
Canad. J. Math. 2024, pp. 1–21
http://dx.doi.org/10.4153/S0008414X24000257
© The Author(s), 2024. Published by Cambridge University Press on behalf of
Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Convergence rate of entropy-regularized
multi-marginal optimal transport costs
Luca Nenna and Paul Pegon
Abstract. We investigate the convergence rate of multi-marginal optimal transport costs that are
regularized with the Boltzmann–Shannon entropy, as the noise parameter ε tends to 0. We establish
lower and upper bounds on the difference with the unregularized cost of the form Cε log(1/ε) +
O(ε) for some explicit dimensional constants C depending on the marginals and on the ground
cost, but not on the optimal transport plans themselves. Upper bounds are obtained for Lipschitz
costs or locally semiconcave costs for a finer estimate, and lower bounds for C 2 costs satisfying
some signature condition on the mixed second derivatives that may include degenerate costs, thus
generalizing results previously in the two marginals case and for nondegenerate costs. We obtain in
particular matching bounds in some typical situations where the optimal plan is deterministic.

Notations

In all the article, N ∈ N∗ denotes the dimension of the ambient space RN and m ∈ N
is an integer such that m ≥ 2.

Bd
r (x) open Euclidean ball of radius r centered at x in R

d , dropping the supscript
d when d = N ;

ωd d-dimensional volume of Bd
1 (0);

X i a subset of RN for any index i ∈ {1, . . . , m};
X product X1 × ⋅ ⋅ ⋅ × Xm whenever the X i ’s are m subsets of RN ;

A−i product∏1≤ j≤m , j≠i A j if A = A1 × ⋅ ⋅ ⋅ × Am ⊆ X and i ∈ {1, . . . , m};
x i , x , x a point in X i , in some X j , j ∈ {1, . . . , m}, and in X, respectively;

xq (x i)i∈q if q ⊆ {1, . . . , m} and x ∈ X;
e i ith coordinate map e i ∶ x = (x1 , . . . , xm) ↦ x i ;

A ⋐ B A ⊆ K ⊆ B for some compact set K;
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2 L. Nenna and P. Pegon

∣⋅∣ Euclidean norm on R
N ;

∥⋅∥ norm on R
N × ⋅ ⋅ ⋅ ×RN defined by ∥x∥ = max1≤i≤m ∣x i ∣ if

x = (x1 , . . . , xm);
Br(x) open ball of radius r centered at x ∈ (RN)m for the above norm;

C 0,1
loc (X) space of real-valued locally Lipschitz functions on X which is a sub-

manifold of RN or (RN)m ;
[ f ]C 0,1(X) Lipschitz constant of f ∶ X → R where X is a subset of RN or (RN)m for

the above norms;
C 1,1

loc(X) space of differentiable real-valued functions on X, a sub-manifold of RN

or (RN)m , with locally Lipschitz differential;
P(X) space of probability measures on a metric space X;
∥⋅∥Lp(μ) Lp-norm induced by a measure μ, where p ∈ [1,+∞];

spt μ support of the measure μ;
μ A restriction of the Borel measure μ to the Borel set A defined by μ A(E) =

μ(A∩ E) for every E;
H s

X s-dimensional Hausdorff measure on the metric space X endowed with
the Borel σ-algebra (the subscript X will often be dropped);

MN(R) space of real matrices of size N × N , endowed with the Frobenius norm
induced by the scalar product A ⋅ B ∶= Tr(AT B), for A, B ∈ MN(R);

SN(R) subspace of real symmetric matrices of size N × N ;
ΔP simplex of P-uples t = (tp)p∈P such that ∀p, tp ≥ 0 and∑p∈P tp = 1.

1 Introduction

We consider an m-uple of probability measures μ i compactly supported on sub-
manifolds X i ⊆ RN of dimension d i and a cost function c ∶ X1 × ⋅ ⋅ ⋅ × Xm → R+. The
Entropic Multi-Marginal Optimal Transport problem is defined as

MOTε ∶= inf {∫
X1× ⋅ ⋅ ⋅ ×Xm

cdγ + εEnt(γ∣ ⊗m
i=1 μ i) ∣ γ ∈ Π(μ1 , . . . , μm)} ,(MOTε)

where Π(μ1 , . . . , μm) denotes the set of all probability measures γ having μ i as ith
marginal, i.e., (e i)♯γ = μ i , where e i ∶ (x1 , . . . , xm) ↦ x i , for every i ∈ {1, . . . , m}. The
classical multi-marginal optimal transport problem corresponds to the case where
ε = 0. In the last decade, these two classes of problems (entropic optimal transport
(EOT) and multi-marginal optimal transport (MOT)) have witnessed a growing
interest and they are now an active research topic.

EOT has found applications and proved to be an efficient way to approximate
optimal transport (OT) problems, especially from a computational viewpoint. Indeed,
when it comes to solving EOT by alternating Kullback–Leibler projections on the
two marginal constraints, by the algebraic properties of the entropy, such iterative
projections correspond to the celebrated Sinkhorn’s algorithm [Sin64], applied in this
framework in the pioneering works [Ben+15, Cut13]. The simplicity and the good
convergence guarantees (see [Car22, FL89, GN22, MG20]) of this method compared
to the algorithms used for the OT problems, then determined the success of EOT for
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Convergence rate of entropy-regularized multi-marginal optimal transport costs 3

applications in machine learning, statistics, image processing, language processing,
and other areas (see the monograph [PC19] or the lecture notes [Nut] and the
references therein).

As concerns MOT, it arises naturally in many different areas of applications,
including economics [CE10], financial mathematics [BHP13, DS14a, DS14b, Enn+22],
statistics [BK18, CCG16], image processing [Rab+11], tomography [Abr+17], machine
learning [Haa+21, TJK22], fluid dynamics [Bre89], and quantum physics and chem-
istry, in the framework of density functional theory [BDG12, CFK13, FGG23]. The
structure of solutions to the MOT problem is a notoriously delicate issue, and is still
not well understood, despite substantial efforts on the part of many researchers [Car03,
CDD15, CN08, CS16, GŚ98, Hei02, KP14, KP15, MP17, Pas11, Pas12, PV21a, PV21b] (see
also the surveys [DGN17, Pas15]). Since MOTε can be seen a perturbation of MOT0,
it is natural to study the behavior as ε vanishes. In this paper, we are mainly interested
in investigating the rate of convergence of the entropic cost MOTε to MOT0 under
some mild assumptions on the cost functions and marginals.

In particular, we are going to extend the techniques introduced in [CPT23] for
two marginals to the multi-marginal case which will also let us generalize the bounds
in [CPT23] to the case of degenerate cost functions. For the two marginals and
nondegenerate case, we also refer the reader to a very recent (and elegant) paper
[MS23] where the authors push a little further the analysis of the convergence rate by
disentangling the roles of ∫ cdγ and the relative entropy in the total cost and deriving
convergence rate for both these terms. Notice that concerning the convergence rate
of the entropic MOT, an upper bound has been already established in [EN23],
which depends on the number of marginals and the quantization dimension of the
optimal solutions to (MOTε) with ε = 0. Here we provide an improved, smaller, upper
bound, which will depend only on the marginals, but not on the OT plans for the
unregularized problem, and we also provide a lower bound depending on a signature
condition on the mixed second derivatives of the cost function, that was introduced in
[Pas12]. The main difficulty consists in adapting the estimates of [CPT23] to the local
structure of the optimal plans described in [Pas12].

Our main findings can be summarized as follows: we establish two upper bounds,
one valid for locally Lipschitz costs and a finer one valid for locally semiconcave costs.
The proofs rely, as in [CPT23], on a multi-marginal variant of the block approximation
introduced in [Car+17]. Notice that in this case the bound will depend only on the
dimension of the support of the marginals. Moreover, for locally semiconcave cost
functions, by exploiting Alexandrov-type results as in [CPT23], we improve the upper
bound by a 1/2 factor, obtaining the following inequality for some C∗ ∈ R+:

MOTε ≤MOT0 +
1
2
⎛
⎝

m
∑
i=1

d i − max
1≤i≤m

d i
⎞
⎠

ε log(1/ε) + C∗ε.(1.1)

We stress that this upper bound is smaller than or equal to the one provided in
[EN23, Theorem 3.8], which is of the form 1

2 (m − 1)Dε log(1/ε) + O(ε), where D
is a quantization dimension of the support of an OT plan. Thus, D must be greater
than or equal to the maximum dimension of the support of the marginals, and of
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4 L. Nenna and P. Pegon

course∑m
i=1 d i −max1≤i≤m d i ≤ (m − 1)max1≤i≤m d i . The inequality may be strict, for

example, in the two marginals case with unequal dimension, as shown in Section 5.
For the lower bound, from the dual formulation of (MOTε), we have

MOTε ≥MOT0 − ε log∫
∏m

i=1 X i

e−
E(x1 ,. . . ,xm)

ε d⊗m
i=1 μ i(x i),

where E(x1 , . . . , xm) = c(x1 , . . . , xm) − ⊕m
i=1ϕ i(x i) is the duality gap and

(ϕ1 , . . . , ϕm) are Kantorovich potentials for the unregularized problem (MOTε)
with ε = 0. By using the singular values decomposition of the bilinear form obtained
as an average of mixed second derivatives of the cost and a signature condition
introduced in [Pas11], we are able to prove that E detaches quadratically from the set
{E = 0} and this allows us to estimate the previous integral in the desired way as in
[CPT23] and improve the results in [EN23] where only an upper bound depending on
the quantization dimension of the solution to the unregularized problem is provided.
Moreover, this slightly more flexible use of Minty’s trick compared to [CPT23] allows
us to obtain a lower bound also for degenerate cost functions in the two marginals
setting. Given a κ depending on a signature condition (see (PS(κ))) on the second
mixed derivatives of the cost, the lower bound can be summarized as follows:

MOTε ≥MOT0 +
κ

2
ε log(1/ε) − C∗ε,(1.2)

for some C∗ ∈ R+.
The paper is organized as follows: in Section 2, we recall the MOT problem, some

results concerning the structure of the optimal solution, in particular the ones in
[Pas11], and define its entropy regularization. Section 3 is devoted to the upper bounds
stated in Theorems 3.1 and 3.5. In Section 4, we establish the lower bound stated in
Proposition 4.2. Finally, in Section 5, we provide some examples for which we can get
the matching bounds.

2 Preliminaries

Given m probability compactly supported measures μ i on sub-manifolds X i of dimen-
sion d i in R

N for i ∈ {1, . . . , m} and a continuous cost function c ∶ X1 × X2 × ⋅ ⋅ ⋅ ×
Xm → R+, the MOT problem consists in solving the following optimization problem:

MOT0 ∶= inf
γ∈Π(μ1 , . . . ,μm)

∫
X

c(x1 , . . . , xm)dγ,(MOT)

where X ∶= X1 × X2 × ⋅ ⋅ ⋅ × Xm and Π(μ1 , . . . , μm) denotes the set of probability
measures on X whose marginals are the μ i . The formulation above is also known as the
Kantorovich problem, and it amounts to a linear minimization problem over a convex,
weakly compact set; it is then not difficult to prove the existence of a solution by the
direct method of calculus of variations. Much of the attention in the OT community is
rather focused on uniqueness and the structure of the minimizers. In particular, one
is mainly interested in determining if the solution is concentrated on the graph of a
function (T2 , . . . , Tm)over the first marginal, where (Ti)♯μ1 = μ i for i ∈ {1, . . . , m}, in
which case this function induces a solution à la Monge, that is, γ = (Id, T2 , . . . , Tm)♯μ1.
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Convergence rate of entropy-regularized multi-marginal optimal transport costs 5

In the two marginals setting, the theory is fairly well understood and it is well
known that under mild conditions on the cost function (e.g., twist condition) and
marginals (e.g., being absolutely continuous with respect to Lebesgue), the solution to
(MOT) is unique and is concentrated on the graph of a function; we refer the reader
to [San15] to have glimpse of it. The extension to the multi-marginal case is still not
well understood, but it has attracted recently a lot of attention due to a diverse variety
of applications.

In particular, in his seminal works, Pass [Pas11, Pas12] established some conditions,
more restrictive than in the two marginals case, to ensure the existence of a solution
concentrated on a graph. In this work, we rely on the following (local) result in
[Pas12] giving an upper bound on the dimension of the support of the solution to
(MOT). Let P be the set of partitions of {1, . . . , m} into two nonempty disjoint subsets:
p = {p− , p+} ∈ P if p−⋃ p+ = {1, . . . , m}, p−⋂ p+ = ∅ and p−, p+ ≠ ∅. Then, for each
p ∈ P, we denote by gp the bilinear form on the tangent bundle T X

gp ∶= D2
p− p+ c + D2

p+ p− c where D2
pqc ∶= ∑

i∈p, j∈q
D2

x i x j
c

for every p, q ⊆ {1, . . . , m}, and D2
x i x j

c ∶= ∑α i ,α j
∂2 c

x αi
i x αk

k
dxα i

i ⊗ dxα j
j , defined for every

i , j on the whole tangent bundle TX. Define

Gc ∶=
⎧⎪⎪⎨⎪⎪⎩
∑
p∈P

tp gp ∣ (tp)p∈P ∈ ΔP

⎫⎪⎪⎬⎪⎪⎭
(2.1)

to be the convex hull generated by the gp , then it is easy to verify that each g ∈ Gc
is symmetric and therefore its signature, denoted by (d+(g), d−(g), d0(g)), is well
defined. Then, the following result from [Pas12] gives a control on the dimension of
the support of the optimizer(s) in terms of these signatures.

Theorem 2.1 (Part of [Pas12, Theorem 2.3]) Let γ a solution to (MOT) and suppose
that the signature of some g ∈ Gc at a point x ∈ X is (d+ , d− , d0), that is, the number of
positive, negative, and zero eigenvalues. Then, there exists a neighborhood Nx of x such
that Nx ⋂ spt γ is contained in a Lipschitz sub-manifold of X with dimension no greater
than∑m

i=1 d i − d+.

Remark 2.2 For the following, it is important to notice that by standard linear
algebra arguments, we have for each g ∈ Gc that d+(g) ≤ ∑m

i=1 d i −maxi d i . This
implies that the smallest bound on the dimension of spt γ which Theorem 2.1 can
provide is maxi d i .

Remark 2.3 (Two marginals case) When m = 2, the only g ∈ Gc coincides precisely
with the pseudo-metric introduced by Kim and McCann in [KM10]. Assuming for
simplicity that d1 = d2 = d, they noted that g has signature (d , d , 0) whenever c is
nondegenerate, so Theorem 2.1 generalizes their result since it applies even when non-
degeneracy fails providing new information in the two marginals case: the signature
of g is (r, r, 2d − 2r) where r is the rank of D2

x1 x2
c. Notice that this will help us to

generalize the results established in [CPT23, EN23] to the case of a degenerate cost
function.
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6 L. Nenna and P. Pegon

It is well known that under some mild assumptions, the Kantorovich problem
(MOT) is dual to the following:

sup{
m
∑
i=1
∫

X i

ϕ i(x i)dμ i ∣ ϕ i ∈ Cb(X i),
m
∑
i=1

ϕ i(x i) ≤ c(x1 , . . . , xm)} .(MD)

Besides, it admits solutions (ϕ i)1≤i≤m , called Kantorovich potentials, when c is contin-
uous and all the X i ’s are compact, and these solutions may be assumed c-conjugate, in
the sense that for every i ∈ {1, . . . , m},

∀x ∈ X i , ϕ i(x) = inf
(x j) j≠i∈X−i

c(x1 , . . . , x i−1 , x , x i+1 , . . .) − ∑
1≤ j≤m , j≠i

ϕ j(x j).(2.2)

We recall the entropic counterpart of (MOT): given m probability measures μ i on X i
as before, and a continuous cost function c ∶ X → R+, the MOTε problem is

MOTε = inf {∫
X1× ⋅ ⋅ ⋅ ×Xm

cdγ + εEnt(γ∣ ⊗m
i=1 μ i) ∣ γ ∈ Π(μ1 , . . . , μm)} ,(MOTε)

where Ent(⋅∣ ⊗m
i=1 μ i) is the Boltzmann–Shannon relative entropy (or Kullback–

Leibler divergence) w.r.t. the product measure ⊗m
i=1 μ i , defined for general probability

measures p, q as

Ent(p ∣ q) =
⎧⎪⎪⎨⎪⎪⎩
∫
Rd

ρ log(ρ)dq, if p = ρq,

+∞, otherwise.

The fact that q is a probability measure ensures that Ent(p ∣ q) ≥ 0. The dual problem
of (MOTε) reads as

MOTε = ε + sup{
m
∑
i=1
∫

X i

ϕ i(x i)dμ i − ε∫
X

e
∑m

i=1 ϕi (xi )−c(x)
ε d⊗m

i=1 μ i ∣ ϕ i ∈ Cb(X i)} ,

(MDε)

which is invariant by (ϕ1 , . . . , ϕm) ↦ (ϕ1 + λ1 , . . . , ϕm + λm) where (λ1 , . . . , λm) ∈
R

m and ∑m
i=1 λ i = 0 (see [Léo14, MG20, NW22] for some recent presentations). It

admits an equivalent “log-sum-exp” form:

MOTε = sup{
m
∑
i=1
∫

X i

ϕ i(x i)dμ i − ε log(∫
X

e
∑m

i=1 ϕi (xi )−c(x)
ε d⊗m

i=1 μ i) ∣ϕ i ∈ Cb(X i)},

(MD ′ε)

which is invariant by the same transformations without assuming∑m
i=1 λ i = 0.

From (MOTε) and (MDε), we recover, as ε → 0, the unregularized multi-marginal
optimal transport (MOT) and its dual (MD) we have introduced above. The link
between MOT and its entropic regularization is very strong, and a consequence of
the Γ-convergence of (MOTε) toward (MOT) (one can adapt the proof in [Car+17] or
see [BCN19, GKR20] for Γ-convergence in some specific cases) is that

lim
ε→0

MOTε =MOT0 .
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Convergence rate of entropy-regularized multi-marginal optimal transport costs 7

By the direct method in the calculus of variations and strict convexity of the
entropy, one can show that (MOTε) admits a unique solution γε , called optimal
entropic plan. Moreover, there exist m real-valued Borel functions ϕε

i such that

γε = exp
⎛
⎝
⊕m

i=1ϕε
i − c

ε
⎞
⎠
⊗m

i=1 μ i ,(2.3)

where ⊕m
i=1ϕε

i ∶= (x1 , . . . , xm) ↦ ∑m
i=1 ϕε

i (x i), and in particular we have that

MOTε =
m
∑
i=1
∫

X i

ϕε
i dμ i(2.4)

and these functions have continuous representatives and are uniquely determined up
a.e. to additive constants. The reader is referred to the analysis of [MG20], to [Nen16]
for the extension to the multi-marginal setting, and to [BL92, BLN94, Csi75, FG97,
RT98] for earlier references on the two marginals framework.

The functions ϕε
i in (2.3) are called Schrödinger potentials, the terminology being

motivated by the fact that they solve the dual problem (MDε) and are as such the
(unique) solutions to the so-called Schrödinger system: for all i ∈ {1, . . . , m},

ϕ i(x i) = −ε log∫
X−i

e
⊕1≤ j≤m , j≠i ϕε

j−c(x)
ε d⊗1≤ j≤m , j≠i μ j for μ i -a.e. x i ,(2.5)

where X−i = ∏m
1≤ j≤m , j≠i X j . Note that (2.5) is a “softmin” version of the multi-marginal

c-conjugacy relation for Kantorovich potentials.

3 Upper bounds

We start by establishing an upper bound, which will depend on the dimension of
the marginals, for locally Lipschitz cost functions. We will then improve it for locally
semiconcave (in particular C 2) cost functions.

3.1 Upper bound for locally Lipschitz costs

The natural notion of dimension which arises is the entropy dimension, also called
information dimension or Rényi dimension [Rén59].

Definition 3.1 (Rényi dimension (following [You82])) If μ is a probability measure
over a metric space X, we set for every δ > 0,

Hδ(μ) = inf {∑
n∈N

μ(An) log(1/μ(An)) ∣ ∀n, diam(An) ≤ δ, and X = ⊔
n∈N

An} ,

where the infimum is taken over countable partitions (An)n∈N of X by Borel subsets
of diameter less than δ, and we define the lower and upper entropy dimensions of μ,
respectively by

dimR(μ) ∶= lim inf
δ→0+

Hδ(μ)
log(1/δ) , dimR(μ) ∶= lim sup

δ→0+

Hδ(μ)
log(1/δ) .
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8 L. Nenna and P. Pegon

Notice that if μ is compactly supported on a Lipschitz manifold of dimension
d, then Nδ(spt μ) ≤ d log(1/δ) + C for some constant C > 0 and δ ∈ (0, 1], where
Nδ(spt μ) is the box-counting number of spt μ, i.e., the minimal number of sets of
diameter δ > 0 which cover spt μ. In particular, by concavity of t ↦ t log(1/t), we
have

Hδ(μ) ≤ log Nδ(spt μ).(3.1)

We refer to the beginning of [CPT23, Section 3.1] for additional information and
references on Rényi dimension.

The following theorem establishes an upper bound for locally Lipschitz costs.

Theorem 3.1 Assume that for i ∈ {1, . . . , m}, μ i ∈P(X i) is a compactly supported
measure on a Lipschitz sub-manifold X i of dimension di and c ∈ C 0,1

loc (X), then

MOTε ≤MOT0 +
⎛
⎝

m
∑
i=1

d i − max
j∈{1,. . . ,m}

d j
⎞
⎠

ε log(1/ε) + O(ε).(3.2)

Proof Given an optimal plan γ0 for MOT0, we use the so-called “block approxima-
tion” introduced in [Car+17]. For every δ > 0 and i ∈ {1, . . . , m}, consider a partition
X i = ⊔n∈N An

i of Borel sets such that1 diam(An
i ) ≤ δ for every n ∈ N, and set

μn
i ∶=

⎧⎪⎪⎨⎪⎪⎩

μ i An
i

μ i(An
i )

, if μ i(An
i ) > 0,

0, otherwise,

then for every m-uple n = (n1 , . . . , nm) ∈ Nm ,

(γ0)n ∶= γ0(An1
1 × ⋅ ⋅ ⋅ × Anm

m )μn1
1 ⊗ ⋅ ⋅ ⋅ ⊗ μnm

m ,

and finally,

γδ ∶= ∑
n∈Nm

(γ0)n .

By definition, γδ ≪ ⊗m
i=1 μ i and we may check that its marginals are the μ i ’s. Besides,

γδ(A) = γ0(A) for every A = ∏m
i=1 An i

i where n ∈ Nm , and for⊗m
i=1 μ i -almost every x =

(x1 , . . . , xm) ∈ ∏m
i=1 An i

i ,

dγδ

d⊗m
i=1 μ i

(x1 , . . . , xm) ∶=
⎧⎪⎪⎨⎪⎪⎩

γ0(A
n1
1 × ⋅ ⋅ ⋅ ×Anm

m )

μ1(A
n1
1 ). . .μm(Anm

m )
, if μ1(An1

1 ) . . . μm(Anm
m ) > 0,

0, otherwise.

Let us compute its entropy and assume for simplicity that the measure μm is the
one such that dimR(μm) = maxi∈{1, . . . ,m} dim(μ i):

1We always consider the Euclidean distance over R
N , but since the supports of the measures are

compact and the sub-manifolds are Lipschitz, we may equivalently consider the intrinsic metric over
the sub-manifolds: they are equivalent distances at small scale, i.e., for ∣y − x∣ ≤ δ0 for some δ0 > 0.

https://doi.org/10.4153/S0008414X24000257 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000257
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Ent(γδ ∣ ⊗m
i=1 μ i) = ∑

n∈Nm
∫
∏m

i=1 Ani
i

log( γ0(An1
1 × ⋅ ⋅ ⋅ × Anm

m )
μ1(An1

1 ) . . . μm(Anm
m )

)dγδ

= ∑
n∈Nm

γ0(An1
1 × ⋅ ⋅ ⋅ × Anm

m ) log( γ0(An1
1 × ⋅ ⋅ ⋅ × Anm

m )
μ1(An1

1 ) . . . μm(Anm
m )

)

= ∑
n∈Nm

γ0(An1
1 × ⋅ ⋅ ⋅ × Anm

m ) log(γ0(An1
1 × ⋅ ⋅ ⋅ × Anm

m )
μm(Anm

m )
)

+
m−1
∑
j=1

∑
n∈Nm

γ0(An1
1 × ⋅ ⋅ ⋅ × Anm

m ) log(1/μ j(An j
j ))

= ∑
n∈Nm

γ0(An1
1 × ⋅ ⋅ ⋅ × Anm

m ) log(γ0(An1
1 × ⋅ ⋅ ⋅ × Anm

m )
μm(Anm

m )
)

+
m−1
∑
j=1

∑
n j∈N

γ0
⎛
⎝

j−1

∏
i=1

X i × An j
j ×

m
∏

i= j+1
X i
⎞
⎠

μ j(An j
j ) log(1/μ j(An j

j ))

≤
m−1
∑
j=1

∑
n j∈N

μ j(An j
j ) log(1/μ j(An j

j )),

the last inequality coming from the inequality γ0(An1
1 × ⋅ ⋅ ⋅ × Anm

m ) ≤
μm(Anm

m ). Taking partitions (An
j )n∈N of diameter smaller than δ such that

∑n j∈N μ j(An j
j ) log(1/μ j(An j

j )) ≤ Hδ(μ j) + 1
m−1 , we get

Ent(γδ ∣ ⊗m
i=1 μ i) ≤

m−1
∑
j=1

Hδ(μ j) + 1.

Since the μ i ’s have compact support and c is locally Lipschitz, for δ small
enough, there exists L ∈ (0,+∞) not depending on δ such that [c]C 0,1(A) ≤ L for
every A ∈ A ∶= {∏m

i=1 An i
i ∣ n ∈ Nm , μ1(An1

1 ) . . . μm(Anm
m ) > 0}. Notice that the ∞-

Wasserstein distance (see [San15, Section 3.2]) with respect to the norm ∥⋅∥2 satisfies
W∞(γδ , γ0) ≤ δ. Indeed, diam A ≤ δ and γ0(A) = γδ(A) for every A ∈ A, so that
Γ ∶= ∑A∈A γ0(A)−1(γδ A) ⊗ (γ0 A) is a transport plan from γδ to γ0 satisfying Γ −
ess sup (x , x′) ↦ ∥x′ − x∥ ≤ δ. Thus, taking γδ as competitor in (MOTε), we obtain

MOTε ≤ ∫ cdγδ + ε ∑
j≤m−1

Hδ(μ j) + ε

=MOT0 + ∑
A∈A

∫
A

cd(γδ − γ0) + ε ∑
j≤m−1

Hδ(μ j) + ε

≤MOT0 + ∑
A∈A

LW∞(γδ A, γ0 A)γ0(A) + ε ∑
j≤m−1

Hδ(μ j) + ε

≤MOT0 + Lδ + ε ∑
j≤m−1

Hδ(μ j)
log(1/δ) log(1/δ) + ε.

(3.3)

2The Wasserstein distance of order p is defined here by W p
p (μ, ν) ∶= inf{∫ ∥y − x∥p dγ(x , y) ∣ γ ∈

Π(μ, ν)} for p ∈ [1,+∞) and by W∞(μ, ν) = inf{γ − ess sup (x , y) ↦ ∥y − x∥ ∣ γ ∈ Π(μ, ν)} for p =
+∞.

https://doi.org/10.4153/S0008414X24000257 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000257


10 L. Nenna and P. Pegon

Taking δ = ε and recalling that the μ j ’s are concentrated on sub-manifolds of dimen-
sion d j , which implies that Hδ(μ j) ≤ d j log(1/δ) + C∗−1−L

m−1 for some C∗ ≥ L + 1 and
for every j ∈ {1, . . . , m}, we get

MOTε ≤MOT0 +
⎛
⎝ ∑

j≤m−1
d j
⎞
⎠

ε log(1/ε) + C∗ε. ∎

Remark 3.2 If the μ i ’s are merely assumed to have compact support (not necessarily
supported on a sub-manifold), the above proof actually shows the slightly weaker
estimate

MOTε ≤MOT0 +
⎛
⎝

m
∑
i=1

dimR(μ i) − max
j∈{1,. . . ,m}

dimR(μ j)
⎞
⎠

ε log(1/ε) + o(ε log(1/ε).

(3.4)

Indeed, for every i, by definition of dimR(μ i) =∶ d i , we have Hδ(μ i)
log(1/δ) ≤

sup0<δ′≤δ
Hδ′(μ i)

log(1/δ′) = d i + o(1) as δ → 0; thus, taking δ = ε as above, we have
ε Hδ(μ i)

log(1/δ) log(1/δ) ≤ (d i + o(1))ε log(1/ε).
Besides, notice that by taking m = 2 and d1 = d2 = d, one easily retrieves [CPT23,

Proposition 3.1].

3.2 Upper bound for locally semiconcave costs

We provide now a finer upper bound under the additional assumptions that the X i ’s
are C 2 sub-manifolds of RN , c is locally semiconcave as in Definition 3.2 (which is
the case when c ∈ C 2(X ,R+)), and the μ i ’s are measures in L∞(H d i

X i
) with compact

support in X i .

Definition 3.2 A function f ∶ X → R defined on a C 2 sub-manifold X ⊆ RN of
dimension d is locally semiconcave if for every x ∈ X there exists a local chart (i.e., a
C 2 diffeomorphism) ψ ∶ U → Ω where U ⊆ X is an open neighborhood of x and Ω is
an open convex subset of Rd , such that f ○ ψ−1 is λ-concave for some λ ∈ R, meaning
f ○ ψ−1 − λ ∣⋅∣

2

2 is concave on Ω.

Lemma 3.3 (Local semiconcavity and covering) Let c ∶ X → R+ be a locally semicon-
cave cost function and (ϕ i)1≤i≤m ∈ ∏≤i≤m C (K i) be a system of c-conjugate functions
as in (2.2) defined on compact subsets K i ⊆ X i . We can find λ ∈ R, J ∈ N∗ and for every
i ∈ {1, . . . , m} a finite open covering (U j

i )1≤ j≤J of K i together with bi-Lipschitz local
charts ψ j

i ∶ U j
i → Ω j

i satisfying the following properties, having set Ω j ∶= ∏1≤i≤m Ω j i
i and

ψ j ∶= (ψ j1
1 , . . . , ψ jm

m ) for every j = ( j1 , . . . , jm) ∈ {1, . . . , J}m :

(1) for every j ∈ {1, . . . , J}m , c ○ (ψ j)−1 is λ-concave on Ω j ,
(2) for every (i , j) ∈ {1, . . . , m} × {1, . . . , J}, ϕ i ○ (ψ j

i)−1 is λ-concave on Ω j
i .

In particular, all the ϕ i ’s are locally semiconcave.
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Proof For every i, by compactness of the K i ’s, we can find a finite open cov-
ering (U j

i )1≤ j≤J of K i and bi-Lipschitz local charts ψ j
i ∶ U j

i → Ω j
i such that for

every j = ( j1 , . . . , jm) ∈ {1, . . . , J}m , c ○ (ψ j)−1 − λ j ∣⋅∣2
2 is concave for some λ j ∈ R.

We may assume that λ j = λ for every j, by taking λ ∶= max{λ j ∣ j ∈ {1, . . . , J}m}.
Fix i ∈ {1, . . . , m}, j ∈ {1, . . . , J}, then for every k = (k�)�≠i ∈ {1, . . . , J}m−1, set k̂ =
(k1 , . . . , k i−1 , j, k i+1 , . . .). Notice that for every y ∈ Ω j

i ,

ϕ i ○ (ψ j
i)
−1(y)

= inf
(x�)�≠i∈K−i

c(x1 , . . . , x i−1 , (ψ j
i)
−1(y), x i+1 , . . .) − ∑

�∶�≠i
ϕ�(x�)

= min
k=(k�)�≠i

inf
(y�)�≠i∈Ω k̂

−i

c ○ (ψ k̂)−1(y1 , . . . , y i−1 , y, y i+1 , . . .) − ∑
�∶�≠i

ϕ� ○ (ψk�

� )
−1(y�),

and we see that it is λ-concave as an infimum of λ-concave functions. ∎

We are going to use an integral variant of Alexandrov’s theorem which is proved in
[CPT23].

Lemma 3.4 [CPT23, Lemma 3.6] Let f ∶ Ω → R be a λ-concave function defined on
a convex open set Ω ⊆ Rd , for some λ ≥ 0. There exists a constant C ≥ 0 depending only
on d such that

∫
Ω

sup
y∈Br(x)∩Ω

∣ f (y) − ( f (x) + ∇ f (x) ⋅ (y − x))∣dx(3.5)

≤ Cr2H d−1(∂Ω)([ f ]C 0,1(Ω) + λ diam(Ω)).

We may now state the main result of this section.

Theorem 3.5 Let c ∈ C 2(X) and assume that for every i ∈ {1, . . . , m}, X i ⊆ RN is a C 2

sub-manifold of dimension di and μ i ∈ L∞(H d i
X i
) is a probability measure compactly

supported in X i . Then there exist constants ε0 , C∗ ≥ 0 such that for ε ∈ (0, ε0],

MOTε ≤MOT0 +
1
2
⎛
⎝

m
∑
i=1

d i − max
1≤i≤m

d i
⎞
⎠

ε log(1/ε) + C∗ε.(3.6)

Proof The measures μ i being compactly supported in X i , take for every i ∈
{1, . . . , m} an open subset U i of X i such that spt μ i ⊆ U i ⋐ X i and define the compact
set K i ∶= Ū i . Take (ϕ i)1≤i≤m ∈ ∏1≤i≤m C (K i) an m-uple of c-conjugate Kantorovich
potentials and a transport plan γ0 ∈ Π(μ1 , . . . , μm) which are optimal for the unreg-
ularized problems (MD) and (MOT), respectively. In particular,

E ∶= c −⊕m
i=1ϕ i ≥ 0 on U = ∏

1≤i≤m
U i ,

E = 0 on spt γ0 ⊆ U .
(3.7)

For every i ∈ {1, . . . , m}, we consider the coverings (U j
i )1≤ j≤J and bi-Lipschitz local

charts ψ j
i ∶ U j

i → Ω j
i for j ∈ {1, . . . , J} provided by Lemma 3.3 and we notice by

compactness that there exist open subsets Ũ j
i ⋐ U j

i such that for a small δ0 > 0,
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12 L. Nenna and P. Pegon

the δ0-neighborhood of Ω̃ j
i ∶= ψ j

i(Ũ
j
i ) is included in Ω j

i for every j, and (Ũ j
i )1≤ j≤J

is still an open covering of K i . For δ ∈ (0, δ0), we consider the block approxima-
tion γδ of γ0 built in the proof of Theorem 3.1, as well as some κδ ∈ Π(γ0 , γδ)
such that sup(x0 ,x)∈spt κδ

∥x0 − x∥ ≤ δ. For every j = ( j1 , . . . , jm) ∈ {1, . . . , J}m , we set
E j ∶= E ○ (ψ j)−1, U j ∶= ∏m

i=1 U j i
i , and Ũ j ∶= ∏m

i=1 Ũ j i
i , and we write

∫
X

cdγδ − ∫
X

cdγ0 = ∫
U

Edγδ

= ∫
U×U

E(x)dκδ(x0 , x)

≤ ∑
j∈{1,. . . , J}m

∫
(x0 ,x)∈Ũ j×U

E(x)dκδ(x0 , x)

≤ ∑
j∈{1,. . . , J}m

∫
(x0 ,x)∈(U j)2

E j(ψ j(x))dκδ(x0 , x).

Notice that for every j ∈ {1, . . . , J}m and γ0-a.e. x0 ∈ U j , E j is differentiable at ψ j(x0),
or equivalently E is differentiable at x0. Indeed, c is differentiable everywhere, and for
every i ∈ {1, . . . , m} and j ∈ {1, . . . , J}, ϕ i ○ (ψ j

i)−1 is semiconcave thus differentiable
L d i -a.e.; hence, ϕ i is differentiable μ i -a.e. on U j

i because μ i ≪H d i and ψ j
i is bi-

Lipschitz, which in turn implies that ⊕m
i=1ϕ i is differentiable γ0-a.e. on U j because

γ0 ∈ Π(μ1 , . . . , μm). Moreover, by (3.7), we have Tψ j(x0)E
j ≡ 0 for γ0-a.e. x0 ∈ U j ,

where Ty0 f designates the first-order Taylor expansion y ↦ f (y0) + ∇ f (y0) ⋅ (y −
y0) for any function f which is differentiable at y0. We may then compute

∫
X

cdγδ − ∫
X

cdγ0

≤ ∑
j∈{1, . . . , J}m

∫
(x0 ,x)∈(U j)2

(E j(ψ j(x)) − Tψ j(x0)E
j(ψ j(x) − ψ j(x0)))dκδ(x0 , x)

= ∑
j=( j1 , . . . , jm)

(∫
(x0 ,x)∈(U j)2

(c j(ψ j(x)) − Tψ j(x0)c
j(ψ j(x) − ψ j(x0)))dκδ(x0 , x)

−
m
∑
i=1
∫
(x0 ,x)∈(U j i

i )
2
(ϕ j i

i (ψ
j i
i (x)) − Tψ j i

i (x0)
ϕ j i

i (ψ
j i
i (x) − ψ j i

i (x0)))d(e i , e i)♯κδ(x0 , x)) .

(3.8)

Now, since c j is λ-concave on each Ω j ∶= ψ j(U j), whenever ∥x0 − x∥ ≤ δ, we have

c j(ψ j(x)) − Tψ j(x0)c
j(ψ j(x) − ψ j(x0)) ≤ λ

∣ψ j(x) − ψ j(x0)∣
2

2
≤ mλL j

2
δ2 ,(3.9)

where L j ∶= max{Lip(ψ j), Lip((ψ j)−1)}. Besides, we may apply Lemma 3.4 to each
ϕ j i

i over Ω j i
i to get
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∣∫
(x0 ,x)∈(U j i

i )
2
(ϕ j i

i (ψ
j i
i (x)) − Tψ j i

i (x0)
ϕ j i

i (ψ
j i
i (x) − ψ j i

i (x0)))d(e i , e i)♯κδ(x0 , x)∣

≤∫
x0∈U

j i
i

sup
y∈BL j δ(ψ

j i
i (x0))∩Ω j i

i

∣ϕ j i
i (y) − Tψ j i

i (x0)
ϕ j i

i (y − ψ j i
i (x0))∣d(e i , e i)♯κδ(x0 , x)

=∫
U j i

i

sup
y∈BL j δ(ψ

j i
i (x0))∩Ω j i

i

∣ϕ j i
i (y) − Tψ j i

i (x0)
ϕ j i

i (y − ψ j i
i (x0))∣dμ i(x0)

≤∫
Ω j i

i

sup
y∈BL j δ(y0)∩Ω j i

i

∣ϕ j i
i (y) − Ty0 ϕ j i

i (y − y0)∣d(ψ j i
i )♯μ i(y0)

≤ ∥μ i∥L∞(H di ) L jC(L jδ)2
H

d i−1(∂Ω j i
i ) ([ϕ

j i
i ]C 0,1(Ω j i

i )
+ λ diam(Ω j i

i ))

≤C jδ2 ,

(3.10)

for some constant C j ∈ (0,+∞) which does not depend on δ. Reporting (3.9) and
(3.10) in (3.8) yields

∫
X

cdγδ − ∫
X

cdγ0 ≤ ∑
j∈{1,. . . , J}m

(mλL j

2
+ C j) δ2 =∶ C′δ2 .

Finally, we proceed as in the end of the proof of Theorem 3.1, taking γδ as competitor
in the primal formulation (MOTε), so as to obtain

MOTε −MOT0 ≤ ∫
X

cdγδ − ∫
X

cdγ0 + ε ∑
i≤m−1

Hδ(μ j) + ε

≤ C′δ2 + ε ∑
i≤m−1

(d i log(1/δ) + C′′),

where C′′ ∈ (0,+∞) is a constant such that Hδ(μ i) ≤ d i log(1/δ) + C′′ − 1. Taking
δ =

√
ε for ε ≤ δ2

0 yields

MOTε −MOT0 ≤
1
2
(

m−1
∑
i=1

d i) ε log(1/ε) + (C′ + (m − 1)C′′)ε,

and we obtain the desired estimate recalling that the index i = m was chosen merely
to simplify notations. ∎

4 Lower bound for C 2 costs with a signature condition

In this section, we consider a cost c ∈ C 2(X ,R+) where X = X1 × ⋅ ⋅ ⋅ × Xm and we
will assume that for every i ∈ {1 . . . , m}, the measure μ i is compactly supported on a
C 2 sub-manifold X i ⊆ RN of dimension d i . We are going to establish a lower bound
in the same form as the fine upper bound of Theorem 3.5, the dimensional constant
being this time related to the signature of some bilinear forms, following ideas from
[Pas12].

Lemma 4.1 Let c ∈ C 2(X ,R+) and (ϕ1 , . . . , ϕm) ∈ C (K1) × ⋅ ⋅ ⋅ ×C (Km) be a sys-
tem of c-conjugate functions on subsets K i ⊆ X i for every i. We set E ∶= c − ϕ1 ⊕ ⋅ ⋅ ⋅ ⊕
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ϕm on K ∶= K1 × ⋅ ⋅ ⋅ × Km and we take x̄ ∈ K as well as some gx̄ ∈ {g(x̄) ∣ g ∈ Gc}
of signature (d+ , d− , d0), Gc being defined in (2.1). Then there exists local coordinates
around x̄, i.e., C 2 diffeomorphisms

u = (u0 , u− , u+) ∶ U ⊆ X → Bd+
ρ (0) × Bd−

ρ (0) × Bd0

ρ (0),

U being an open neighborhood of x̄, such that if x , x′ ∈ Br(x̄) ⊆ U,

E(x′) + E(x)
2

≥ ∣u+(x′) − u+(x)∣2 − ∣u−(x′) − u−(x)∣2 − η(r) ∣u(x′) − u(x)∣2 ,

(4.1)

where η(r) ≥ 0 tends to 0 as r → 0.

Proof Let p = {p− , p+} ∈ P. For y ∈ ∏i∈p± K i , we set

ϕp±(y) ∶= ∑
i∈p±

ϕ i(y i).

We identify any x ∈ K with (xp− , xp+). Since the ϕ i ’s are c-conjugate, for x , x′ ∈ K, it
holds

E(x′) = c(x′p− , x′p+) − ϕp−(x′p−) − ϕp+(x′p+)
≥ c(x′p− , x′p+) − (c(x′p− , xp+) − ϕp+(xp+)) − (c(xp− , x′p+) − ϕp−(xp−))
= c(x′p− , x′p+) − c(x′p− , xp+) − c(xp− , x′p+) + c(xp− , xp+) − E(x).

Now we do computations in local charts ψ i ∶ U i ⊆ X i → ψ i(U i) ⊆ Rd i which are C 2

diffeomorphisms such that BR(x̄ i) ⊆ U i for some R > 0 and ψ i(U i) are balls centered
at 0 for every i ∈ {1, . . . , m}. With a slight abuse, we use the same notation for points
and functions written in these charts, and use Taylor’s integral formula:3

E(x′) + E(x) ≥ ∫
1

0
∫

1

0
D2

p− p+ c(x s ,t)(x′p− − xp− , x′p+ − xp+)dsdt,

where x s ,t ∶= (xp− + (1 − s)x′p− , xp+ + (1 − t)x′p+) for s, t ∈ [0, 1]. Since
∣D2

p− p+ c(x s ,t) − D2
p− p+ c(x̄)∣ ≤ η(r) where η is the maximum for p ∈ P of the

moduli of continuity of D2
p− p+ c at x̄. Since η is independent from p and tends

to 0 as r → 0 because c is C 2, and by definition D2c(x̄)(x′p− − xp− , x′p+ − xp+) =
1
2 gp(x̄)(x′ − x , x′ − x), it holds

E(x) + E(x′) ≥ 1
2

gp(x̄)(x′ − x , x′ − x) − η(r) ∥x′ − x∥2 .

Taking gx̄ = ∑p∈P tp gp(x̄) for some (tp)p∈P ∈ ΔP and averaging the previous inequal-
ity yields

E(x) + E(x′) ≥ 1
2

gx̄(x′ − x , x′ − x) − η(r) ∥x′ − x∥2 .(4.2)

3Any linear combination azi + byi will designate ψ−1
i (aψi(zi) + bψi(yi)).
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Finally, we can find a linear isomorphism Q ∈ GL(∑m
i=1 d i ,R) which diagonalizes

gx̄ , such that after setting u ∶= Q ○ (ψ1 , . . . , ψm) and denoting u = (u+, u− , u0) ∶
∏m

i=1 U i → R
d+ ×Rd− ×Rd0

, where (d+ , d− , d0) is the signature of gx̄ , it holds
1
4

gx̄(x′ − x , x′ − x) = ∣u+(x′) − u+(x)∣2 − ∣u−(x′) − u−(x)∣2 .

Reporting this in (4.2), we get the result by replacing η with ∥Q∥−1 η and restricting u
to U ∶= u−1(Bd+

ρ (0) × Bd−
ρ (0) × Bd0

ρ (0)) for some small ρ > 0. ∎
We will use the following positive signature condition:

for every x ∈ X , d+c (x) ≥ κ where d±c (x) ∶= max{d±(g)(x) ∣ g ∈ Gc} .
(PS(κ))

Proposition 4.2 Let c ∈ C 2(X) and assume that for every i ∈ {1, . . . , m}, X i ⊆ RN

is a C 2 sub-manifold of dimension di and μ i ∈ L∞(H d i
X i
) is a probability mea-

sure compactly supported in Xi . If (PS(κ)) is satisfied, then there exists a constant
C∗ ∈ [0,∞) such that for every ε > 0,

MOTε ≥MOT0 +
κ

2
ε log(1/ε) − C∗ε.(4.3)

Proof The measures μ i being supported on some compact subsets K i ⊆ X i , con-
sider a family (ϕ i)1≤i≤m ∈ ∏m

i=1 C (K i) of c-conjugate Kantorovich potentials. Taking
(ϕ i)1≤i≤m as competitor in (MDε

′), we get the lower bound

MOTε ≥
m
∑
i=1
∫

K i

ϕ i dμ i − ε log(∫
K

e−
E
ε d⊗m

i=1 μ i)

=MOT0 − ε log(∫
K

e−
E
ε d⊗m

i=1 μ i) ,

where E ∶= c −⊕m
i=1ϕ i on K = ∏m

i=1 K i as in Lemma 4.1. We are going to show that for
some constant C > 0 and for every ε > 0,

∫
K

e−E/εd⊗m
i=1 μ i ≤ Cεκ/2 ,

which yields (4.3) with C∗ = log(C).
For every x̄ ∈ K , we consider a quadratic form gx̄ ∈ {g(x̄) ∣ g ∈ Gc} of signature

(κ, d− , d0), which is possible thanks to (PS(κ)), and take a local chart4

ux̄ ∶ U ⊆ X → Bκ
R(0) × Bd−

R (0) × Bd+
R (0)

as given by Lemma 4.1, such that (4.1) holds with η(r) ≤ 1/2 for every r such
that Br(x̄) ⊆ U . Notice that ux̄ is bi-Lipschitz with some constant Lx̄ on Vx̄ ∶=
u−1

x̄ (Bκ
R/2(0) × Bd−

R/2(0) × Bd0

R/2(0)).
For every i ∈ {1, . . . , m}, we may write μ i = f iH

d i
X i

for some density f i ∶ X i →
R+. By applying several times the co-area formula [Fed96, Theorem 3.2.22] to the

4Although U, R, d−, and d0 depend on x̄, we do not index them with x̄ so as to ease notations.
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projection maps onto X i , we may justify that

H d
X = ⊗m

i=1H
d i

X i
where d ∶= ∑

i
d i .

We set Ex̄ ∶= E ○ u−1
x̄ ∶ Bκ

R(0) × Bd−
R (0) × Bd0

R (0) → [0,+∞], and we apply the area
formula

∫
Vx̄

e−E/εd⊗m
i=1 μ i = ∫

Vx̄
e−E/ε ⊗m

i=1 f i dH d
X

= ∫
Bκ

R/2(0)×Bd−
R/2(0)×Bd0

R/2(0)
e−E x̄/ε ⊗m

i=1 f i Ju−1
x̄ dH κ ⊗H d− ⊗H d0

≤ Lx̄
m
∏
i=1
∥μ i∥L∞(H di

Xi
)∫Bκ

R/2(0)×Bd−
R/2(0)×Bd0

R/2(0)
e−E x̄(u+ ,u− ,u0)/εd(u+ , u− , u0).

Now, for every (u− , u0) ∈ Bd−
R/2(0) × Bd0

R/2(0), consider a minimizer of Ex̄(⋅, u− , u0)
over B̄κ

R/2(0) denoted by f +(u−, u0). By (4.1) of Lemma 4.1, for every (u+ , u− , u0) ∈
Bκ

R/2(0) × Bd−
R/2(0) × Bd0

R/2(0),

Ex̄(u+, u− , u0) ≥ 1
2
(Ex̄( f +(u−, u0), u− , u0) + Ex̄(u+, u− , u0))

≥ (1 − 1/2) ∣u+ − f +(u−, u0)∣2 = 1
2
∣u+ − f +(u−, u0)∣2 .

As a consequence, we obtain

∫
Bκ

R/2(0)×Bd−
R/2(0)×Bd0

R/2(0)
e−E x̄(u+ ,u− ,u0)/εd(u+, u− , u0)

≤ ∫
Bd−

R/2(0)×Bd0
R/2(0)

∫
Bκ

R/2(0)
e−

∣u+− f+(u− ,u0)∣2

2ε du+d(u− , u0)

≤ εκ/2ωd−ωd0 Rd−+d0

∫
Rκ

e−∣u∣
2/2du = Cx̄ εκ/2

for some constant Cx̄ > 0 (which depends on x̄ through R, d−, and d0). The sets
{Vx̄}x̄∈Σ form an open covering of the compact set Σ ∶= {x ∈ K ∣ E(x) = 0}; hence,
we may extract a finite covering Vx̄1 , . . . , Vx̄L and for every ε > 0,

∫
⋃L

�=1 Vx̄�

e−E/εd⊗m
i=1 μ i ≤ εκ/2

⎛
⎝

L
∑
�=1

Lx̄�
Cx̄�

⎞
⎠
⎛
⎝

m
∏
i=1
∥μ i∥L∞(H di

Xi
)

⎞
⎠
= C1εκ/2 ,

for some constant C1 ∈ (0,+∞). Finally, since E is continuous and does not vanish on
the compact set K′ ∶= K/⋃L

�=1 Vx̄�
, it is bounded from below on K ′ by some constant

C2 > 0. Therefore, for every ε > 0,

∫
K

e−E/εd⊗1≤i≤m μ i ≤ C1εκ/2 + e−C2/ε ≤ Cεκ/2 ,

for some constant C > 0. This concludes the proof. ∎
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5 Examples and matching bound

We devote this section to applying the results we have stated above to several cost
functions. For simplicity, we can assume that the dimensions of the X i are all equal
to some common d and the cost function c is C 2. As in [Pas12], we consider, for the
lower bound, the metric g such that tp = 1

2m−1−1 for all p ∈ P, we remind that P is the
set of partition of {1, . . . , m} into two nonempty disjoint subsets.

Example 5.1 (Two marginals case) In previous works [CPT23, EN23] concerning
the rate of convergence for the two marginals problem, it was assumed that the cost
function must satisfy a nondegeneracy condition, that is, D2

x1 x2
c must be of full rank.

A direct consequence of our analysis is that we can provide a lower bound (the upper
bound does not depend on such a condition) for costs for which the nondegeneracy
condition fails. Let r be the rank of D2

x1 x2
c at the point where the nondegeneracy

condition fails, then the signature of g at this point is given by (r, r, 2d − 2r)meaning
that locally the support of the optimal γ0 is at most (2d − r)-dimensional. Thus, the
bounds become

r
2

ε log(1/ε) − C∗ε ≤ OTε −OT0 ≤
d
2

ε log(1/ε) + C∗ε,

for some constants C∗ , C∗ > 0. Notice that if D2
x1 ,x2

c has full rank, then r = d and we
retrieve the matching bound results of [CPT23, EN23].

Example 5.2 (Two marginals case and unequal dimension) Consider now the two
marginals case but unequal dimensional, that is, for example, d1 > d2. Then, if D2

x1 ,x2
c

has full rank, that is, r = d2, we obtain a matching bound depending only on the lower-
dimensional marginal

d2

2
ε log(1/ε) − C∗ε ≤ OTε −OT0 ≤

d2

2
ε log(1/ε) + C∗ε,

for some constants C∗ , C∗ > 0. If μ1 is absolutely continuous with respect to H d1 on
some smooth sub-manifold of dimension d1, then any OT plan would be concentrated
on a set of Hausdorff dimension no less than d1, and thus the upper bound given in
[EN23, Theorem 3.8] would be d1

2 ε log(1/ε) + O(ε), which is strictly worse than our
estimate.

Example 5.3 (Negative harmonic cost) Consider the cost c(x1 , . . . , xm) =
h(∑m

i=1 x i) where h is C 2 and D2h > 0. Assuming that the marginals have finite
second moments, when h(x) = ∣x∣2, this kind of cost is equivalent to the harmonic
negative cost that is c(x1 , . . . , xm) = −∑i< j ∣x i − x j ∣2 (here ∣ ⋅ ∣ denotes the standard
euclidean norm) (see [DGN17] for more details). It follows now that the signature of
the metric g is (d , (m − 1)d , 0); thus, the bounds between MOTε and MOT0 that we
obtain are

d
2

ε log(1/ε) − C∗ε ≤MOTε −MOT0 ≤
1
2
((m − 1)d)ε log(1/ε) + C∗ε,
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for some constants C∗ , C∗ > 0. We remark that it is known from [DGN17, Pas12]
that a transport plan γ0 is optimal if and only if it is supported on the set
{(x1 , . . . , xm) ∣ ∑m

i=1 x i = l}, where l ∈ Rd is any constant and there exist solutions
whose support has dimension exactly (m − 1)d.

Example 5.4 (Gangbo–Święch cost and Wasserstein barycenter) Suppose that
c(x1 , . . . , xm) = ∑i< j ∣x i − x j ∣2, known as the Gangbo–Święch cost [GŚ98]. Notice
that the cost is equivalent to c(x1 , . . . , xm) = h(∑m

i=1 x i) where h is C 2 and D2h < 0,
then the signature of g is ((m − 1)d , d , 0) and we have a matching bound

1
2
((m − 1)d)ε log(1/ε) − C∗ε ≤MOTε −MOT0 ≤

1
2
((m − 1)d)ε log(1/ε) + C∗ε.

Notice now that considering the MOT0 problem with a cost c(x1 , . . . , xm) = ∑i ∣x i −
T(x1 , . . . , xm)∣2, where T(x1 , . . . , xm) = ∑m

i=1 λ i x i is the Euclidean barycenter, is
equivalent to theMOT0 with the Gangbo–Święch cost and the matching bound above
still holds. Moreover, the multi-marginal problem with this particular cost has been
shown [AC11] to be equivalent to the Wasserstein barycenter, that is, T♯γ0 = ν is the
barycenter of μ1 , . . . , μm .
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