings of the Edinburgh Mathematical Society (1996) 39, 27-30 ©

ON THE INNER AUTOMORPHISMS OF FINITE TRANSFORMATION SEMIGROUPS

by INESSA LEVI

(Received 20th December 1993)

If the group of inner automorphisms of a semigroup S of transformations of a finite *n*-element set contains an isomorphic copy of the alternating group Alt_n , then S is an S_n -normal semigroup and all the automorphisms of S are inner.

1991 Mathematics subject classification: 20M20.

1. Introduction

Given a semigroup S of transformations of a set $X_n = \{1, 2, ..., n\}$, denote by G_S the subgroup of the symmetric group S_n of all the permutations h of X_n satisfying $hSh^{-1} \subseteq S$. Therefore for each $h \in G_S$, the mapping $\phi_h: S \to S$ defined by $\phi_h(\alpha) = h\alpha h^{-1}$, for $\alpha \in S$, is an automorphism of S. Such an automorphism of S is termed *inner* [5] and the set of all inner automorphisms of S, Inn $S = \{\phi_h: h \in G_S\}$, forms a subgroup of the group Aut S of all automorphisms of S.

Observe that if $S = T_n$, the semigroup of all total transformations of X, then $G_S = S_n$. A subsemigroup S of T_n is said to be S_n -normal if $G_S = S_n$. In this case all the automorphisms of S are inner, and Aut $S = \text{Inn } S \cong S_n$ [6].

The main result of this paper asserts that if G_S contains the alternating group Alt_n then $G_S = S_n$, so that S is an S_n -normal semigroup, and Aut $S = \text{Inn } S \approx S_n$. Therefore, there is no $S \subseteq T_n$ such that $G_S = \text{Alt}_n$.

We generally use letters h, p, g to denote permutations of X_n , and α , β , γ , δ to denote non-permutations in T_n . In the following series of results we prove the theorem stated below.

Theorem. Let S be a subsemigroup of T_n , $n \ge 3$. If the group Inn S contains a subgroup G isomorphic to Alt_n then Aut S = Inn S \cong S_n, and S is an S_n-normal semigroup.

Given $\alpha \in T_n$ and a subgroup G of S_n , let $\langle \alpha:G \rangle = \langle \{h\alpha h^{-1}:h \in G\} \rangle$ be the subsemigroup of T_n generated by all the conjugates of α by the elements of G. Observe that if $\beta \in \langle \alpha:G \rangle$, then $\beta = h_1 \alpha h_1^{-1} h_2 \alpha h_2^{-1} \dots h_k \alpha h_k^{-1}$ for some $h_1, h_2, \dots, h_k \in G$, and so for any $h \in G$, $h\beta h^{-1} = hh_1 \alpha h_1^{-1} h^{-1} hh_2 \alpha h_2^{-1} h^{-1} \dots hh_k \alpha h_k h^{-1} = (hh_1)\alpha (hh_1)^{-1} (hh_2)\alpha (hh_2)^{-1} \dots$ $(hh_k)\alpha (hh_k)^{-1} \in \langle \alpha:G \rangle$. Therefore $\langle \beta:G \rangle \subseteq \langle \alpha:G \rangle$.

INESSA LEVI

Lemma 1. Let $G_1 \leq G_2 \leq S_n$ and $[G_2:G_1] = 2$. Let $\alpha \in T_n - S_n$. Then $\langle \alpha: G_1 \rangle = \langle \alpha: G_2 \rangle$ if and only if there is an $h \in G_2 - G_1$ such that $h\alpha h^{-1} \in \langle \alpha: G_1 \rangle$.

Proof. If $\langle \alpha; G_1 \rangle = \langle \alpha; G_2 \rangle$ then for any $h \in G_2$, $h\alpha h^{-1} \in \langle \alpha; G_1 \rangle$. To show the converse assume that $h \in G_2 - G_1$ is such that $\beta = h\alpha h^{-1} \in \langle \alpha; G_1 \rangle$. Let $p \in G_2 - G_1$. It suffices to show that $p\alpha p^{-1} \in \langle \alpha; G_1 \rangle$. Since $h, p \in G_2 - G_1$ and $[G_2; G_1] = 2$, we have $G_1 h = G_1 p$, so there exists $q \in G_1$, with $q = ph^{-1}$. Therefore $p\alpha p^{-1} = qh\alpha(qh)^{-1} = qh\alpha h^{-1}q^{-1} = q\beta q^{-1} \in \langle \beta; G_1 \rangle \subseteq \langle \alpha; G_1 \rangle$, as required.

The following is used to show that if $\alpha \in T_n - S_n$ then $\langle \alpha: Alt_n \rangle = \langle \alpha: S_n \rangle$.

Corollary 2. $\langle \alpha: Alt_n \rangle = \langle \alpha: S_n \rangle$ if and only if there exists an odd permutation h of X_n such that $h\alpha h^{-1} \in \langle \alpha: Alt_n \rangle$.

Recall that a subgroup G of S_n is said to be k-transitive if for any two k-subsets A and B of X_n and any bijection t from A onto B, there exists $h \in G$ such that h(a) = t(a) for every $a \in A$. We say that a subgroup G of S_n is k-block-transitive if for any two k-subsets A and B of X_n there exists $h \in G$ such that h(A) = B. Thus any k-transitive semigroup is at least k-block-transitive. For example, Alt_n is (n-2)-transitive [4, 10.4.6], and for all $1 \le k \le n-1$, Alt_n is k-block transitive.

Given a transformation α of X_n denote by $\pi(\alpha)$ the partition of X_n determined by α such that a and b are in the same class of $\pi(\alpha)$ if and only if $\alpha(a) = \alpha(b)$. Let im $\alpha = \alpha(X_n)$ be the image of α . Note that if $h \in S_n$ then $\pi(h\alpha h^{-1}) = h(\pi(\alpha)) = \{h(A): A \in \pi(\alpha)\}$, and $\operatorname{im}(h\alpha h^{-1}) = h(\operatorname{im} \alpha)$.

Lemma 3. Let $G \leq S_n$ be a k-block transitive group. Then for any $\alpha \in T_n - S_n$ with $|\operatorname{im} \alpha| = k$, $\langle \alpha : G \rangle$ contains an idempotent β with $\pi(\beta) = \pi(\alpha)$.

Proof. Let $\alpha_1 (=\alpha), \alpha_2, \alpha_3, ...$ be conjugates of α by elements of G such that $\operatorname{im} \alpha_i$ is a transversal of $\pi(\alpha_{i+1})$ (k-block transitivity of G insures their existence). Consider all the products of the form $\alpha_1, \alpha_2\alpha_1, \alpha_3\alpha_2\alpha_1, ...$ Since $\langle \alpha: G \rangle$ is finite there exist integers m < j such that $\alpha_j\alpha_{j-1}...\alpha_{m+1}\alpha_m...\alpha_1 = \alpha_m...\alpha_1$. Let $\delta = \alpha_j...\alpha_{m+1}$ and $\gamma = \alpha_m...\alpha_1$. Then $\delta\gamma = \gamma$ so im $\delta \supseteq \operatorname{im} \gamma$, and since $|\operatorname{im} \delta| = |\operatorname{im} \alpha| = |\operatorname{im} \gamma|$ we have that $\operatorname{im} \delta = \operatorname{im} \gamma$. Thus δ is the identity on its image, and so δ is an idempotent having $\operatorname{im} \delta = \operatorname{im} \alpha_j$ and $\pi(\delta) = \pi(\alpha_{m+1})$. Let $h \in G$ be such that $\alpha_{m+1} = h\alpha h^{-1}$, then $\beta = h^{-1}\delta h$ is the required idempotent. Indeed $\beta^2 = h^{-1}\delta h h^{-1}\delta h = h^{-1}\delta^2 h = h^{-1}\delta h = \beta$ and $\pi(\beta) = \pi(h^{-1}\delta h) = h^{-1}(\pi(\alpha_{m+1})) = h^{-1}(\pi(h\alpha h^{-1})) = h^{-1}(\pi(h(\alpha))) = \pi(\alpha)$.

Since Alt_n is k-block-transitive for any $1 \le k \le n-1$ we have the following.

Corollary 4. $\langle \alpha: Alt_n \rangle$ contains an idempotent β with $\pi(\beta) = \pi(\alpha)$.

We say that α has a partition of type $1^{k_1}2^{k_2}\dots r^{k_r}$ if $\pi(\alpha)$ has k_i classes of size *i*,

i=1,...,r[1]. Note that $\sum_{i=1}^{r} ik_i = n$ and we do not exclude the possibility that $k_i = 0$ for some *i*.

Lemma 5. Let $\alpha \in T_n - S_n$ be an idempotent. There exists an $h \in S_n - Alt_n$ such that $h\alpha h^{-1} \in \langle \alpha : Alt_n \rangle$, $n \ge 3$.

Proof. Assume that there exist $x, y \in \operatorname{im} \alpha$ such that $\alpha^{-1}(x) = \{x\}$ and $\alpha^{-1}(y) = \{y\}$. Then for the transposition h = (x, y) we have $h\alpha h^{-1} = \alpha \in \langle \alpha : \operatorname{Alt}_n \rangle$. Now suppose $\pi(\alpha)$ contains a class A having $|A| \ge 3$. Let $a, b \in A - \operatorname{im} \alpha$. Then for h = (a, b) we have $h\alpha h^{-1} = \alpha \in \langle \alpha : \operatorname{Alt}_n \rangle$.

If none of the above holds then α has a partition of type $1^{0}2^{k} = 2^{k}$ (k = n/2, n is even)or $1^{1}2^{k}$ (k = (n-1)/2, n is odd). Let α_{1}, α_{2} be idempotents in T_{2k} and T_{2k+1} respectively, $\alpha_{1} = [1, 1, 3, 3, \dots, 2k-1, 2k-1]$ and $\alpha_{2} = [1, 1, 3, 3, \dots, 2k-1, 2k-1, 2k+1]$ (we write $[a_{1}, a_{2}, \dots, a_{l}]$ for a transformation mapping *i* to α_{i} . We may assume without loss of generality that α equals to either α_{1} or α_{2} . It is easy to verify that for h = (12) and $n \ge 5$ we have

$$h\alpha_i h^{-1} = (12)(35)\alpha_i(35)(12)\alpha_i \in \langle \alpha; Alt_n \rangle.$$

If n = 4, then $\alpha_1 = [1, 1, 3, 3]$, and for h = (12),

$$h\alpha_i h^{-1} = ((132)\alpha_1(123))((134)\alpha_1(143))\alpha_1 \in \langle \alpha_1 : \text{Alt}_4 \rangle.$$

If n = 3, $\alpha_2 = [1, 1, 3]$, and for h = (12),

$$h\alpha_2 h^{-1} = ((132)\alpha_2(123))((123)\alpha_2(132)\alpha_2)^2 \in \langle \alpha_2 : \text{Alt}_n \rangle.$$

Proposition 6. Let $\alpha \in T_n$, $n \ge 3$. Then $\langle \alpha : S_n \rangle$.

Proof. Observe that we only need to show that $\langle \alpha: S_n \rangle \subseteq \langle \alpha: \operatorname{Alt}_n \rangle$. If $\alpha \in \operatorname{Alt}_n$ then $\langle \alpha: S_n \rangle \leq \operatorname{Alt}_n \supseteq S_n$. Also $\langle \alpha: \operatorname{Alt}_n \rangle \supseteq \operatorname{Alt}_n$, and since Alt_n is simple for $n \neq 4$ [4, 10.8.7] we have that $\langle \alpha: \operatorname{Alt}_n \rangle = \operatorname{Alt}_n$ if $\alpha \neq (1)$ and $\langle (1): \operatorname{Alt}_n \rangle = \{(1)\}$ (provided $n \neq 4$). If n = 4, $\alpha \neq (1)$ and $\langle \alpha: \operatorname{Alt}_4 \rangle \neq \operatorname{Alt}_4$ then $\langle \alpha: \operatorname{Alt}_4 \rangle = V$, the 4-group, and $\alpha \in V$. Since $V \supseteq S_4$, $\langle \alpha: S_4 \rangle \subseteq V$ also, and therefore $\langle \alpha: S_4 \rangle \subseteq \langle \alpha: \operatorname{Alt}_4 \rangle$, as required.

If α is an odd permutation then for any $q \in S_n - Alt_n$, $q = \alpha(\alpha^{-1}q)$, $\alpha^{-1}q \in Alt_n$, and $q\alpha q^{-1} = \alpha(\alpha^{-1}q)\alpha(\alpha^{-1}q)^{-1}\alpha^{-1} \in \langle \alpha : Alt_n \rangle$, so $\langle \alpha : S_n \rangle \subseteq \langle \alpha : Alt_n \rangle$ again.

Now let $\alpha \in T_n - S_n$. By Corollary 4, $\langle \alpha: Alt_n \rangle$ contains an idempotent β with $\pi(\beta) = \pi(\alpha)$. By Lemma 5 and Corollary 2, $\langle \alpha: Alt_n \rangle \supseteq \langle \beta: Alt_n \rangle = \langle \beta: S_n \rangle = \langle \alpha: S_n \rangle$ (for a transformation γ the semigroup $\langle \gamma: S_n \rangle$ comprises all $\delta \in T_n$ having $\pi(\delta) \supseteq Q$, a partition of the same type as $\pi(\gamma)$ [2]).

Corollary 7. There is no $S \subseteq T_n$ such that $G_s = Alt_n$.

Proof. Suppose Alt_n $\subseteq G_S$. Then by Proposition 6, for any $\alpha \in S$, $h \in S_n$, we have that $h\alpha h^{-1} \in \langle \alpha : S_n \rangle = \langle \alpha : Alt_n \rangle \subseteq S$, that is $h \in G_S$ and $G_S = S_n$.

INESSA LEVI

Now to prove our main Theorem suppose that $G \leq \text{Inn } S$ such that $G \simeq \text{Alt}_n$, Let $\overline{G} = \{h \in S_n : \phi_h \in G\}$. Then $\overline{G} \leq G_S \leq S_n$, and the order of \overline{G} is at least that of Alt_n. Therefore \overline{G} contains Alt_n, and by Corollary 7, $G_S = S_n$.

We note that the above result is not necessarily true for semigroups of transformations of infinite sets. For example, let $X = \mathbb{Z}$ be the set of all integers and $\alpha: \mathbb{Z} \to \mathbb{Z}$ such that $\alpha(a) = 2a$, for all $a \in \mathbb{Z}$. Let $S_{\mathbb{Z}}$ be the symmetric group on \mathbb{Z} . The alternating subgroup Alt_z of $S_{\mathbb{Z}}$ consists of all the finite even permutations of \mathbb{Z} . Then $\langle \alpha: S_{\mathbb{Z}} \rangle =$ $\{\beta: \mathbb{Z} \to \mathbb{Z} \mid \beta \text{ is } 1-1 \text{ and } |\mathbb{Z}-\operatorname{im}\beta| = \aleph_0\}$ [3]. In particular $\langle \alpha: S_{\mathbb{Z}} \rangle$ contains β defined by $\beta(a) = 2a - 1$ for all $a \in \mathbb{Z}$. Observe that for all $a \in \mathbb{Z}$, $\alpha(a) \neq \beta(a)$. Since any $h \in \operatorname{Alt}_{\mathbb{Z}}$ moves at most a finite number of points, $\beta \notin \langle \alpha: \operatorname{Alt}_{\mathbb{Z}} \rangle$.

For a transformation α of X let shift $\alpha = |\{x \in X : \alpha(x) \neq x\}|$. Let v be an infinite cardinal not exceeding $|X|^+$, the cardinal successor of |X|, and let Sym(X, v) be the subgroup of all permutations in S_X whose shift is less than v.

Conjecture 1. If shift $\alpha = u$ then $\langle \alpha: \text{Sym}(X, w) \rangle = \langle \alpha: S_X \rangle$ for all $w \ge u^+$. **2.** There is no semigroup S of transformations of X having $G_S = \text{Sym}(X, |X|)$.

Observe that permutations h and p in G_S give rise to equal automorphisms ϕ_h and ϕ_p if and only if $h^{-1}p$ is in the centralizer C(S) of S, $C(S) = \{\alpha \in T_n : \alpha\beta = \beta\alpha \text{ for all } \beta \in S\}$. Thus G_S is isomorphic to the group Inn S of the inner automorphisms of S if and only if $C(S) \cap G_S$ consists of the identity permutation. The results of this paper in conjunction with the above observations give rise to the following.

Problem 1. Characterize these subgroups G of S_n having $G = G_S$ for some subsemigroup S of S_n .

2. Given that $G = G_T$ for some $T \subseteq T_n$ characterize all $S \subseteq T_n$ such that $G_S = G$.

3. Characterize these subsemigroups S of T_n having $|C(S) \cap G_S| = 1$.

REFERENCES

1. I. ANDERSON, Combinatorics of Finite Sets, Oxford Science Publications, 1989.

2. I. LEVI and R. McFADDEN, S_n -normal semigroups, Proc. Edinburgh Math. Soc. 37 (1994), 471–476.

3. I. LEVI, Normal semigroups of one-to-one transformations, Proc. Edinburgh Math. Soc. 34 (1991), 65-76.

4. W. R. Scott, Group Theory (Dover Publications, 1987).

5. R. P. SULLIVAN, Automorphisms of transformation semigroups, J. Austral. Math. Soc. Ser. A 20 (1975), 77-84.

6. J. S. V. SYMONS, Normal transformation semigroups, J. Austral. Math. Soc. Ser. A 22 (1976), 385–390.

MATHEMATICS DEPARTMENT UNIVERSITY OF LOUISVILLE LOUISVILLE, KY 40292 U.S.A.

30